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Abstract: In situ ground truth data are an important requirement for producing accurate cropland
type map, and this is precisely what is lacking at vast scales. Although volunteered geographic
information (VGI) has been proven as a possible solution for in situ data acquisition, processing
and extracting valuable information from millions of pictures remains challenging. This paper
targets the detection of specific crop types from crowdsourced road view photos. A first large,
public, multiclass road view crop photo dataset named iCrop was established for the development of
crop type detection with deep learning. Five state-of-the-art deep convolutional neural networks
including InceptionV4, DenseNet121, ResNet50, MobileNetV2, and ShuffleNetV2 were employed
to compare the baseline performance. ResNet50 outperformed the others according to the overall
accuracy (87.9%), and ShuffleNetV2 outperformed the others according to the efficiency (13 FPS).
The decision fusion schemes major voting was used to further improve crop identification accuracy.
The results clearly demonstrate the superior accuracy of the proposed decision fusion over the other
non-fusion-based methods in crop type detection of imbalanced road view photos dataset. The
voting method achieved higher mean accuracy (90.6–91.1%) and can be leveraged to classify crop
type in crowdsourced road view photos.

Keywords: crop type; crowdsourced road view photo; deep convolutional neural network; automatic
photo identification; ensemble classification

1. Introduction

Zero Hunger has been recognized as one of the core sustainable development goals [1,2].
Although global food production is increasing, some countries have still been short of food
in recent years [3]. Against the background of global climate change, the frequency of
extreme weather further increases the uncertainty of food production. Timely, transparent,
and accurate information on global agricultural monitoring is essential for ensuring the
proper functioning of food commodity markets and limiting extreme food price volatil-
ity [4]. Accurate and reliable crop type information is vital for many applications such as
crop area statistics, yield estimation, land use planning, and food security research.

Remote sensing techniques have been proven to be an efficient, objective, and cost-
effective method of agricultural monitoring at global, national, and sub-national scales.
With more remote sensing data being made public and the development of cloud comput-
ing, it is possible to use these data for the large-scale classification of farmland types [5–8].
However, influenced by environmental factors such as elevation distribution, farmland
area, land cover richness and cloud cover frequency, the overall accuracy of the four
farmland products was below 65% and the standard deviations among all four cropland
datasets varied from 0 to 50% [9]. In order to improve the accuracy of future cropland
products, cropland classification methods require more and richer training or verification
data collected from ground surveys to build a robust model for crop identification [10].
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The crowdsourcing method is available for collecting field data and managing public
access (such as Geo-WiKi.org and iNaturalist.org). Crowdsourcing geo-tagged images
from Flickr and Geograph were used to create a binary land cover classification (devel-
oped/undeveloped) for an area of 100 × 100 km2 in Great Britain, and the accuracy
achieved was around 75% [11]. Roadside sampling strategies for cropland data collection
that enable the sampling of large areas at a relatively low cost have been suggested [12,13]
and integrated with remote sensing data to provide crop acreage estimations [14]. Quality
control of crowdsourcing geo-tagged data is very important; otherwise, the user will be
unable to assess the quality of the data or use it with confidence [15]. For crowdsourc-
ing photo classification, visual interpretations by volunteers have been used in previous
studies [16]. On the other hand, they also discussed the long time required for visual
interpretation of many photos, and automatic approaches should be proposed instead of
manual classification.

Deep learning is a recent, modern technique for photo processing and data analysis
that has resulted from the continued development of computer hardware and the appear-
ance of large-scale datasets [17]. Convolutional neural networks (CNNs), one of the most
successful network architectures in deep learning methods, have been developed for photo
recognition and applied to complex visual photo processing. Deep learning CNNs have
entered the domain of agriculture, with applications such as plant disease and pest recog-
nition [18], picking and harvesting automatic robots [19], weed-crop classification [20], and
monitoring of crop growth [21]. Photo datasets are the most commonly used basic data in
the field of deep learning. Some research data come directly from crowdsourced datasets,
such as ImageNet [22], iNaturalist [23] and PlantVillage [24]. Most applied agriculture
research collects sets of real photos based on the research needs of fine-grained photo
categorization, such as DeepWeeds [25], CropDeep [26] and iCassava 2019 [27]. The Deep-
Weeds dataset consists of 17,509 labelled images of eight nationally significant weed species
native to eight locations across northern Australia. The CropDeep species classification
and detection dataset, consisting of 31,147 images with over 49,000 annotated instances
from 31 different classes of vegetables and fruits grown in greenhouses. iCassava 2019
is a dataset consisting of 9436 labeled images covering healthy cassava leaves as well as
4 common diseases. These datasets do not focus on crop types in the field and all photos
are close-ups of the identified objects.

However, if there are no public benchmark datasets specifically designed for crop
type classification, this limits the further application of deep learning technology and the
development of intelligence in acquiring accurate crop types, distributions, and proportions.
A study in Thailand explored the potential of using deep learning to classify photos from
Google Street View (GSV) for the identification of seven regionally common cultivated plant
species along roads, and the overall accuracy of the multiclass classifier was 83.3% [28].
A total of 8814 GSV images with 7 classes of crop for the Central Valley and 1 class
representing “other” were prepared for training the CNN model in the USA, and the
overall classification accuracy was 92% [29]. Obviously, the timing of GSV photo capture
may not be during the growing seasons, and the revisit frequency in most rural areas is
low to nonexistent. It has been demonstrated that GSV survey detected fewer plants than
car surveys in Portugal countrywide [30]. The dataset of the first study is not public, and,
while the dataset of the second can be download freely, the size of the dataset is relatively
small. In addition, more state-of-the-art classification networks and model ensemble could
be compared and selected to improve performance.

The objectives of this paper are (1) to build a large road view crop photo dataset to
support automatic fine-grained classification with deep learning, and (2) to identify and
fuse the optimal deep learning architectures for road view photo classification.

The remainder of this paper is organized as follows: Section 2 presents a specific de-
scription of the iCrop datasets and introduces the deep learning classification network and
the selected data augmentation process. Section 3 presents the experimental performance
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and results. Section 4 discusses which model is best for the different applications. Finally,
we summarize the conclusions and propose our further research aims in Section 5.

2. Materials and Methods
2.1. Dataset

To build a road view crop photo dataset to support automatic fine-grained classifi-
cation with deep learning, the crowdsourced photos were collected, cleaned, labeled and
divided as shown in Figure 1.
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Figure 1. A workflow diagram of crowdsourced crop photos collection, cleaning, labeling and division.

2.1.1. Data Collection

The data were collected by a smartphone app named GVG as part of a crowdsourcing
project initiated by the CropWatch team since 2015 [31]. GVG is mobile phone software that
can record the photos, location and time of crops at the same time, and users can mark the
types of crops in the photos. It is freely downloaded from application marketplaces such
as Google Play, the Apple App Store, the Huawei App Gallery and other app marketplaces.
The GVG application is easy to use for non-professionals and reduces the amount of ground
observation work. A tutorial of field data collection with GVG can be download from
http://www.nwatch.top:8085/icrop/docs/gvg.pdf (accessed on 28 October 2020). As
shown in Figure 2, the phone was mounted on the window for fast roadside sampling
along the road with the help of vehicles. Hundreds of thousands of roadside view photos
were collected automatically from the main grain-producing areas of China, including
Liaoning, Hebei, Shandong, Jilin, Inner Mongolia, Jiangxi, Hunan, Sichuan, Henan, Hubei,
Jiangsu, Anhui, and Heilongjiang. The sampling time was based on the crop phenology
calendar. These data have been used to support the paddy field/dry land identification
and other land cover mapping [6,32].

http://www.nwatch.top:8085/icrop/docs/gvg.pdf
http://www.nwatch.top:8085/icrop/docs/gvg.pdf
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2.1.2. Dataset Cleaning and Labeling

First, the photos without cropland or severely blurred field photos were deleted; then,
all valid photos were annotated and submitted by the observers, consisting of photos,
classes, locations and observation time. A web photo management system was built to
easily view and manage the photos based on the Piwigo photo management tool. When a
user logs in, they can check whether the photo classification is correct and mark the incor-
rectly classified photo with the correct classification. All users can rate the trustworthiness
of the photo tags on a five-point scale. Photos with an average score less than 3 will be
removed or re-tagged. With this method, 34,117 correct photos were divided into twelve
types, representing the dominate crop types or farmland without crop, including cotton,
maize, peanut, rape, rice, sorghum, soybean, sunflower, tobacco, vegetable, and wheat.

2.1.3. Training and Validation Subsets

Based on fine annotation, the photos were randomly divided into a training set and
a test set with approximately 80% of the photos included in the training set. The 80/20
split rate of the training/test dataset is the most common in deep learning applications,
and other similar split rates (e.g., 70/30) should not have a significant impact in the
performance of the developed model [33]. These empirical proportions make up for the
imbalance problem in the dataset. Even if there are some classes with a large number
of training samples, their corresponding test sets also contain more samples; thus, these
samples undergo more rigorous assessment. At this point, we have the final photo splits,
with a total of 27,401 training photos and 6716 test photos. In Table 1, we list the numbers
of training and test photos in each category in the iCrop dataset. Randomly selected sample
photos from each category of the dataset can be viewed in Figure A1 in Appendix A. It can
be seen from the picture that the weather, color, and angle of each photo are different, and
some crops are partially obscured by trees and buildings along the road.

The largest crop class was “rice”, with 5850 photos, and the smallest was “sorghum”,
with 149 photos. We can see that the photos of each class are imbalanced, which represents
a long-tailed real-world challenge in classification problems.
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Table 1. Number of training and test photos in each category in the iCrop dataset.

Categories Train Test Total

Bare land 1543 327 1870
Cotton 249 59 308
Maize 4114 1044 5158
Peanut 608 139 747

Rapeseed 3695 871 4566
Rice 4646 1204 5850

Sorghum 112 37 149
Soybean 4257 1080 5337

Sunflower 199 44 243
Tobacco 297 70 367

Vegetable 3651 890 4541
Wheat 4030 951 4981

2.2. Method

The general structure of the presented method identifying and fusing optimal deep
learning architectures for road view photo classification is shown in Figure 3.
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2.2.1. Data Augmentation

The data scale has a great influence on the accuracy of a deep learning network model.
A small amount of data will lead to the overfitting of the model, making the training error
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very small and the testing error extremely large. To avoid overfitting of the network, some
augmented preprocessing was applied to enhance a large number of photos in the dataset
before training [34]. The augmentation process has been reported to improve classification
accuracy in many studies [35–40]. We used two primary ways to generate new photos
from raw photo data with very little computation before training, and the transformed
photos only need to be stored in memory. The first method is geometrical transformations
consisting of resizing, random cropping, rotation and horizontal flipping [41]. The second
method is intensity transformations consisting of contrast, saturation, brightness, and color
enhancement [42].

2.2.2. Convolutional Neural Networks

Deep learning allows computing models from multiple processing layers to learn
data that have multiple abstract levels. Although a series of CNN models have shown
outstanding performance on plant disease detection and diagnosis, the challenges related
to addressing other agricultural tasks online or offline are still difficult to overcome [43].
Therefore, to characterize the classification difficulty of iCrop, we ran experiments with five
state-of-the-art CNN models, including Resnet50, InceptionV4, Densenet121, MobileNetV2
and ShuffleNetV2.

ResNet50, which was the champion of the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVCR) 2015, introduces a new residual structure and solves the prob-
lem that the accuracy rate decreases as the network deepens [44]. Once it was estab-
lished, InceptionV4 was improved from InceptionV3 (the winner of ILSVRC2014) with
resumed connectivity, greatly accelerating training and improving performance through
ResNet’s structure [45]. The best paper of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) 2017 proposed a densely connected network structure named
DenseNet121, which is more conducive to the transmission of information flow [46]. At
present, most deep learning networks run on computers with strong floating-point com-
puting power. However, MobileNetV2 and ShuffleNetV2 are designed for mobile and
embedded visual applications. The finer tuning of MobileNetV2 based on the MobileNet
structure, skipped linking directly on a thinner bottleneck layer, and no ReLu nonlin-
ear processing on the bottleneck layer can achieve better results [47]. ShuffleNet-V2 is a
lightweight CNN network that balances speed and accuracy [48]. At the same complexity,
it is more accurate than ShuffleNet and more suitable for mobile and unmanned vehicles.

These networks were implemented in PaddlePaddle deep learning frameworks, which
is an open-source platform with advanced technologies and rich features [49]. An excellent
RMSprop optimizer proposed by Geoff Hinton was used in training the adaptive learning
rate [50]. Training batches of size 30 were created by uniformly sampling from all available
training photos as opposed to sampling uniformly from the classes.

2.2.3. Ensemble Classification

Ensemble is the process of fusing information from several sources after the data have
undergone preliminary classification to improve the final decision [51]. To improve crop
identification accuracy, deep learning networks with good accuracy and fast speed will be
selected to decision fuse. These models can be seen as different experts focusing on different
point of views, whose decisions are complementary and could be fused as a more accurate
and stable one. Ensemble classification based on majority voting is proposed in this paper.
Majority Voting is one of the most popular, fundamental and straightforward combiners
for the predictions from multiple deep learning algorithms [52]. Every individual classifier
vote for one class label. The class label that most frequently appears in the output of
individual classifiers is the final output. Majority voting was applied on the individual
classification results of all classifiers without a reliability check.



Sensors 2021, 21, 1165 7 of 15

3. Results

Experiments with deep learning classification architectures were carried out. All
models were trained and tested on an Intel(R) Xeon(R) Gold 6148 CPU @ 2.40 GHz with
NVIDIA Tesla V100-SXM2 GPU and 16G RAM. The training proceeded on the training set,
after which the evaluation was performed on the validation set to minimize overfitting.
When the training process and parameter selection were achieved, the final evaluation was
performed on the unknown testing set to evaluate the performance. During training and
testing, the photo was adjusted to 224 px as the input of the network.

3.1. Accuracy of Single CNN

The classification test accuracy across all species of each model is shown in Table 2.
Classification accuracy is mentioned as the Rank-1 identification rate per class [53]. The
percentage of correct predictions where the top class (the one with the highest probability),
as indicated by the deep learning model, is the same as the previously annotated target
label. For multiclass classification problems, “Average accuracy” indicates the total
number of correct prediction samples divided by the total number of testing photos. We
observe a larger difference in accuracy and small difference in a average accuracy across
the different crops.

Table 2. Test accuracy across all species computed by the five classification models.

Categories InceptionV4 DenseNet121 ResNet50 MobileNetV2 ShuffleNetV2

Bare land 76.7 78.3 83.2 79.8 81.3
Cotton 62.7 76.2 84.7 69.5 81.4
Maize 91.1 93.1 92.1 92.9 92
Peanut 59.0 64.7 73.4 68.3 65.5

Rapeseed 89.2 96.7 93.5 88.9 93.2
Rice 93.5 87.0 88.9 95.5 93

Sorghum 59.5 73.0 73.0 70.3 75.7
Soybean 85.5 83.5 85.4 79.4 82.1

Sunflower 79.5 65.9 72.7 56.8 72.7
Tobacco 72.9 65.7 71.4 81.4 82.9

Vegetable 81.1 80.4 81.8 79.7 81.3
Wheat 88.4 84.5 91.7 96.0 89.3

Average
accuracy 86.2 86 87.9 87.5 87.5

Numbers in bold represent the best classification accuracy for each cropland type.

As seen in Table 2, for rapeseed, the DenseNet121 model outperformed the other mod-
els with an accuracy of 96.7%. However, for wheat, the MobileNetV2 model outperformed
the other models with an accuracy of 96.0%. For average accuracy, the ResNet50 model
outperformed the other models with an average accuracy of 87.9%. MobileNetV2 and
ShuffleNetV2 have similar average accuracies of 87.5%. However, the worst model was
DenseNet121, which obtained an accuracy of only 86%.

3.2. Identification Efficiency of Single CNN

The original intention of the collected database was to construct an intelligent platform
that could be operated online or offline on various mobile phones and other equipment;
this database required not only accuracy but also real-time performance to further improve
the overall timeliness and efficiency of precision crop structures. Thus, the frames per
second (FPS) were selected as the evaluation indicator to evaluate the speed performance of
each classification model on the same machine. Please note that the time taken to perform
the required preprocessing steps was also measured. These steps include loading a photo
and resizing it for input to the network. The evaluation results of the detection time are
shown in Figure 4. The result shows that ShuffleNetV2 with approximately 13 FPS is fastest
to meet the needs for real-time cropland classification.
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3.3. Fusion Accuracy

To avoid the draw problem, the number of classifiers performed for voting is usually
odd. We had two voting schemes, one named voting-5 which contained five CNN classifiers
and another named voting-3 which contained three CNN classifiers. As shown in Figure 5,
the ResNet50 model outperformed the other models on average classification accuracy, and
the ShuffleNetV2 model outperformed in classification speed. However, the differences
among ResNet50, MobileNetV2 and ShuffleNetV2 on average accuracy and speed were
very small. Therefore, the classification results of ResNet50, MobileNetV2 and ShuffleNetV2
were selected in the voting-3 scheme. According to the comparisons presented in Table 3
and Figure 5, small differences in accuracy and average accuracy can be observed between
voting-5 and voting-3 schemes.
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Table 3. Test accuracy across all species computed by the fusion of three or five CNN classifiers.

Categories Voting-3 Voting-5

Bare land 85 85.3
Cotton 84.7 84.7
Maize 94.7 95.3
Peanut 74.8 72.7

Rapeseed 94.4 96.1
Rice 94.9 95.7

Sorghum 75.7 73.0
Soybean 85.9 86.8

Sunflower 70.5 70.5
Tobacco 84.3 77.1

Vegetable 85.2 86.5
Wheat 94.3 92.8

Average accuracy 90.6 91.1

4. Discussion

We present a road view crop type dataset named iCrop for the development of crop
type classification systems to support remote sensing crop distribution mapping as well
as crop area estimation. To the best of our knowledge, no comparable, publicly available
dataset exists that is the basis for deep learning research, and the datasets that are currently
available (the most influential is ImageNet) do not have many photographs of arable crop,
and the angles and distances of the shots are different. Therefore, the photos taken by GVG
were sorted, classified and corrected, and the training set and test set were divided.

Unlike GSV, our photos were collected during the crop growing season, capturing the
differences in the field as the places and mobile phones change. The angles, heights and
directions of the photos are different for each person, and photos also vary in resolution, color,
contrast, and clarity. The photos in the datasets contain similar characteristics and imbal-
ance among each class, which reflects the long-tailed real-world challenges in classification
problems. Therefore, our photos are more challenging to classify than GSV photos.

The baseline classification results were determined from our experiments. We can
see that state-of-the-art CNN models have room to improve when applied to imbalanced
roadside view crop datasets. None of the CNN models have the best recognition accuracy
for all kinds of crops. The test data, training environment, iteration times and other
conditions are the same, but the complexity of the structure for each model is different.
The accuracy and complexity of the model are not necessarily related. For wheat, rice,
tobacco, and sunflower lightweight models such as MobileNetV2 and ShuffleNetV2, the
crop classification accuracy is high. There are different feature fusion methods between
DenseNet121 and ResNet50, and the accuracies of classification for different kinds of crops
are also similar, but in general, ResNet50 exhibits slightly higher accuracy. Different CNNs
are “accurate” in certain aspects, so model fusion could improve the final prediction ability
to a greater or lesser degree. According to the comparisons in Tables 1 and 3, the ensemble
classification accuracy is higher than individual models for most species, and the average
accuracy is also higher than that of each model; in particular, voting with five classifiers
increased the overall accuracies by up to 3.5%.

Figure 6 shows the normalized confusion matrix resulting from combining the voting-
3 and voting-5 models’ performances across the 12 cross-validated test subsets. The model
confuses 8% of bare land images with vegetable, and 3% vice versa. Reviewing these
particular samples shows that bare land with weeds looks strikingly similar to cropland
with small leafed vegetables, while some vegetable gardens contain small patches of bare
land. This is illustrated in the sample misclassification of bare land in Figure 7a,b. This
likeness is the reason for these false positives in our model. Figure 7c,d also show that
crops badly shaded by trees or grasses in photo also affect the classification accuracy. It is
necessary to add segmentation information to photos for deep learning to extract farmland
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types more accurately. Another way to protect crops from being obscured by other objects
is to use drones to take pictures over farmland. Figure 6 and Table 1 illustrate that the
accuracy rates are higher for rapeseed, which did not have the largest training sample
size. This relatively high performance on distinct crop color features is likely because CNN
exhibits better performance for capturing the color characteristics of these crop types.
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The top test accuracies against the number of training photos for each class from
the five classification models and ensemble models are plotted in Figure 8. It is shown
that there is a positive correlation between the number of training images and the test
accuracy. The consensus of most current studies is that for deep learning, the performances
will increase with growing data size [54–57]. However, we still observe a variance in the
accuracy for classes with a similar amount of training data, revealing opportunities for
algorithmic and dataset improvements in both the low data and high data regimes. The
ensemble classification accuracy is significantly higher than individual model for low data
species. The training images of peanut, sunflower and sorghum are all lower than those of
other crops, and the performances for these crops are even low after fusion. it is caused by
dataset imbalance. No imbalance-correcting technique can match adding more training
data when it comes to measuring precision and recall. We suggest corresponding data
collection efforts for classes with few photo samples should be also underway use a hybrid
method that fuses GSV images and crowdsourcing data.
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5. Conclusions

In this paper, a first large, public, multiclass road view crop photo dataset named
iCrop is established for the development of crop type detection with deep learning. The
iCrop dataset contains 12 types, representing the most popular crop types or farmland
without crops, using 34,117 photos, and outlines the baseline performance for state-of-the-
art deep convolutional neural networks. The results show that DCNN has good potential
application in crop type detection from road view photos, and these computer vision
models have room to improve when applied to imbalanced crop datasets. Small efficient
ShuffleNetV2 models designed for mobile applications and embedded devices have better
real-time performance (13FPS) and average accuracy (87.5%).

The deep learning network models with good accuracy and fast speed were selected,
and the major voting decision fusion method was used to improve crop identification
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accuracy. The results clearly demonstrate the superior accuracy of the proposed decision
fusion over the other non-fusion-based methods in crop type detection of imbalanced road
view photos dataset. The voting method achieved a mean accuracy of 91.1%, which can be
leveraged to classify crop type in crowdsourcing road view photos online. The proposed
fusion strategy increased overall accuracies by up to 3.5% compared to the best single
CNN model.

We anticipate that our proposed method will save researchers valuable time that they
would otherwise spend on the visual interpretation of larger number of photos. In the
future, we plan to update the dataset and include more diverse crop types from worldwide
areas to expand the scope of the iCrop. With the increasing use of drones in agriculture,
drones can also be used as a tool to collect photos of crops to solve the problem of crops
being obscured. Meanwhile, mobile technology has developed at an astonishing rate in the
past few years and will continue to do so. With ever-improving computing performance
and storage capacity on mobile devices, we consider it likely that highly accurate real-time
crop classification via smartphones is just around the corner.
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