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Abstract: This paper presents and explores a novel methodology for solving the problem of a water
distribution network contamination event, which includes determining the exact source of contam-
ination, the contamination start and end times and the injected contaminant concentration. The
methodology is based on coupling a machine learning algorithm for predicting the most probable
contamination sources in a water distribution network with an optimization algorithm for determin-
ing the values of contamination start time, end time and injected contaminant concentration for each
predicted node separately. Two slightly different algorithmic frameworks were constructed which
are based on the mentioned methodology. Both algorithmic frameworks utilize the Random Forest
algorithm for classification of top source contamination node candidates, with one of the frameworks
directly using the stochastic fireworks optimization algorithm to determine the contamination start
time, end time and injected contaminant concentration for each predicted node separately. The
second framework uses the Random Forest algorithm for an additional regression prediction of
each top node’s start time, end time and contaminant concentration and is then coupled with the
deterministic global search optimization algorithm MADS. Both a small sized (92 potential sources)
network with perfect sensor measurements and a medium sized (865 potential sources) benchmark
network with fuzzy sensor measurements were used to explore the proposed frameworks. Both
algorithmic frameworks perform well and show robustness in determining the true source node,
start and end times and contaminant concentration, with the second framework being extremely
efficient on the fuzzy sensor measurement benchmark network.

Keywords: random forests; water network contamination; simulation-optimization; machine learn-
ing; pollution source identification; fireworks algorithm; MADS

1. Introduction

Functional water supply networks are essential for a proper urban environment and
the population that inhabits it. Monitoring the quality of water in the water supply network,
and in case of contamination, identifying and controlling the source and contamination
propagation is an extremely important task for human health and safety. Water supply
network pollution can be caused by a wide variety of incidents which include an intentional
contamination, biofilm formation in pipes, water aging and chemical contamination from
pipe lining and corrosion [1,2].

Water supply network security methodologies heavily rely on accurate water qual-
ity models and pipe network hydraulic simulators. EPANET [3] is the most popular
simulator created for the purposes of running simulation experiments which are there-
fore used, in conjunction with various mathematical methodologies, for finding the op-
timal water quality sensor placement in a water supply network ([4–7]), control of wa-
ter supply networks in case of contamination events ([8–10]) and contamination source
detection ([11–13]). A thorough and recent review of methodologies for water supply net-
work quality modeling with contamination source detection can be found in [14] and a
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general, recent thorough review of water supply network security research and methods
are covered in [15].

Simulation-optimization methods have been the most popular approach for the water
supply network contamination source detection problem. This procedure includes the
coupling of an optimization algorithm (stochastic or deterministic) with a water supply
network simulator. The goal function of the optimization algorithm is to minimize the
difference between the recorded water quality sensor readings and the simulated values
in order to find the contamination source, start and end times of the contamination event
and the injected concentration of the contaminant. Genetic algorithms (GA) and variations
have been widely used for this purpose ([16–18]). Simulation-optimization with added
hydraulic demand uncertainty and GA has also been investigated [19]. Recently, a Poisson
model for a changing water demand was coupled with an improved GA [20].

The simulation-optimization approach comes with an added computational cost and is
usually parallelized due to the fact that the problem variables are both of discrete (network
nodes) and continuous nature (contamination start and end times, injected contaminant
concentration). Beside the GA stochastic approach, the Nelder-Mead (NM) deterministic
optimization algorithm was used coupled with logistic regression to determine the po-
tential contamination source candidates and other relevant variables [21]. An important
feature of this work is that it proposed a model-based approach for classifying the most
probable contamination source nodes and thus eliminated the discrete variable from the
simulation-optimization procedure and applied it only to the other relevant variables for
the contamination event reconstruction. Recently, an algorithm for search space reduction
was developed for eliminating potential source nodes based on a sensor measurement com-
parison procedure [22]. The simulation-optimization approach was then applied for the
remaining potential source nodes. Both Particle Swarm Optimization (PSO) and GA were
investigated and PSO exhibited better convergence rate and accuracy. Other simulation-
optimization based methods include dynamic niching GA [23], cultural algorithm [24],
hybrid encoding [25] and a data-driven multi-strategy collaboration algorithm [26].

Another approach to solving the problem of source identification is to use Bayesian
optimization. In the work by [27] a Bayesian framework for localizing multiple pollution
sources and it incorporated Gaussian process emulators trained on data obtained from
computational fluid dynamics simulations. A Bayesian approach was investigated for
the contamination source localization in a water distribution network with stochastic
demands [28], and recently, reference [29] constructed a Bayesian framework for the same
application of contamination source localization but with mobile sensor data. Additionally,
a Gaussian surrogate model was implemented with a collaborative based algorithm [30]
specifically for the contamination source identification problem.

Recently, machine learning methods have been successfully applied to a wide variety
of problems in environmental engineering. A Long Short-Term Memory (LSTM) Neural
Network was used for the problem of flood forecasting with rainfall and discharge as input
data [31]. Additionally, Artificial Neural Networks (ANN) and Random Forests (RF) were
coupled to identify chemical leaks using data obtained from monitoring [32]. Similarly
to air quality prediction, the field of groundwater flow modeling has also been actively
including machine learning methods. Convolutional Neural Network (CNN) coupled with
a Markov Chain Monte Carlo (MCMC) method has been used to identify the contaminant
sources in groundwater flow [33].

Alternatively, it is possible to use machine learning algorithms for contamination
source detection in water supply networks. Artificial Neural Network (ANN) was trained
to detect the source of pollution of E. Coli in a small pipe network [34]. Potential sub-zones
of contamination source nodes have been predicted using learning vector quantization
Neural Network (LVQNN) for larger water supply pipe networks [35]. Recently, CNN
has been used for the contamination source detection problem [36]. The CNN was trained
based on the water supply network user complaints unlike the usual supply network water
quality sensor recordings. Additionally, it was found that CNN performs better than a
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basic ANN. Recent work also includes a machine learning-based framework designed
specifically for high performance systems [37]. The algorithmic framework uses ANNs
for tournament style classification of potential contamination event source nodes and the
Random Forest (RF) machine learning algorithm for regression analysis which predicts the
contamination start and end times and injected contaminant concentrations.

Previously, Decision Trees (DT) were utilized for water network contamination source
area isolation [38] and more recently, the RF algorithm has also been successfully utilized
for potential water supply network contamination source node identification [39] and for
determining the number of contamination sources in a water distribution network [40].
The RF algorithm was trained with Monte Carlo (MC) generated input data of sensor water
quality readings through a time interval and the true source nodes as the output data. RF
models were also trained with simulation data for the purpose of contamination source
detection in river systems [41].

Machine learning and simulation-optimization coupling has been also employed in
the area of groundwater pollution source and pollution characteristics prediction. Coupling
of non-dominated sorting genetic algorithm II (NSGA-II) and both Probabilistic Support
Vector Machines (PSVM) and Probabilistic Neural Networks (PNN) has been done for
characterizing an unknown pollution source in groundwater resources systems [42].

In this work, a novel methodology for predicting the water supply network contami-
nation event is presented and investigated. Two algorithmic frameworks are constructed
which are based on the methodology. Both frameworks utilize a machine learning approach
based on the RF algorithm (implemented in the Python machine learning module scikit-
learn 0.21.3 [43]) for potential contamination source search space reduction (as presented
in our previous work [39]). The first investigated framework couples the simulation-
optimization procedure directly with the RF classifier in order to determine the contam-
ination start time, end time and injected contaminant concentration for each RF model
predicted node separately and for this framework, three different stochastic optimization
algorithms were investigated for one water distribution network benchmark. The three
stochastic optimization algorithms were Particle Swarm Optimization (PSO), fireworks
algorithm (FWA), both implemented in the swarm optimization Python module indago
0.1.2 [44], and genetic algorithms (GA) implemented in the multiobjective optimization
python module pymoo 0.4.2 [45]. The optimization algorithms were fine-tuned and the best
performing one was further investigated with the coupling framework for both benchmark
networks. The other algorithmic framework differs slightly as it includes an additional RF
model regression for each RF predicted potential source node separately in order to predict
each top node’s start time, end time and injected contaminant concentration. After the RF
regression, each potential source node’s newly obtained data is then used as initial values
for the deterministic global search optimization algorithm Mesh Adaptive Direct Search
(MADS) which is implemented in NOMAD 4.0 [46].

The EPANET2 [3] hydraulic and water quality simulator is used for water supply
network contamination event simulations. EPANET2 simulates contaminant transport
using simplified complete mixing advection models which in most cases are not accurate
enough as previously shown by [47]. However, for the purposes of examining the algorithm
proposed in this study the simplified EPANET2 complete mixing model is good enough as
the whole procedure is not dependent on the accuracy of the mixing processes occurring in
the water distribution network. Monte Carlo simulations are made to train the RF model
for classification (as described in [39]) with the sensor water quality measurements being
the input features and the true source node being the output. The RF model classifier
then predicts the most probable contamination source nodes which are then submitted
either to the stochastic simulation-optimization procedure (for the first framework) or to
RF regression (trained with previously generated MC EPANET2 data) which predicts their
start and end times and injected contaminant concentration. Both algorithmic frameworks
are used on two water supply benchmark networks. The smaller benchmark network (92
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nodes) was investigated with perfect sensor water quality measurements, while the bigger
(865 nodes) was investigated with fuzzy sensor water quality measurements.

2. Materials and Methods
2.1. Water Distribution Network Benchmarks

The novel methodology was tested on two benchmark water distribution networks.
The first benchmark is the NET3 EPANET2 water distribution network consisting of 92
total nodes which are all initially considered as potential source nodes. A 24 h period
simulation time was set with a 1 h time step for the hydraulic analysis and a 5 min time
step for the water quality analysis. A contamination pattern was set with a 10 min time
step with all network sensors recording the quality of water every hour through the whole
simulation (0–24 h). The injected contaminant is chemically or biologically unspecified
and is treated as a mass which is introduced into the water distribution network since the
investigated frameworks are independent of the transport model used in the simulation.
The sensor positioning was the same as the one introduced in [48] and which showed
in [39] to include a good number of suspect nodes when used in conjunction with the RF
algorithm for classification. The NET3 water distribution network with the selected sensor
layout can be seen in Figure 1. Since the total number of sensors is 4, a total of 100 water
quality recordings were made through one simulation as each sensor detects the water
quality in the network each hour for the 24 h interval (including the initial water quality at
00:00 h). The total hydraulic load or total demands of all nodes of the NET3 benchmark
network through a 24 h simulation time interval can be observed in Figure 2.

117

181

213

143

Net3 Sensors

Figure 1. NET3 water distribution network benchmark with sensor positioning.
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Figure 2. NET3 water distribution network total hydraulic demands over a 24 h period.

The second, larger water distribution network used for the purposes of examining
the proposed methodology is the hydraulically calibrated Richmond water distribution
network introduced by [49] and it was downloaded from the Centre for Water Systems [50]
benchmark repository. This benchmark water distribution network is located in Yorkshire,
UK and covers an area which is 14 km wide and 3 km long. The larger network consists
of 865 potential source nodes. For this case, the simulation time interval was 72 h and a
hydraulic analysis time step of 1 h, water quality time step of 5 min and a contamination
pattern step of 1 h which was only set in the first 24 h of the simulation. The sensor
positioning proposed by [16] was used as it performs well with the RF classifier as shown
in [39]. The total node demands of the NET3 benchmark network through a 72 h simulation
time interval can be observed in Figure 3. The detail of the Richmond water distribution
network is seen in Figure 4 which includes the positioning of 4 sensors, while the fifth
sensor is located at node 672 (which is not seen in Figure 4 as it is outside the shown detail).
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Figure 3. Richmond water distribution network total hydraulic demands over a 72 h period.

All five sensors of the Richmond network recorded the quality of water every hour for
the period of 72 h which entails a total of 365 measurements (73 per sensor). Additionally,
the sensor measurements were set as fuzzy (categorical) and not perfect as in the NET3
benchmark. This means that the measurements were not the true physical value of the
contaminant but only a value which defines if the contamination is low, medium or high.
If the measured injected contaminant concentration of the contaminant c was 0 < c < 100
mg/L, the measured value was defined as low or 1; if it was 100 ≤ c < 500 mg/L, it was
defined as medium or 2; and if it was c ≥ 500 mg/L, the value was considered high or 3.
The fuzzy sensor measurements are used to investigate the algorithmic frameworks for a
lower quality sensor technology.
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Figure 4. Richmond water distribution network benchmark detail with the positions of 4 sensors.

2.2. Machine Learning and Simulation-Optimization Coupling Framework 1

The first algorithmic framework consists of machine learning classification of potential
contamination source nodes which is then coupled with simulation-optimization procedure
for each node separately in order to determine the contamination event start time st
(h), end time et (h) and injected contaminant concentration c (mg/L) by minimizing the
difference between the measured water quality sensor readings and the simulated water
quality sensor readings with changing the initial conditions (st, et and c) of the simulated
contamination scenario.

Firstly, the machine learning model classifier was built the same way as in the work
by [39] using Random Forests. The input variables for training the ML model were water
supply network’s sensor measurements through a time interval
(S0(t0...tx), S1(t0...tx), ..., Sn(t0...tx), where Sn is the n-th sensor in the network and tx is the
water quality measurement at time step x) while the output was the true contamination
source node for each sensor measurement. All data for the RF model training was gener-
ated with Monte Carlo EPANET2 hydraulic and water quality analysis where the source
node N, st, et and c were varied. If a water supply network contamination event were to
occur, the sensor measurements would be submitted to the trained RF model classifier and
a list of top potential source nodes would be generated.

The whole algorithmic framework of machine learning and simulation-optimization
coupling can be observed in Figure 5. The procedure of water supply network contamina-
tion event reconstruction starts with inputting the recorded sensors measurements time
series into the trained machine learning model (marked as 1. in Figure 5). The trained RF
model (step 2.) generates a prediction of the most probable contamination source nodes
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based on the water supply network sensor measurements time series and compiles them in
a list where each predicted node has a corresponding individual probability (%) of being
the true contamination source node (step 3.).

Recorded sensors measurement 
[S0(t0,..,tx), S1(t0,..,tx),...,Sn(t0,..,tx)]

Trained ML model
(Random Forests)

List of potential contamination
source nodes [N1 (%) ... Nn (%)]

N1 optimization-
simulation procedure . . . Nn optimization-

simulation procedure

Final contamination
node ranking

1.

2.

3.

4.

5.

Figure 5. Machine learning and simulation-optimization coupling algorithmic framework 1 flowchart.

The next step (4.) of the algorithmic framework is to separately submit each predicted
potential source node to the simulation-optimization procedure. The optimization vari-
ables are st, et and c and the goal function f of the simulation-optimization procedure is
defined as:

f (st, et, c) =
n

∑
i=0

T

∑
t=1

(cs
i (t)− cm

i (t))
2 (1)

where n is the number of water supply network sensors, T the simulation duration with a
time step t, cm is the measured injected contaminant contaminant from the real contamina-
tion event and cs represents the simulated values of the contaminant. For the exact solution
the goal function must yield zero for the true contamination source node.

When the simulation-optimization procedure is finished for each node, a final con-
tamination node ranking is obtained (step 5.). The node with the smallest value of f
(Equation (1)) can be considered the true contamination event source node. A problem
can arise with the final source node ranking due to the strong multi-modal nature of the
problem, which means that several potential source nodes can simultaneously converge
to the same minimum value of f . The best performing stochastic optimization algorithm
described in Section 2.5 was used for coupling with the ML classification.



Sensors 2021, 21, 1157 9 of 25

2.3. Machine Learning and Simulation-Optimization Coupling Framework 2

This coupling framework differs slightly from the one described in Section 2.2. The gen-
eral procedure is the same with an additional machine learning model regression added
before the optimization algorithm with a to determine the values of st, et and c using ML
algorithms. Figure 6 shows the coupling framework.

Recorded sensors measurement 
[S0(t0,..,tx), S1(t0,..,tx),...,Sn(t0,..,tx)]

Trained ML model
(Random Forests

List of potential contamination
source nodes [N1 (%) ... Nn (%)]

N1...Nn input/output data

Monte Carlo
generated EPANET2
hydraulic and water

quality data

N1 ML
regression

model training

Nn ML
regression

model training
. . .

N1 ML model st, et, c
prediction . . .

N1 optimization-
simulation procedure . . . Nn optimization-

simulation procedure

Final contamination
node ranking

1.

2.

3.

4.

5.

6.

7.

Nn ML model st, et, c
prediction

Figure 6. Machine learning and simulation-optimization coupling algorithmic framework 2 flowchart.

Step 4. of the algorithmic framework is to separately train ML regression models for
each predicted potential contamination source node (from steps 1.–3.) using pre-generated
Monte Carlo data (EPANET2 hydraulic and water quality analysis) which was also used
for the ML model classifier training (step 2.). This step is done in parallel where each
node’s ML regression model is trained on a separate CPU. The input data of each node’s
ML regression model training were the water supply network sensor measurements and
the outputs were the corresponding values of st, et and c. After each node’s ML regression
models were trained, the recorded sensor measurements (from step 1.) were then used
for prediction of st, et and c (step 5.). Steps 4. and 5. of the algorithmic framework can be
observed in Figure 7 with more detail.
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Monte Carlo
generated EPANET2
hydraulic and water

quality data

N1 ML
regression

model

List of potential contamination
source nodes [N1 (%) ... Nn (%)]

Nn ML
regression

model

TrainingN1 input and output data

Nn input and output data

.

.

.

.

.

.

Recorded sensors measurement 
[S0(t0,..,tx), S1(t0,..,tx),...,Sn(t0,..,tx)]

Training st, et, c prediction for
Nn

st, et, c prediction for
N1

.

.

.

Figure 7. Machine learning regression model flowchart.

Previously generated data by Monte Carlo simulations (which is also used to build
the general ML classifier from step 2. in Figure 6 is used to build an individual node’s
regression model. The input data for each node N are the simulated sensor readings
(S0(t0...tx), S1(t0...tx), ..., Sn(t0...tx)) while the output data are the values of st, et and c of
each corresponding sensor reading. After the ML models are trained for all potential nodes
(with all of the input and output data), the initial recorded sensor measurements are used
as data inputs to generate each node’s predictions of st, et and c. The Random Forest
algorithm is also used for the machine learning regression in Step 4. as it was shown to
work well for contamination source variables regression in the work by [37].

After each potential source node obtains a prediction of st, et and c based on the
recorded sensor measurements, the predicted values are passed to the next step (6.) of
the framework. This step utilizes the simulation-optimization procedure for each node
separately which entails that the only left optimization variables are continuous. Each
node’s predicted values of st, et and c are used as initial search values for a simulation-
optimization procedure which utilizes a deterministic optimization algorithm. The goal
function f of the simulation-optimization procedure is defined in Equation (1). The deter-
ministic global search algorithm Mesh Adaptive Direct Search (MADS) was used in this
coupling procedure and is described in Section 2.6.

2.4. Random Forests

Random Forests is an ensemble learning method used for classification and regression
prediction [51,52]. The RF algorithm creates multiple decision trees that are defined with
random feature selection (this process is also known as feature bootstrap aggregation or
feature bagging). This is one of the strengths of the RF algorithm since with increased
randomness of used features, the created decision trees have low variance and thus model
overfitting is less likely to be a problem during the prediction process since there exists a
de-correlation of each randomly constructed decision tree.

It was empirically shown that the RF algorithm outperforms the DT algorithm on
multiple problems [53]. The generally most important RF algorithm training parameter is
the used number of trees as the greater the number of trees is set, a more robust prediction
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will be achieved. The RF prediction process means that each randomly constructed decision
tree creates its own prediction with the final decision or result being the most occurring
one or rather the one with the most votes.

In the work by [54] the RF algorithm was compared other machine learning algorithms
such as Logistic Regression, k-Nearest Neighbors, Support Vector Machine, Naive Bayes on
a data classification problem regarding disease prediction and it showed better performance
in accuracy. A recent review of RF algorithm applications specifically in the water resources
applications filed is given by [55] where it was shown that is being increasingly utilized
to build surrogate models. RF was used to enhance the low cost sensors performance
for the purposes of air quality monitoring by [56] as the model’s prediction results were
satisfactory when compared to empirical models. Additionally, [57] used RF in conjunction
with remote sensing techniques for the purpose of dust source detection and mapping. It
outperformed other machine learning algorithms such as Weights of Evidence (WOE) and
Frequency Ratio (FR).

The RF implementation in the Python machine learning module scikit-learn 0.21.3. [43]
was utilized for training the machine learning model for both algorithmic frameworks.
The number of trees (the number of estimators) used for all RF models training in the
algorithmic process was 250 while all of the other parameters were set as default. These
settings were tuned with a grid search calibration of the RF model.

The RandomForestClassi f ier and RandomForestRegressor function from the scikit-
learn 0.21.3 module ensemble were used for classification and regression, respectively.
For both functions the argument used was the number of estimators or trees. After object
creation the functions f it and predict were used to train the RF model and predict the
values of interest.

2.5. Stochastic Optimization Algorithms
2.5.1. Fireworks Algorithm

The fireworks optimization algorithm (FWA) is one of the investigated stochastic
optimization algorithms in this study. It is a swarm intelligence algorithm generally used
for optimization of complex goal functions and it is inspired by the process of fireworks
explosions [58]. [59] created two frameworks for EEG signal data optimization which
incorporated the single objective and multi objective FWA. In the work by [60] FWA was
coupled with Evolutionary Computation for the purpose of classification and clustering on
several different data sets. It was shown that it outperforms Particle Swarm Optimization
for the same tasks.

The algorithm procedure includes randomly initializing a set of n fireworks for objec-
tive function evaluation with each of the n fireworks performing a local search through the
search space. After each explosion a total number of explosion sparks m1 are generated
and the location of each explosion spark is obtained and evaluated. Better fireworks (in
terms of fitness) will generate a greater number of sparks m1 with a smaller amplitude
of explosion while the ones with worse fitness values will contain a smaller number of
sparks with a larger explosion amplitude. Additionally, a total of m2 Gaussian mutated
sparks are generated in order to increase diversity of the sparks. Every new generation
of fireworks is constructed based on the fitness value, and both explosion sparks and the
Gaussian mutated sparks. The FWA implementation in the python numerical optimization
module indago 0.1.2 was used [44].

The indago 0.1.2. function evaluation_ f unction was used to define the name of the
optimization function, while the functions dimensions, iterations, lb, ub and params were
used to define the number of optimization variables, iterations, lower bound, upper
bound of the optimization problem and the optimization algorithm specific parameters,
respectively. The run function was used to start the optimization loop while f and X were
minimum fitness and optimization variables at minimum fitness functions, respectively.
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2.5.2. Particle Swarm Optimization

The second stochastic algorithm used in the preliminary analysis is the Particle Swarm
Optimization (PSO) algorithm. PSO is a swarm intelligence algorithm inspired by the
movement of birds [61]. A recent overview of the developments of PSO is given by [62].
PSO was used in the work by [63] for identifying the unknown groundwater contaminant
sources as a part of the simulation-optimization procedure. In Ma et al. [64] PSO was used
for gas emission source identification and compared with the firefly algorithm and Ant
Colony Optimization algorithm. It was found that all of the three algorithms perform
similarly in terms of estimating the source parameter but with PSO being computationally
superior. In [65] PSO was used for the purpose of optimization of hydraulic demands of a
water distribution network.

The particles which form a swarm with size s move through the objective search
space with an inertia and are constantly both being attracted to the best position they have
individually found and the best position determined by any other particle in the swarm.
The parameters that influence the movement of each particle include the inertia factor w,
cognitive and social factors c1 and c2. The languid particle dynamics modification [66]
was used which involves setting the inertia of a particle to zero if it is not moving in the
direction of better fitness. This modification was used as it proved beneficial to the standard
PSO algorithm on the problem of water distribution pipe network routing [67]. The PSO
implementation in the python numerical optimization module indago 0.1.2. was also used.
The same indago functions were used as the one presented in the previous subsection
but with different algorithm specific parameters set with the function params since PSO
was used.

2.5.3. Genetic Algorithms

The last examined stochastic algorithm is the genetic algorithm (GA) [68]. GA has
been widely used in previous studies for the water network distribution contamination
source detection problem [14,16]. A recent review of GA with a focus on the crossover
and mutation rate choice was made by [69]. Recently, in the work by [70] , GA was used
to optimize a novel real-time control system for mitigation of sewer flooding and in [71]
GA is implemented in an algorithmic procedure to investigate the wastewater seepage
appearance in a semiarid urban environment.

GA is an algorithm inspired by the evolutionary process. A population (with size p) is
formed by a set of individuals which are improved with each generation g. The formation
of a new generation is based on the selection of the best performing individuals which
is determined by their fitness value, the crossover parameter cr and the mutation m.
The python module for multiobjective optimization pymoo 0.4.2. was used. The details
and review of the specifics of the Python module pymoo can be found in the paper by the
original authors [45].

The pymoo function FunctionalProblem was used to define the whole optimization
function which takes in as function arguments the number of optimization variables,
the name of the predefined goal function and the lower and upper bounds of the opti-
mization problem. The function SingleObjectiveDe f aultTermination was used to define
the maximum number of generations as the stopping criterion. The mutation and crossover
rates were defined with the functions get_mutation and get_crossover. The mutation rate,
crossover rate, population size were used as arguments for the genetic algorithm func-
tion GA and finally, the optimization function, algorithm definition and the termination
criterion were used as arguments for the pymoo minimize function.

2.5.4. Preliminary Analysis

A preliminary analysis using the three different stochastic optimization algorithms
was made and the best performing one was used for further investigation of the machine
learning and simulation-optimization coupling framework 1. The preliminary analysis
included finding the optimal solution or rather the values of st, et and c for a known source
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node. The goal function was defined as in Equation (1) and the simulation-optimization
procedure was done on the NET3 benchmark network with node 261 being the contami-
nation source node. The true contamination event start time was 00:40 h, end time 06:30
and the injected contaminant concentration 78.5 mg/L. The optimization constraints for
the start and end times were set as 00:00 h and 24:00 h (with a required condition that
st < et), while the injected contaminant concentration was bounded between 10 and 1000
mg/L. The contamination event parameters are summarized in Table 1 and the average
contaminant mass flow which enters the node 261 can be observed in Figure 8. The
maximum percentage of contamination mass thorough the time interval with relation to
the total mass which passes through the true source node is 0.0078% for the proposed
contamination event.

Table 1. NET3 network contamination event parameters.

Source Node Start Time End Time Contaminant
Concentration

261 00:40 h 06:30 h 78.5 mg/L
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Figure 8. Average contaminant mass flow at the source node 261 over a 24 h period.

A parameter tuning process was also done for all of the three investigated algorithms
through a grid search process. For each parameter combination of the three algorithms,
a total of 100 repeated runs were made due to their stochastic nature. The performance was
measured as the number of successful runs (cases in which all of the three optimization
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variables were predicted correctly with a fitness value below 0.02) out of 100 and the
average time per run. A total of 256 parameter combinations were examined for each
algorithm. The FWA varied values were iterations i, n, m1 and m2. For PSO the varied
values were i, c1, c2 and the swarm size s and the GA varied values were g, p, cr and m.
Summary of the results can be seen in Table 2. Out of the three algorithms, FWA has the
best performance in terms of successful runs and the average time per run for the given
parameters. The average value of the goal function f can also be seen in Table 2 with the
lowest being achieved by PSO. FWA was used for further investigation of the coupling
process within the algorithmic framework 1.

Table 2. Preliminary analysis of stochastic optimization algorithms—tuned parameters.

Algorithm Successful
Runs

Average Time
per Run

Average
f Parameters

GA 100/100 121.5 s 0.015 g: 100, p: 80, cr: 0.8, m: 0.1
PSO 98/100 178.6 s 0.003 i: 50, s: 100, c1: 1, c2: 1
FWA 100/100 64.13 s 0.009 i: 80, n: 5, m1: 5, m2: 10

2.6. Deterministic Optimization Algorithm
Mesh Adaptive Direct Search

Mesh Adaptive Direct Search (MADS) was used as the deterministic optimization
algorithm within the algorithmic framework 2 which includes the machine learning re-
gression prediction model. MADS has not previously been used in research regarding
water resources. In the recent work by [72] MADS optimization was used for the purposes
autonomous vehicles control and in [73] it was successfully used to optimize the Gas-Lift
procedure for maximizing the production of hydrocarbons from heavy oil and offshore
reservoirs.

MADS is adequate for this kind of coupling as it must have an initial search condition
which in this case is obtained from the RF regression (values of st, et and c). MADS is
an iterative method which includes creating a search space mesh for the optimization
process [74]. The objective fitness search was achieved by mesh refinement within two
essential steps—poll and search. The search step evaluates mesh points, and if progress
of the fitness value is not achieved, a poll step performs a local search near the current
best solution. If both steps do not find a better fitness value, the search space mesh is
refined. The MADS implementation in the black box optimization open source software
NOMAD 4.0 (developed at Polytechnique Montreal, Montreal, Canada) [46] was used.
The only parameter used for the MADS optimization process was the number of goal
function (Equation (1)) evaluations.

The NOMAD python wrapper PyNomad was used to form the optimization loop.
The main NOMAD function used for evaluation is the optimize function, which takes in as
arguments the name of the optimization function; the initial search condition; lower opti-
mization bound; upper bound; additional parameters BB_OUTPUT_TYPE OBJ which de-
fine the output type (in this case the value of the objective function); and MAX_BB_EVAL,
which is the maximum number of evaluations.

3. Results and Discussion
3.1. Random Forest Classifier Prediction

For both algorithmic frameworks and benchmark water distribution networks it is
necessary to predict the top contamination source candidate nodes with the RF classifier. It
is a requirement that the model is built before being employed in the algorithmic procedure.
The whole process of training and prediction was repeated as in the work by [39].

The RF model classifier for the NET3 network was trained with 70,000 perfect sensor
measurements (as input features) and true source nodes as the output features. The training
and testing procedure lasted for 37 s on one INTEL E7 CPU core and an accuracy (30,000
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input features) of 99% that the true source node was in the top 10 of the potential contami-
nation source nodes predicted by the RF classifier was achieved. The trained classifier is
then used within both coupling frameworks when NET3 network was investigated.

The same training process was repeated for the Richmond water distribution network
with fuzzy sensor measurements as input features. Since the size of the network is larger
that NET3 (865 potential source nodes), a total of 1,050,000 inputs were used for the RF
model training and an accuracy of 99% was achieved for the true contamination source
node being in the top 60 of the predicted potential source nodes. The training and testing
process lasted for 955 s on the same hardware. A summary of both RF classifiers is given
in Table 3.

Table 3. Trained RF classifier characteristics.

Network Sensors Inputs Top Nodes Accuracy Time

NET3 Perfect 70,000 10 99% 37 s
Richmond Fuzzy 105,000 60 99% 955 s

3.2. Algorithmic Framework 1 Results

In this subsection the results of the coupling framework summarized in Section 2.2
are presented for both benchmark water distribution networks. All runs were done on
one INTEL E7 node (manufactured by Intel Corporation, Santa Clara, CA, USA) with 256
cores. The FWA optimization algorithm is used with the tuned parameters specified in
Section 2.5 for both networks.

The same NET3 contamination event parameters as presented in Table 1 were used to
examine the efficiency and the robustness of the framework. The framework was repeatedly
run for 100 times and for all runs the true source node (node 261) was in the top 10 of the
potential source nodes predicted by the RF classifier and it was found in 99 out of 100 times
after the simulation-optimization process had finished. After only one run, the selected
contamination source node was node 263 as it is located closely to the true source node
261. This is a common occurrence in the contamination source detection procedure as the
problem is greatly multimodal.

A summary of framework 1 results for the NET3 network can be observed in Table 4
and it is shown that the algorithmic framework successfully determined the true source
node contamination event parameters. The worst performing run is the one where the true
source node was wrongly determined in terms while the best performing run has both the
correct true source node and the best fitness. The values of average run correspond to the
99 runs when the true source node was node 261. In Figure 9 the sensor measurements
of the contaminant through the 24 h period are shown. The least accurate result is the
measurement for node 263 being the source node. It can be observed that the measurements
between the most accurate and least accurate run differ greatly on sensor 143 (Figure 9b)
while the measurement difference on other sensors in the network is minimal. The first
coupling framework shows excellent convergence in a decent amount of time (average run
was 142 s) for the NET3 benchmark network case with perfect sensor measurements.

Table 4. Framework 1 results for the NET3 network.

Run Source
Node

Start
Time

End
Time

Contaminant
Concentration f Time

Average 261 0:39 h 6:29 h 78.49 mg/L 0.024 142 s
Most accurate 261 0:40 h 6:30 h 78.5 mg/L 0.002 133 s
Least accurate 263 0:20 h 6:20 h 78.7 mg/L 0.436 117 s
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Figure 9. A comparison of sensor measurements through time for the NET3 benchmark network (framework 1).

The Richmond water distribution network contamination event parameters (start,
end times and injected contaminant concentration with the network source node) can
be seen in Table 5. The coupling framework 1 was also repeatedly run 100 times for the
Richmond network with the fuzzy sensor measurements. The average contaminant mass
flow at the true source node 251 can be seen in Figure 10 and the maximum percentage of
contamination mass over the simulation time is 0.0938% for this benchmark network case.

Table 5. Richmond network contamination event parameters.

Source Node Start Time End Time Contaminant Concentration

251 06:30 h 21:30 h 939.37 mg/L
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Figure 10. Average contaminant mass flow at the source node 251 for the Richmond network over a 72 h period.

For 89 of 100 runs, the true source node was a tie in terms of fitness between two
network nodes (node 251 and node 260). This is expected since as sensor measurements are
not perfect and the multimodal nature of this problem is enhanced. For the remaining 11
runs, node 251 was selected to be the true source node for 4 runs while node 260 for seven
runs. Both nodes are located closely to each other in the Richmond water distribution
network and this can be seen in Figure 11 and in Table 6, a summary of the results for the
true source node 251 is presented.

Interestingly, all of the 100 runs have the final fitness value of 0.0. This can be explained
due to the simplicity of the fuzzy sensor measurements and the before mentioned enhanced
multimodality of this problem where many solutions are equally as good in terms of the
computed fitness. Due to the equally good fitness of all runs the accuracy of the results was
determined with a root mean square error analysis of the contamination event parameters.
The least accurate run severely underestimates the end time of the contamination event
while all other parameters are predicted with good accuracy.

In Table 7, the results for the source node 260 can be observed. Even though the source
location is wrong, the results are also useful due to the proximity of node 260 to the true
source node and the good average prediction in terms of contamination event initial values.
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Figure 11. Network node locations of the two top candidate source nodes 251 and 260 (zoomed in part of the network).

Table 6. Framework 1 results for the Richmond network for the source node 251.

Run Start
Time

End
Time

Contaminant
Toncentration f Time

Average 6:30 h 21:00 h 940.6 mg/L 0.0 882 s
Most accurate 6:30 h 21:30 h 939.6 mg/L 0.0 852 s
Least accurate 6.30 h 11:40 h 943.9 mg/L 0.0 860 s

Table 7. Framework 1 results for the Richmond network for the source node 260.

Run Start
Time

End
Time

Contaminant
Concentration f Time

Average 6:30 h 20:09 h 915.6 mg/L 0.0 882 s
Most accurate 6:30 h 21:30 h 924.1 mg/L 0.0 843 s
Least accurate 6.30 h 14:50 h 908.4 mg/L 0.0 1002 s

3.3. Algorithmic Framework 2 Results

The second algorithmic framework which includes the ML regression model was
also investigated for both benchmark networks with NET3 contamination event scenario
parameters presented in Table 1 and Richmond parameters in Table 5. The number of
iterations of the MADS algorithm was set to 300 for both water distribution benchmark
network contamination event investigation. Framework 2 was also run for 100 times for
both benchmark networks, as framework 1.

For the NET3 network the total number of Monte Carlo generated input data for the
ML regression analysis (the whole procedure shown in Figure 7) was 300,000, which means
each node’s regression model for a top 10 potential source node list had an average of
30,000 inputs. An analysis for the RF regression predicted values (for true source node
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261) for a 300,000 total inputs can be seen in Table 8. The RF regression is stable and
robust as seen from the computed standard deviation of st, et and c. The absolute error is
the absolute distance from the contamination event parameters presented in Table 1 and
it can be seen that the RF regression overestimates all of the three parameters, which is
an additional proof that in order to reconstruct the whole contamination event scenario
accurately, the simulation-optimization procedure is necessary.

Table 8. NET3 RF regression average values and standard deviations for 100 runs with absolute error.

Average Prediction Standard
Deviation Absolute Error

Start time 1:58 h 0:079 h 1:18h
End time 6:56 h 0:15 h 0:16h

Contaminant concentration 108.87 mg/L 5.17 mg/L 30.38 mg/L

In Table 9 the framework 2 results for the NET3 benchmark network are presented.
The true source node 261 was selected as the source node for all 100 runs. The average run
time is about 20 s shorter than the average run time for framework 1 (as seen in Table 4).
While the end time and injected contaminant concentration predictions are of great accuracy,
the start time is slightly underestimated with an absolute error of 0.09 h. In Figure 12 the
comparison of sensor measurements for the most accurate and the least accurate run of
framework 2 can be observed and even though that the start time of the least accurate
run has a 00:40 h absolute error, the measurements show to be very similar over the time
interval than those presented in Figure 9 for framework 1. This is due to the contamination
source node being wrongly selected in the least accurate run from framework 1, while for
framework 2, all of the 100 runs were correct in terms of the source location.

Table 9. Framework 2 results for the NET3 network.

Run Source
Node

Start
Time

End
Time

Contaminant
Concentration f Time

Average 261 0:31 h 6:30 h 78.48 mg/L 0.033 126 s
Most accurate 261 0:40 h 6:30 h 78.5 mg/L 0.002 124 s
Least accurate 261 0:00 h 6:30h 78.2 mg/L 0.19 109 s
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Figure 12. A comparison of sensor measurements through time for the NET3 benchmark network (framework 2).

For the Richmond water distribution network, the true source node (node 251) was
selected in all of the 100 runs. For 63 of the 100 runs the true source node was the only
selected node of the framework while for the remaining 37 runs it was a tie between node
251 and 260. The total number of input data for the RF regression procedure was 785,000.
The analysis of the RF predicted values (for true source node 251) can be seen in Table 10.
The standard deviation for all three values is small which means that the RF prediction is
robust while the absolute error is the biggest for the end time prediction. Tables 11 and 12
show the results of 100 runs for the predicted source nodes. The average start time and the
injected contaminant concentration are quite accurately predicted for the source node 251
while the end time of the contamination event scenario is slightly overestimated. Nonethe-
less, framework 2 with the MADS algorithm exhibits great robustness in determining the
true source node as it was selected 63 out of 100 times as the only source node.

Table 10. Richmond RF regression average values and standard deviations for 100 runs with an
absolute error.

Average Prediction Standard
Deviation Absolute Error

Start time 6:53 h 0:015 h 0:28 h
End time 17:57 h 0:049 h 3:73 h

Contaminant concentration 933.97 mg/L 0.96 mg/L 5.4 mg/L
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Table 11. Framework 2 results for the Richmond network for the source node 251.

Run Start
Time

End
Time

Contaminant
Concentration f Time

Average 6:30 h 22:22 h 942.2 mg/L 0.0 632.7 s
Most accurate 6:30 h 21:30 h 939.7 mg/L 0.0 602 s
Least accurate 6.30 h 22:20 h 944.3 mg/L 0.0 591 s

Table 12. Framework 2 results for the Richmond network for the source node 260.

Run Start
Time

End
Time

Contaminant
Concentration f Time

Average 6:30 h 15:73 h 917.8 mg/L 0.0 632.7 s
Most accurate 6:30 h 17:40 h 924.3 mg/L 0.0 570 s
Least accurate 6.30 h 15:40 h 908.5 mg/L 0.0 596 s

3.4. Framework Comparison

Both frameworks presented in this study have shown robustness and good accuracy
in determining the contamination source node and parameters of the contamination event.
Framework 1 has shown to be more accurate than framework 2 in determining the values
of st, et and c for both benchmark networks when the average values of 100 repeated
runs are observed, however framework 2 has shown to obtain good results in less time.
The greatest benefit of framework 2 which includes the RF regression model is that it is
extremely robust in determining the true source node for the fuzzy sensor measurements
benchmark example as it outperformed framework 1. In Table 13 the true source node
detection comparison for the two presented frameworks is given.

Table 13. A comparison of frameworks 1 and 2 in determining the true source node for both
network benchmarks.

Framework Network Runs True Source False Source Tie

1 NET3 100 99 1 0
2 NET3 100 100 0 0
1 Richmond 100 4 7 89
2 Richmond 100 63 0 37

4. Conclusions

In this study two algorithmic frameworks for water distribution network contami-
nation event detection were presented. Both frameworks were tested on a small water
distribution benchmark network with 92 potential sources with perfect sensor measure-
ments and a bigger benchmark network with 865 potential sources which included fuzzy
sensor measurements to examine the robustness of the frameworks.

The first algorithmic framework includes coupling a ML classification model based
on the RF algorithm and a stochastic optimization algorithm. After a preliminary analysis
and parameters calibration procedure on the smaller benchmark network, the fireworks
algorithm showed to be superior to the Particle Swarm Optimization algorithm and the
genetic algorithms which are the most popular optimization algorithms for the water
network contamination source detection problem. The algorithmic framework with the
Fireworks algorithm shows to work with good accuracy in predicting the start time, end
time and injected contaminant concentration for both benchmark networks but lacks the
robustness of predicting the true source node with fuzzy sensor measurements.
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The second presented algorithmic framework has an added ML regression model for
each of the potential source nodes generated by the RF classifier. The regression model is
trained pre-generated data by Monte Carlo simulations in parallel. The framework was
coupled with the Mesh Adaptive Direct Search algorithm which is extremely well suited for
this procedure as it requires an initial search value which in this case is generated by the RF
regression model. This framework showed to be robust and can predict with good accuracy
the true source node when the contamination event incorporates fuzzy measurements.

The proposed methodology differs from other methods for contamination source node
identification, as it combines the two more general approaches in a whole framework.
Usually the simulation-optimization methods and data-driven machine learning based
methods are uncoupled and used separately for the task of contamination source detection.
With this approach, the strength of identifying the most probable source nodes via a
machine learning algorithm is coupled with the strength of finding the start time, end
time and injected contaminant concentration through simulation-optimization algorithms.
The proposed methodology is computationally efficient since a search space reduction is
achieved with the machine learning approach.

Hydraulic demand uncertainties of the water distribution networks should be in-
cluded in future studies as they were not investigated with this framework, but as shown
in [39], the RF classifier accuracy is slightly lowered when they are incorporated. In future
studies other ML algorithms could be tested for the classification part of both algorithmic
frameworks and the regression part of the second framework. Additionally, other opti-
mization algorithms (stochastic and deterministic) could also be incorporated into both
algorithmic frameworks and investigated.

Author Contributions: Conceptualization, L.G., L.K. and S.D.; methodology, L.G.; software, L.G.;
validation, L.G.; formal analysis, L.G.; resources, L.K.; data curation, L.G.; writing—original draft
preparation, L.G.; writing—review and editing, L.G., L.K. and S.D.; visualization, L.G.; supervision,
L.K. and S.D.; funding acquisition, L.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request from the authors.

Acknowledgments: This work was supported by the Center for Advanced Computing and Mod-
elling, University of Rijeka.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
CNN Convolutional Neural Network
DT Decision Tree
GA Genetic Algorithms
LVQNN Learning Vector Quantization Neural Network
MC Monte Carlo
ML Machine Learning
NM Nelder-Mead
NSGA-II Non-dominated Sorting Genetic Algorithm-II
PM Powell’s method
PNN Probabilistic Neural Networks
PSO Particle Swam Optimization
PSVM Probabilistic Support Vector Machines
RF Random Forests



Sensors 2021, 21, 1157 23 of 25

References
1. Ng, D.Q.; Chen, C.Y.; Lin, Y.P. A new scenario of lead contamination in potable water distribution systems: Galvanic corrosion

between lead and stainless steel. Sci. Total Environ. 2018, 637, 1423–1431.
2. Inkinen, J.; Kaunisto, T.; Pursiainen, A.; Miettinen, I.T.; Kusnetsov, J.; Riihinen, K.; Keinänen-Toivola, M.M. Drinking water quality

and formation of biofilms in an office building during its first year of operation, a full scale study. Water Res. 2014, 49, 83–91.
3. Rossman, L.A.; EPANET 2: Users Manual; US Environmental Protection Agency. Office of Research and Development: Washington,

DC, USA, 2000
4. Ostfeld, A.; Uber, J.G.; Salomons, E.; Berry, J.W.; Hart, W.E.; Phillips, C.A.; Watson, J.P.; Dorini, G.; Jonkergouw, P.;

Kapelan, Z.; et al. The battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms. J. Water
Resour. Plan. Manag. 2008, 134, 556–568.

5. Ung, H.; Piller, O.; Gilbert, D.; Mortazavi, I. Accurate and Optimal Sensor Placement for Source Identification of Water Distribution
Networks. J. Water Resour. Plan. Manag. 2017, 143, 04017032.

6. Hooshmand, F.; Amerehi, F.; MirHassani, S. Risk-Based Models for Optimal Sensor Location Problems in Water Networks. J.
Water Resour. Plan. Manag. 2020, 146, 04020086.

7. Santonastaso, G.F.; Di Nardo, A.; Creaco, E.; Musmarra, D.; Greco, R. Comparison of topological, empirical and optimization-
based approaches for locating quality detection points in water distribution networks. Environ. Sci. Pollut. Res. 2020, 1–10,
doi:10.1007/s11356-020-10519-3.

8. Alfonso, L.; Jonoski, A.; Solomatine, D. Multiobjective optimization of operational responses for contaminant flushing in water
distribution networks. J. Water Resour. Plan. Manag. 2010, 136, 48–58.

9. Hu, C.; Yan, X.; Gong, W.; Liu, X.; Wang, L.; Gao, L. Multi-objective based scheduling algorithm for sudden drinking water
contamination incident. Swarm Evol. Comput. 2020, 55, 100674.

10. Khaksar Fasaee, M.A.; Nikoo, M.R.; Hashempour Bakhtiari, P.; Monghasemi, S.; Sadegh, M. A novel dynamic hydrant flushing
framework facilitated by categorizing contamination events. Urban Water J. 2020, 1–13, doi:10.1080/1573062X.2020.1758163.
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