
sensors

Article

Online 3-Dimensional Path Planning with Kinematic
Constraints in Unknown Environments Using Hybrid A* with
Tree Pruning

Jonatan Scharff Willners 1,* , Daniel Gonzalez-Adell 1 , Juan David Hernández 2 and Èric Pairet 3

and Yvan Petillot 1

����������
�������

Citation: Scharff Willners, J.;

Gonzalez-Adel, D.; Hernández, J.D.;

Pairet, È.; Petillot, Y. Online

3-Dimensional Path Planning with

Kinematic Constraints in Unknown

Environments Using Hybrid A* with

Tree Pruning. Sensors 2021, 21, 1152.

https://doi.org/10.3390/s21041152

Academic Editor: Claudio Rossi

Received: 15 January 2021

Accepted: 4 February 2021

Published: 6 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh EH14 4AS, UK;
dg36@hw.ac.uk (D.G.-A.); y.r.petillot@hw.ac.uk (Y.P.)

2 Centre for Artificial Intelligence, Robotics and Human-Machine Systems (IROHMS), Cardiff University,
Cardiff CF24 3AA, UK; hernandezvegaj@cardiff.ac.uk

3 Edinburgh Centre for Robotics, University of Edinburgh and Heriot-Watt University,
Edinburgh EH14 4AS, UK; eric.pairet@ed.ac.uk

* Correspondence: j.scharff_willners@hw.ac.uk

Abstract: In this paper we present an extension to the hybrid A* (HA*) path planner. This extension
allows autonomous underwater vehicles (AUVs) to plan paths in 3-dimensional (3D) environments.
The proposed approach enables the robot to operate in a safe manner by accounting for the vehicle’s
motion constraints, thus avoiding collisions and ensuring that the calculated paths are feasible.
Secondly, we propose an improvement for operations in unexplored or partially known environments
by endowing the planner with a tree pruning procedure, which maintains a valid and feasible search-
tree during operation. When the robot senses new obstacles in the environment that invalidate its
current path, the planner prunes the tree of branches which collides with the environment. The path
planning algorithm is then initialised with the pruned tree, enabling it to find a solution in a lower
time than replanning from scratch. We present results obtained through simulation which show that
HA* performs better in known underwater environments than compared algorithms in regards to
planning time, path length and success rate. For unknown environments, we show that the tree
pruning procedure reduces the total planning time needed in a variety of environments compared to
running the full planning algorithm during replanning.

Keywords: hybrid A*; autonomous underwater vehicle; path planning; unknown environments;
graph-search; online replanning; tree pruning

1. Introduction

Marine robots have revolutionised our understanding of the marine environment and
our ability to access and exploit it as they can venture far beyond where humans can in this
extreme environment. As of today, remotely operated vehicles (ROVs) are still the norm
in many underwater applications but they are limited as they require a support ship, an
operator and a tether to provide power and control to the system. Autonomous marine
robots are now a mature technology for survey and their autonomy (and capabilities) are
rapidly increasing, enabling them to operate for longer periods, with both less and more
efficient human supervision [1], and even the possibility to be permanently deployed using
underwater docking and charging stations [2].

The ability to guarantee precise and robust trajectories is a critical capability for
most robots, however, this is particularly challenging for underwater vehicles because,
in general, they are non-holonomic and subject to unpredictable external forces such as
currents and waves. Moreover, underwater robots often operate in unknown environments
and they have to adapt their path to the terrain (including obstacles) online. Collisions
in the maritime domain can have serious consequences as damage to the vehicle might

Sensors 2021, 21, 1152. https://doi.org/10.3390/s21041152 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6549-7084
https://orcid.org/0000-0002-0478-4346
https://orcid.org/0000-0002-9593-6789
https://orcid.org/0000-0002-3363-0426
https://doi.org/10.3390/s21041152
https://doi.org/10.3390/s21041152
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041152
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1152?type=check_update&version=2

Sensors 2021, 21, 1152 2 of 20

lead to leakage, internal damage of the hardware and, in the worst-case scenario, loss of
the asset.

1.1. Related Work

Motion planning of traditional robots is a widely researched area [3]. In the maritime
domain, the motion planning problem is less extensively researched and most planners
consider only geometric constraints. For a mobile robot to operate autonomously it needs
to be able to find a solution to a start-to-goal query. This solution helps the robot to navigate
from a start configuration to a goal configuration or region. A valid solution needs to
be collision-free in the configuration space (C-Space) (a space that contains all possible
configuration of the robot) [4]. The C-Space includes position in n dimensions, noted as
Rn. The orientation of a C-Space is noted as SO(n). For both position and orientation this
is noted as SE(n) =Rn×SO(n). For an underwater robot moving in three dimensions, the
C-Space would have 6 dimensions—SE(3) = [x, y, z, roll (ϕ), pitch (θ), yaw (ψ)]. Table 1
presents an overview of some of the previous work with emphasis on the capabilities
relating to C-Space, kinematic constraints, online planning and if the approach was used
with autonomous underwater vehicles (AUVs).

Widely used approaches for path planning are search-based or grid-based methods
such as Dijkstra’s Algorithm [5] and A* [6]. Grid-based methods create a discrete grid of
the C-Space and apply graph search strategies to find a path that leads to a given goal
configuration. The grid-based methods are fast and often find the optimal path based on
the resolution of the grid. However, they do not necessarily scale well with the size and
dimension of the C-Space. These methods are resolution-complete—if a solution exists
in the discrete representation of the C-Space, the algorithm will find it. However, the
discretisation balances computing requirements with accuracy and can lead to non-optimal
solutions or failures if the grid is too coarse (e.g., for dealing with narrow passages). A
grid-based approach presented by Tanakitkorn et al. [7] use a genetic algorithm (GA) that
finds shorter paths than A* but with a much longer planning time.

A family of algorithms which does not rely on discretising the C-Space are sampling-
based methods, or stochastic methods, such as probabilistic roadmap (PRM) [8] and rapidly-
exploring random tree (RRT) [9]. These methods rely on randomly sampling configurations
from the C-Space and connecting them to each other. By not relying on a discrete grid to
perform the search, sampling-based approaches are not limited by the resolution of a grid
in the same way as search-based methods are. This, however, comes with the drawback of
optimality and completeness. Sampling-based methods are probabilistic complete meaning
that, if a solution exists, the probability of finding it rises with search time with a limit
of 1. However, they cannot guarantee that they will find a solution over a limited number
of iterations. Later, extensions such as the asymptotically optimal RRT (RRT*) [10] were
developed to overcome the optimality issues by introducing a re-wiring step to improve
the path. The solution of this method will converge towards the optimal as the number of
iterations goes towards infinity. A drawback of sampling-based algorithms is the lack of
guarantees to find a solution and optimality.

For non-holonomic robots, finding a collision-free path is not sufficient. The path
also needs to take the motion constraints of the vehicle into consideration. The original
form of grid-based methods such as Dijkstra’s and A* do not take this into account. An
approach by Yan et al. [11] uses A* with a circular search to ensure that the path is feasible
for an AUV. Pivtoraiko et al. [12] extended A* to connect states based on Reeds–Shepp
curves with the condition that the configurations are in the centre of the cells and that their
orientations are contained in a discrete set, see Figure 1b. Another approach to solving the
path planning problem under motion constraints with a search-based method is the hybrid
A* (HA*) [13]. HA* allows states to have continuous values within the cells as can be seen
in Figure 1c. It has mainly been used for terrestrial vehicles operating in SE(2).

There are multiple sampling-based algorithms which consider the motion constraints
of the robot while planning a path. RRT was initially developed for kinematic planning [9].

Sensors 2021, 21, 1152 3 of 20

expansive space trees (EST) [14] perform random sampling from a random state to explore
the search space with kinematic constraints. EST was later extended to use a guided method
to select what state to expand, to solve the query in fewer iterations [15]. Hernández et
al. added Dubins curves [16] to enable RRT* to be used with kinematic constraints [17].
However, a major drawback of Dubins curves is that it only considers one radius for the
curvature of the trajectory. stable sparse-RRT (SST) has been used for an AUV operating
in SE(2) by Pairet et al. [18]. SST has also been used to bias the sampling to follow a lead
calculated by RRT* [19,20]. Jian et al. use RRT* to find a global path in 2D which is then
followed by dynamic window approach (DWA) while including the motion constraints of
the AUV in SE(2) [21].

Table 1. Comparison of related work based on the dimension of the C-Space, inclusion of kinematic constraints, suitability
for online planning, replanning capabilities in unknown environments and applicability for autonomous underwater
vehicles (AUVs). Approaches without replanning capabilities discard their current plan and start the search for a new path
without using any prior obtained knowledge about the search-space. The values in bold highlight the desired characteristics
for online path planning for a non-holonomic AUV in an unknown 3D environment. a Projects the 3D map to 2D to plan in
SE(2). b Assumes hovering capabilities for the vehicle.

Method Reference C-Space Kinematic Constraints Online Replanning AUV

Search-based

Field-D*/D*-lite [22,23] R2 No Yes Yes No

anytime dynamic A* [24] R2 No Yes Yes No

HA* [13,25,26] SE(2) Yes Yes No No

State-Lattice A* [12] SE(2) Yes Yes No No

A* [11] SE(3) a Yes No No Yes

HA* This paper SE(3) Yes Yes Yes Yes

Sampling-based

RRT [27] SE(2) Yes Yes No Yes

RRT* [28] SE(2) Yes Yes Yes Yes

RRT* [17] SE(3) b Yes Yes Yes Yes

SST [18] SE(2) Yes Yes No Yes

RRT*+SST [19] SE(2) Yes Yes No Yes

RRT*+SST [20] SE(3) b Yes Yes No Yes

RRT*+DWA [21] SE(2) Yes Yes No Yes

Other

Non-Lin. Prog. [29] SE(2) Yes Yes No Yes

GA [7] R2 No No No Yes

The majority of the underwater domain remain unmapped, hence robots need to
be capable of responding to new information about the environment. As such, if the
environment contains structures or natural obstacles, the robot should preferably be able
to both sense them and adjust the plan to avoid collisions. For terrestrial robots, dynamic
A* (D*) [30], Field-D* [22] and anytime dynamic A* (ADA*) [24] have been proposed and
successfully used thanks to their ability to handle changes in the environment without
re-calculating a new solution from an empty search tree. However, these approaches are not
suitable for non-holonomic vehicles as they do not take kinematic constraints into account.
Instead, the majority of the path planning approaches that consider the kinematics of the
vehicle discards the tree to replan a new path when the current path is no longer valid. As
an alternative approach to discarding the tree, Bekris and Kavraki [31] proposed to keep

Sensors 2021, 21, 1152 4 of 20

the paths that lead to the goal. This was used with a sampling-based planner guided by
a heuristic which incorporates the kinematics of the robot and hence can incrementally
improve the solution and potentially use other solutions in replanning. Another approach
to improve replanning time is through pruning the tree of infeasible paths when new
obstacles are sensed which have been used with Dynamic-RRT by Ferguson et al. [32]. Tree
pruning was also used with kinematic based paths with RRT* to reuse the last best known
solution for an AUV [17,33]

(a) (b) (c)
Figure 1. (a) A* and Dijkstra’s algorithm use discrete states in the centre of a cell. (b) State-lattice A* can connect the centre
of cells using curvatures and straight lines [12]. (c) Hybrid A* (HA*) uses continuous values for states within cells instead of
discrete location of states. This allows for smooth paths which can utilise a larger configuration space (C-Space) than (a,b).

In this paper, we present an extension to HA* to plan feasible and collision-free
paths for underwater robots operating in SE(3). Insight in the proposed extension is
given in Section 2. Furthermore, in Section 3, we endow the planner with a tree pruning
procedure which updates and maintains a valid search tree during operation in unexplored
environments. The tree pruning step enables the reuse of previously explored paths,
leading to improved on-board online replanning capabilities. HA* is resolution complete,
just as A* and state-lattice A*, but HA* is able to utilise more of the discrete space due to
using continuous values. HA* has an advantage over probabilistic complete approaches, as
HA* is able to report if no solution exists. If the query cannot be solved, this can be reported
and handled at a higher level in the autonomy. Our approach is motivated by the fact that
many AUVs have non-holonomic motion constraints. Work such as RRT* with Dubins in
SE(3), which includes replanning capabilities [17], is limited by constant turning radius
based on the surge speed of the robot and is limited to AUVs with hovering capabilities
to operate in 3D. However, many types of AUVs are required to adjust their pitch angle
to change depth, for these vehicles this dimension should be included during planning.
We show the efficiency of the algorithm in both known and unexplored environments in
Section 4. Finally, we conclude the paper in Section 5.

1.2. Statement of Contributions

The main contributions of this manuscript can be summarised as follows:

• Extending HA* for robots operating in SE(3). The approach is focused on AUVs and
includes domain-related constraints.

• Improved HA* operation in unexplored environments by applying a tree pruning
procedure which maintains a valid search tree that can be reused when replanning
is needed.

• Our proposed approach shows improved results in known environments regarding
planning time, success rate and path length (quality of solution) compared to state-
lattice A*, RRT and RRT* with Dubins curves.

• For unexplored environments, we show a consistent reduction in planning time by
using the tree pruning procedure compared to discarding the tree and planning
from scratch.

Sensors 2021, 21, 1152 5 of 20

2. Hybrid-A* for the Underwater Domain

HA* was initially used for autonomous cars by Dolgov et al. [13,26], who experimen-
tally showed that HA* is capable of planning in low enough time for online operation in
SE(2). In this section, we will describe our adaptation of the algorithm to enable oper-
ation in SE(3) and the underwater domain. However, underwater robots, compared to
terrestrial, are often equipped with less computational power as the physical space for
computers and payloads is severely limited. This often means that a single, or in some
cases a couple of computers, need to handle all computations from low-level control to
mapping, planning and data acquisition (e.g., SPARUS II [34,35], Girona500 [36] and Iver3
(https://auvac.org/files/uploads/platform_pdf/iver3_auv_brochure.pdf) are equipped
with one computer in the basic form while ASTERx, which is a larger AUV, is endowed
with two computers (https://www.eurofleets.eu/vessel/auv-asterx-or-idefx/). Hence,
relieving the computer of additional computational expense during planning is desirable.
To improve the usage of HA*, in Section 3 we present our proposed extension to reduce
planning time in unexplored environments by using tree pruning to maintain a feasible
and collision-free search-tree that can be used for replanning.

2.1. Hybrid-A*

HA* [13] is an extension to A* [6] which, instead of discrete values, uses continuous
values to represent the configuration of the robot. Both algorithms are part of grid-based
search methods, which discretise the search space into a grid. The grid is constructed
of cells. A* store states in the centre of the cells of the grid. In HA*, states are instead
stored as continuous values within the cell [13]. This representation allows for continuous
movement based on the kinematic of the vehicle within the search space, enabling HA* to
find paths that are feasible (doable) for non-holonomic vehicles.

The HA* algorithm (see Algorithm 1) is based around using a priority queue, which
is commonly referred to as the open list. The open list contains the states which have not
yet been expanded and can lead to a possible solution. In each iteration, the algorithm
removes the state (qexp) from the open list with the highest priority (lowest cost) and, unless
it fulfils the termination criteria, expands it. The cost, f (q) is the sum of the path cost g(q)
and the heuristic cost h(q) as seen in (1).

f (q) = g(q) + h(q) (1)

The goal of the algorithm is to find a path which solves the query in the lowest possible
cost (e.g., shortest path), therefore a state with a low cost is assigned high priority. The state
that is selected for expansion is then expanded to explore the search space. The expansion
to create new offsprings is based on the kinematic constraints of the robot. Each generated
offspring needs to pass a validity check to be considered as a feasible candidate. If the new
offspring does not pass this check it is discarded as it is either not feasible or it is not able
to contribute in the search for the shortest path. If the cell which the state ends up in is free
or the cell has a higher cost and the trajectory is collision-free, the new state is added to
the open list and the cell is updated (this is further described in Section 2.2.4). When all
offsprings have been processed the algorithm continues on its next iteration and selects the
next state for expansion. This process is repeated iteratively until the goal has been reached
or until the open list is empty when the algorithm selects a new state for expansion. The
termination condition is usually to reach a certain configuration or to be within a region.
If the open list is empty when the next state is selected for expansion, it means that all of
the reachable configurations under the specified resolution have been searched without
finding a solution, and therefore no solution exists for the given conditions.

2.2. Hybrid-A* in the Underwater Domain

The original HA* algorithm was mainly limited to autonomous cars in SE(2). We
extend the algorithm to cope with 3D workspaces and therefore planning in SE(3) C-Space.

https://auvac.org/files/uploads/platform_pdf/iver3_auv_brochure.pdf
https://www.eurofleets.eu/vessel/auv-asterx-or-idefx/

Sensors 2021, 21, 1152 6 of 20

Algorithm 1 Hybrid A*
Input:
Xstart, Xgoal : Start and goal configuration
grid : Grid
O : Obstacles

1: procedure HA*
2: qstart = Xstart
3: grid(qstart).list.insert(qstart) . add state to the cell’s list
4: OpenList = PriorityQueue()
5: OpenList.insert(qstart)
6: while OpenList! = ∅ do
7: qexp = OpenList.pop()
8: if qexp ∈ Xregion

goal then
9: return qexp . Solution found

10: end if
11: qnew = Expand(qexp,O)
12: for each q̂new ∈ qnew do
13: if Valid(q̂new, grid) then
14: grid(q̂new).list.insert(q̂new)
15: OpenList.insert(q̂new)
16: end if
17: end for
18: end while
19: return ∅
20: end procedure

Hence, the algorithm needs to be able to handle the new degrees of freedom: depth (z), roll
(ϕ) and pitch (θ). Due to the nature of sensors used for data gathering and navigational
purposes, roll and pitch are treated differently. While submerged, the robot has generally no
access to absolute positioning. Instead, the robot often relies on internal sensors to estimate
its position. A common approach to estimate the robot’s position is through a doppler
velocity log (DVL). A DVL transmits acoustic signals and measures the Doppler shift in
the returning signal which can be translated into relative velocity towards the surface the
signal was reflected off. However, if the angle of the signal compared to the surface of
the medium it reflects off is too high, the signal might be lost as the returning angle of the
acoustic signal is not towards the sensor. This causes the sensor to lose bottom-lock and not
be able to estimate its velocity and hence not position. Therefore, if the angle of pitch is too
far from the horizontal plane the position estimation might not work as well as required
to follow a planned trajectory. Hence, if a state has a pitch angle larger than the accepted
range, the state will be seen as non-valid. While pitching might reduce the quality of such
sensors, it is for some vehicles necessary to change depth. Roll, however, is in most cases
not desirable and therefore planning in such dimension is not considered.

2.2.1. Expansion of a State Using Motion Primitives

When a state is expanding (line 11 in Algorithm 1), we propose to use a set of motion
primitives that defines a discrete set of motions which are feasible for the vehicle. Dis-
cretising the robot’s kinematic range into a set of feasible motions reduces the search space
and, therefore, lowers the computational time required to solve a query. The set of motion
primitives, noted as Φ, consists of n different branches (noted φ). Each branch represents a
continuous motion and consists of k intermediate configurations used to check for collision
with the known environment. This pre-calculated set of motions only needs to be defined
once. All the branches in the set of motion primitives originates from q0 = [0, 0, 0, 0, 0, 0].
Every intermediate configuration ([φ1, .., φk]) of a branch can then be transformed to the
expanding state (qexp) to get its state in the planning frame.

Sensors 2021, 21, 1152 7 of 20

For this paper, we define the motion primitives such that they can be followed by
non-holonomic robots, without hovering capabilities. The motion primitives of the robots
are represented using the kinematic model of a bicycle, both for the movement in the
horizontal and vertical plane. By using this kinematic model, a set of motion primitives
such the one shown in Figure 2 can be created.

Figure 2. A set of motion primitives in SE(3) is constructed using the kinematic model of a bicycle.
This is a discrete representation of the robot’s motion capabilities. The set of motion primitives
consists of 1 straight path, 10 curvatures in the horizontal plane and 4 in the vertical.

2.2.2. Binary Search for a Lower Cost Motion Primitive

When a state qexp has been expanded to produce new offsprings, we apply a binary
search over the branches leading up to the offsprings. This search is used to find a new
state, which is the closest (based on the resolution of the search) reachable configuration
from qexp to Xgoal within the motion constraints of the motion primitives. The binary
search is recursively applied for m iterations and can be seen in Algorithm 2. After m
iterations, the recursive function returns the branch which results in the state closest to
Xgoal . An example of how one iteration of this generates a new branch (Ψ̂) can be seen in
Figure 3. After the m iterations, the search-tree is expanded with the branch found as the
most favourable by the binary search. If the motion primitives such as the one pictured in
Figure 2 are used, the new branch will reach, if within the outer limits, a heading which is
closer towards the goal than the branches in the set of motion primitives. Using the binary
search to generate a state closer to the goal will enable the planner to find a path which is
reaching the goal region faster as can be seen in Figure 3b,c due to being able to extend a
straight path towards the goal.

Sensors 2021, 21, 1152 8 of 20

Algorithm 2 BinarySearch
Input:
Ψ : Set of branches
m : iterations

1: procedure BINARYSEARCH
2: Ψi = min_h_cost(Ψ) . End state of the branch with the lowest heuristic cost
3: Ψ̂1 = Ψi
4: Ψ̂2 = min_h_cost(Ψi−1, Ψi+1)
5: Ψ̂avg = average(Ψ̂1, Ψ̂2) . Branch in-between Ψ̂1 and Ψ̂2

6: Ψ′ = {Ψ̂1, Ψ̂avg, Ψ̂2}
7: if m == 0 then
8: return min_h_cost(Ψ′)
9: else

10: BinarySearch(Ψ′, m− 1)
11: end if
12: end procedure

(a)

(b) (c)

Figure 3. (a) When a state is expanding it applies a binary search to find a motion primitive which leads to the state that is
closest to the goal within the set of motion primitive’s outer limits. This state should, if within the current capabilities from
qexp, have a heading towards the goal configuration. (b) A path found without using binary search. (c) Using binary search
can create a path that is heading towards the goal in a straighter path, and therefore also resulting in a shorter path length.

2.2.3. Priority of Expansion

When a new state is created, it is assigned a cost based on the cost to reach the state
from the root of the tree and the heuristic cost to reach the goal. If the heuristic is equal
or lower than the actual cost of moving from a state to the goal, the path found will
be the optimal path [37]. If the heuristic is higher than the cost to reach the goal, the
algorithm becomes greedy, giving a larger bias to expand states closer to the goal. Using a
weighted heuristic, multiplying h(q) with a weight (ε) in (1), can therefore speed up the
algorithm but does not guarantee finding the optimal path. Instead, the algorithm can find
a solution which is at worst ε times longer than the optimal [38]. The higher the weight ε,
the greedier the search becomes and the less it is focused on exploring the search-space.
When ε = 1, the algorithm becomes a breadth-first search as Dijkstra’s algorithm. The
heuristic is calculated using Dubins curves [16]. Dubins curves are used to connect two
configurations with the shortest path using a combination of the three segments consisting
of constant curvatures Left and/or Right) and/or Straight segments. Dubins curves are

Sensors 2021, 21, 1152 9 of 20

originally implemented for 2D. To compensate for the vertical component of the two 3D
configurations, we project them into a 2D space. The configurations are separated by the
Euclidean distance to incorporate the vertical (z) component before finding the Dubins
curves which connects them. Dubins curves as a heuristic are calculated using Open
Motion Planning Library (OMPL) [39].

2.2.4. Expanding the Tree with a State

An expanding state will create new offsprings to be potential candidates which can
be added to the search tree. The offspring needs to pass a validity check before being
added to the tree. During the expansion of a state, each branch that is being expanded
must be checked for validity, which includes the state being collision-free and passing the
domain-related constraints.

For the previously used application of HA*, the planning has been in a plane and a
discrete grid of 3 dimensions (x, y and θ) has been used. As underwater robots operate
in a 3D space, the discrete grid needs to include the additional dimensions. However,
as previously stated, changing the roll is undesirable for many underwater vehicles and
therefore we get a 5D grid consisting of: x, y, z, ϕ (pitch) and θ (yaw). The grid is a 3D
volume consisting of voxels. Each voxel has been divided into two additional dimensions
(for pitch and yaw). For consistency throughout the paper, we will refer to volume as grid
and voxel as cell.

When a new state qexp is created and it passes as being both collision-free and satisfying
the domain-related constraints, the algorithm checks if the cell (qcell) which qexp has its
configuration in is free. If qcell is occupied, an evaluation of the new state is performed to
check if it can provide a better solution than the state with the lowest path cost currently
occupying the cell. When a state is expanded to the occupied cell, the following three
scenarios exist and are handled as the following:

1. qg_cost
exp = qg_cost

cell : As qexp could have a slight difference from the ones already occupying
the cell which might lead to a better solution the algorithm will allow qexp to be added
to the search tree.

2. qg_cost
exp > qg_cost

cell : qexp: The state is discarded as it is likely to lead to a worse solution.

3. qg_cost
exp < qg_cost

cell : The new state finds a shorter path to qcell . We can however not change
the parent as in A* or Dijkstra’s as this might not comply with the motion constraints
of the robot and instead qexp is added to the tree, and the new cost of the cell will now
be qg_cost

exp as this is the lowest cost of a state in the cell’s list.

3. Improved Replanning by Tree Pruning

When a vehicle is operating autonomously, it does not necessarily have all the infor-
mation about its surroundings. It is therefore important to be able to map and react to new
information about the environment in case such new information requires the vehicle to
react in order to, for instance, avoid a collision.

Even if the robot is fully aware of its surroundings before initiating the mission, so
that a collision-free and feasible path can be pre-calculated, the robot still needs to verify
the validity of such a path during the mission’s execution. Continuous validation of the
path helps the vehicle overcome some navigation cumulative errors or even changes in
the environment. Hence, no matter the level of knowledge about the environment, it is
beneficial for the robot to be able to react to its surroundings. If the robot is following its
current calculated path towards the goal, and it is continuously mapping its surroundings
using e.g., simultaneous localisation and mapping (SLAM) [40], it might sense an obstacle
which invalidates the current path. To avoid collision, the robot needs to react to such
an event. When such an event occurs, the robot can handle the situation in two different
ways—either the current plan can be discarded and the path planning algorithm can solve
the problem from scratch or the current plan can be repaired. The former being the simpler
approach, as the planning algorithm can be run as a new instance and solve the start-to-goal

Sensors 2021, 21, 1152 10 of 20

query from the current configuration of the robot. The latter, however, can reduce the
time or iterations to find a new valid solution. The primary problem when repairing a
path which is based on the kinematics of the robot is that connecting two states might not
be feasible without complicated manoeuvres. Instead, when planning under kinematic
constraints, we apply a branch pruning procedure to enable the re-use of the previously
explored paths. Our extension adds a pruning step to HA*. This step prunes the current
explored search tree of branches which have been deemed infeasible due to collision with
newly discovered obstacles.

3.1. Online Mapping and Collision Detection

Obstacles in the environment are uniquely perceivable by the robot when they lie in the
detection range of the robot’s sensors. Therefore, as a robot moves through an environment,
it incrementally discovers points on the boundary of nearby obstacles. To generate a
representation of the surrounding environment online, we adopt a mapping strategy that
fuses the robot’s observations into a probabilistic voxel representation. Specifically, we
employ the facilities provided by OctoMap [41] to fuse the robot’s range-based data into
a 3D occupancy grid map at variable resolution. Voxels in the grid map are initially
categorised as unknown, and updated to occupied or free when multiple observations
support such hypotheses. OctoMaps efficiently encode the observed environment as an
octree data structure, thus optimising memory usage while, at the same time, providing
fast access.

The OctoMap representing the sensed environment is periodically updated in the
planner. In the map, a bounding box of the robot is used to check for collisions with Flexible
Collision Library (FCL) [42]. When a state qexp is expanded, the intermediate state of the
branches in the set of motion primitives are incrementally transformed to the frame of qexp.
If the last intermediate state of a branch is collision-free and fulfils the validity check, the
branch is valid and can be added to the tree. In Figure 4, the incremental collision check
can be seen. To compensate for errors in vehicle control and noise in the sensing of the
map, the environment and/or the bounding box for the robot can be inflated, see Figure 5.
Each time the planner’s map is updated, the validity of the current solution is checked; if
no longer valid, the planner prunes the tree before solving the query to find a new solution.

Figure 4. Incremental collision check is performed by traversing the intermediate states of a branch
in the motion primitives until either the end state is reached (as in ψ2:6) or a collision is found (as
in ψ1:4).

Sensors 2021, 21, 1152 11 of 20

Figure 5. During operation, to compensate for errors in control and sensing, the approach inflates
the sensed environment and/or the bounding box of the vehicle. The cells within the red box are
added to the map used for collision detection.

3.2. Tree Pruning

When operating in unknown environments, with the ability to perform online map-
ping, the robot can change its path during execution if needed to avoid collision with newly
sensed obstacles in the environment. One approach to handle scenarios where the current
path is deemed as no longer valid due to collision is to discard the solution and initiate a
new planning problem from the current configuration. For geometric planners, approaches
on how to repair the path have been proposed, such as ADA* [24] and Field-D* [22], to
connect trees which remain valid after removing the states which are in intersection with
the environment. However, for planners incorporating the kinematic constraints of the
vehicle, connecting a state to another, the right set of controls need to be found, hence
making it a more difficult problem to solve. In this paper, we instead apply a tree pruning
procedure, which maintains a valid search tree during operation. When the environment is
updated, the tree is pruned of the branches the environment intersects with. By keeping a
valid search-tree we can reuse previously explored paths and we can solve the query by ini-
tiating the HA* with a tree instead of a single root state. This can save time as the algorithm
does not have to explore the paths which have already been explored in previous searches.
When the currently known map is updated, the solution is checked if it is collision-free. If
the path is still valid, the vehicle keeps moving towards the next waypoint. Whenever the
robot reaches a waypoint, the state in the tree representing this waypoint is pruned and set
as the new root, similar to what Hernández et al. proposed with an RRT* [28] for an AUV
operating in SE(2). The prior states are not kept as the tree is based on directed connections
between states. A directed connection between states means that if a vehicle can move
from qa to qb using a branch from the set of motion primitives, it does not mean that the
robot can move from qb to qa using the same connection. If the updated map, however,
leads to the solution colliding with the newly sensed obstacles, the algorithm enters the
tree pruning step. The algorithm for pruning can be seen in Algorithm 3. The pruning step
recursively traverses the tree and discards invalid states. When a connection between a
state and its parent state is no longer valid, the corresponding branch will be pruned and
as such all states that are dependent on the pruned state are also discarded. When the tree
has been pruned, all of the remaining states are valid and the remaining tree is used in
the HA* algorithm as an initial search tree. This approach for tree pruning based on new
information about the environment has previously been used by Ferguson et al. [32] with
Dynamic-RRT. If replanning from scratch (discarding the tree and planning from current
configuration) using a deterministic approach, the algorithm will regrow a large portion

Sensors 2021, 21, 1152 12 of 20

of the tree which was discarded. Hence, using the pruned tree can remove the need to
regrow a largely identical tree, therefore reducing the replanning time. An example of this
can be seen in Figure 6 where the path in Figure 6a is no longer collision-free due to new
observations of the environment. The tree is then pruned and used to find a new valid
solution to the query.

Algorithm 3 PruneTree
Input:
q : State
O : Obstacles

1: procedure PRUNETREE
2: if Valid(q,O) then
3: for each q̂ ∈ qo f f springs do
4: PruneTree(q̂,O)
5: end for
6: else
7: DeleteState(q) . Delete state q (and all offsprings recursively) from tree
8: end if
9: end procedure

(a) (b)

Figure 6. Best viewed in colour. (a) The search tree prior to the map being updated is shown in green. With the updated
map, the solution is however no longer valid as it intersects with the environment. (b) The tree in (a) is pruned from
branches which are in collision with the environment, the remaining valid tree is shown in blue. The pruned tree is used to
initialise the search to find a new solution. The new explored tree required to find a new solution is shown in green.

4. Tests and Evaluation

In this section, we present comparative results for HA* in both known and unknown
environments. All the results were performed in simulations on an i7-7700 CPU @ 2.80 GHz.
The approach was implemented using C++ with Robot Operating System (ROS) [43].

4.1. Comparison in Known Environments

In this section, we present an evaluation of our HA* algorithm compared to state-lattice
A* [12], the RRT [9] and an RRT* that uses Dubins curves [17]. We perform the comparison
in the three different environments represented as OcotMaps shown in Figure 7.

Sensors 2021, 21, 1152 13 of 20

(a) (b) (c)
Figure 7. The three known scenarios used to compare our HA* implementation to state-lattice A*, RRT and Dubins-RRT*.
The figures include the solution of HA* (The path of intermediate states in blue with green arrows for the configurations
of the states). The red sphere shows the start of the query. The yellow sphere is the goal region. (a) Scenario 1: Gap.
(b) Scenario 2: Canyon. (c) Scenario 3: Cave (Dead-end).

The evaluation is performed by running our proposed HA* and state-lattice A* in
each test scenario until they find a solution; as both planners are deterministic, they only
need to be run once (A deterministic path planning approach will find the same path
in the same time when the scenario and parameters are the same). RRT and RRT* are
both sampling-based approaches with a stochastic behaviour, thus we run each of them
1000 times and present the mean, median, the minimum and maximum path length of the
found solutions. The sampling-based approaches are evaluated with different planning
times. They are initially given the same time required by HA* to find a solution, such that
we can compare fairly the quality of their solutions (path length) and their success rates.
Then, we increase their allowed planning time until they reach a success rate close to 1.0.
As the methods are slightly different when operating in 3D, RRT* with Dubins curves is
assuming hovering capabilities and diving without change in pitch and state-lattice A*
does not scale well into 3D—therefore, this comparison is performed in SE(2). The results
of the comparison can be seen in Table 2. The set of motion primitives for HA* consists of
7 uniformly spread branches and the binary search is applied for 3 iterations.

4.1.1. Scenario 1: Gap

The first scenario (see Figure 7a) for the comparison in a known environment is an arti-
ficial structure containing two gaps, a smaller and a larger which the robot can go through
or it can take the longer path around the structure, the query is ([−30, 0, 0]→ [30, 0, 0]).
State-lattice A* requires longer time and finds a longer solution. Given the same planning
time as HA*, neither of the sampling-based approaches manages to find a path which
passes through the two gaps but instead circum-navigates the whole obstacle. In #1.6–1.10,
the sampling-region for RRT and RRT* is set to a smaller region, forcing the path to go
through the two gaps and as seen the success rate severely drops.

4.1.2. Scenario 2: Canyon

In the second test scenario (see Figure 7b), the robot moves through a natural-like
terrain, consisting of a canyon and a rock. The query ([−25,−10, 0]→ [25, 25, 0]) is solved
faster by HA* than state-lattice A* and with a lower path length. The sampling-based
approaches’ success rate is low given the same time as HA* needs to solve to query. When
RRT* with Dubins curves is given roughly 20 times longer planning time than HA*, its
success rate gets close to 1.0 but the average length of the solution is roughly 20% longer.

4.1.3. Scenario 3: Cave, Dead-End

The last scenario (see Figure 7c) represents the case where the robot is moving towards
a dead-end, thus requiring it to turn back to avoid getting trapped in the cave due to its

motion constraints. HA* is able to solve the query
([

0,−2,
π

2

]
→
[
0,−7,−π

2

])
while

state-lattice A* cannot solve it due to its resolution. When the same planning time is given

Sensors 2021, 21, 1152 14 of 20

to sampling-based approaches as the time it takes for HA* to solve it, the success rate is
low. A drawback in using RRT* with Dubins curves is that the turning radius of the robot
is determined by a constant surge speed. This limits the dynamic behaviour of the robot
compared to our presented HA* where the set of motion primitives considers a larger
range of behaviours. Using a larger set of motions enables HA* to solve queries where a
more precise combination of motions are needed to solve the query.

4.1.4. Known Environment—Results

The results from the experimental evaluation in a known environment can be seen
in Table 2. Overall, HA* finds shorter paths (higher quality) in less time and with higher
success rate than compared approaches. The planning time to solve the queries with a
success rate of 1.0 is lower than compared approaches in all cases except for RRT in the gap
scenario (see #1.4 in Table 2). However, in #1.4 the quality of the solution, the mean path
length, is over twice the length as the path found by HA*. In the scenarios where other
approaches manage to find a path length which is shorter than HA* (#2.3, #3.5, #3.6, #3.8
and #3.9) the planning time is higher and the success rate is lower (except in #3.9 where the
success rate is also 1.0).

Table 2. Comparison between our presented HA*, state-lattice A*, RRT and RRT* with Dubins curves. The results for
the sampling-based approaches are based on 1000 executions. b Sampling region forcing the path to go through the gap.
a Planning time is the average time for RRT to find a solution, allowing planning until one is found in each instance.

Solution Length [m]

Method Planning Time [s] Mean Median Min Max Success Rate

Scenario 1: Gap

1.1 HA* 0.147 66.00 - - - 1.0

1.2 State-Lattice A* 0.450589 92.5619 - - - 1.0

1.3 RRT* 0.147 99.70 99.38 70.48 119.35 0.953

1.4 RRT a 0.019 135.54 130.43 85.15 248.93 1.0

1.5 RRT* 0.02 135.54 131.13 80.34 243.22 1.0

1.6 RRT* b 0.147 77.81 75.36 67.15 102.61 0.089

1.7 RRT b 0.147 134.71 130.98 69.57 270.03 0.511

1.8 RRT* b 0.30 77.12 74.84 67.62 101.70 0.177

1.9 RRT* b 1.00 76.10 73.33 66.88 91.90 0.383

1.10 RRT b 0.12 133.79 129.79 70.20 231.84 0.464

1.11 RRT a,b 0.26 142.98 139.87 69.26 280.85 1.0

Scenario 2: Canyon

2.1 HA* 0.009459 63.00 - - - 1.0

2.2 State-Lattice A* 0.013214 69.84 - - - 1.0

2.3 RRT* 0.009459 81.04 73.73 62.71 123.32 0.106

2.4 RRT 0.009459 111.75 108.50 64.28 249.34 0.429

2.5 RRT a 0.01387 122.94 119.05 64.617 245.57 1.0

2.6 RRT* 0.20 79.45 72.12 63.44 118.83 0.989

Sensors 2021, 21, 1152 15 of 20

Table 2. Cont.

Solution Length [m]

Method Planning Time [s] Mean Median Min Max Success Rate

Scenario 3: Cave (Dead-end)

3.1 HA* 0.004985 18.00 - - - 1.0

3.2 State-Lattice A* No Solution No Solution - - - 0.0

3.3 RRT* 0.005 19.17 19.17 19.17 19.17 0.001

3.4 RRT* 0.01 18.99 19.05 18.27 19.53 0.01

3.5 RRT* 0.02 18.90 18.76 17.56 21.55 0.067

3.6 RRT* 0.10 19.22 19.17 17.56 22.78 0.978

3.7 RRT 0.005 19.01 19.00 18.64 19.53 0.005

3.8 RRT 0.02 19.29 19.17 17.68 22.61 0.106

3.9 RRT a 0.035 19.50 19.36 17.52 31.45 1.0

4.2. Comparison in Unknown Environments Using Tree Pruning

For the operation in unknown and unexplored environments, we integrate the de-
scribed methods for mapping, motion planning and tree pruning capabilities with a robot in
a UUV Simulator [44]. The simulated robot is equipped with a forward-looking sonar [45]
to perceive the environment. We limit the range of the forward-looking sonar to 10 m. The
sensor’s observations are fused into a probabilistic map online at 0.5 m resolution. For the
simulated scenarios, we apply a weighted heuristic where ε = 1.5 and use a bounding
box for the robot of 2× 2× 2 metres for collision checking. The set of motion primitives
applied is as described in Figure 2, where each branch is 3 m long and has an intermediate
state at every 0.25 m. The goal region is a sphere with a radius of 3 m. In this section, we
compare our presented approach for replanning using HA* with tree pruning to planning
from scratch. When replanning is required, a second instance of HA* is started to solve the
problem from the current configuration using the sensed map but not the pruned tree.

The comparison is performed in the following 4 environments (which can be seen in
Figure 8):

• Scenario 1: Offshore structures
The first scenario (see Figure 8a) that is considered consists of two common offshore
structures: a blowout preventer (the model for this structure can be seen in Figure 8d)
next to the foundation of a wind turbine.

• Scenario 2: Circle/Narrow Exit
The second scenario (see Figure 8b) is a circular structure with an exit. The robot starts
from the inside of the structure and the goal region is on the outside. As such, it will
first move straight towards the goal until it finds out that the path is blocked. The set
of motion primitives is used without vertical movement in this scenario.

• Scenario 3: Corridor
The third scenario (see Figure 8c) is navigating through a corridor, where walls
partially blocking the inner passage need to be circumnavigated. The set of motion
primitives is used without vertical movement in this scenario.

• Scenario 4: Offshore Incident/Cluttered
The last scenario (see Figure 8d) is a cluttered environment, modelled as an offshore
incident with wind turbines which have fallen over next to other offshore structures.

In all scenarios, the robot has no initial knowledge about the environment and the
two compared approaches use the same parameters and set of motion primitives. The
path planner generates the path which the robot follows until the vehicle either reaches
the goal or senses an obstacle which intersects with the current plan. If the current plan

Sensors 2021, 21, 1152 16 of 20

gets invalidated, the planner prunes the current tree and uses this to plan a new path using
our approach. The comparison between planning using the pruned tree and planning
from scratch can be seen in Figure 9. The comparison includes the computational time
(time for pruning and planning) to solve the query at each occasion replanning is required.
In addition, we present the size of the final trees (and the size of the pruned tree) and
the number of iterations needed to find a solution. The comparison results in Figure 9
show a significant reduction in computational time by using our proposed approach. In
scenario 2 (Figure 9b), it can be seen at the sixth time of replanning that the new path
is found after very few iterations using our approach. The pruned tree in such a case
contains states which are close to solving the query. Therefore only a few iterations are
needed to find a new solution. A similar situation can be seen in Figure 6. These results
demonstrate that using a pruned tree instead of replanning from scratch can greatly reduce
the computational time spent on planning.

(a) (b)

(c) (d)
Figure 8. The 4 simulated scenarios. (a) Scenario 1: offshore structures. (b) Scenario 2: circle/narrow exit. (c) Scenario 3:
corridor. (d) Scenario 4: incident/cluttered. (a–c) The OctoMap constructed from the data of the forward looking sonar
throughout the execution of the plan (red trajectory). (d) Shows the Gazebo world using the UUV Simulator, where the
robot needs to navigate in a cluttered environment through fallen wind turbines, pillars and other offshore structures. The
robot is depicted at the end of the query in all of the images.

Sensors 2021, 21, 1152 17 of 20

(a) (b)

(c) (d)

(e)
Figure 9. A comparison between our proposed approach for replanning using a pruned tree with HA* compared to HA*
replanning from a single root node. Our approach reduces the time spent planning in all considered scenarios. The start
position of the robot and the goal are presented, for each scenario, above the corresponding graph. (a) Scenario 1: offshore
structures. (b) Scenario 2: circle/narrow exit. (c) Scenario 3: corridor. (d) Scenario 4: incident/cluttered. (e) Legend to
describe the graphs.

5. Conclusions and Future Work

In this paper, we have presented two extensions to hybrid A* for online path planning
in 3-dimensional unexplored environments. The first extends HA* to operate in SE(3)
with a focus on usage for non-holonomic autonomous underwater vehicles. The second is
endowing the planner with tree pruning capabilities to improve operations in unexplored
environments. The tree pruning procedure maintains a valid search tree which can be used
as an initial search condition when replanning is required. We show that our variant of
the HA* planner can find shorter paths, with a higher success rate than RRT, RRT* with
Dubins curves and state-lattice A* in known environments. For unexplored environments,
we show a consistent reduction in total planning time required to solve a query when using
tree pruning compared to replanning from scratch.

Sensors 2021, 21, 1152 18 of 20

As any other search-based planners, the presented variant of the HA* planner is
driven by heuristics that indicate the state with the highest priority from where to expand
the tree. Such heuristic is counterproductive in environments where local minima exist, i.e.,
states that rank highly to the heuristic but do not lead to a solution, as it forces search-based
planners to explore all local minima states before the planner can find a path around them.
One example of such a scenario could be in scenario 1 for known environments, gap (see
Figure 7a). If the second gap had been closed, HA* would still have explored the whole
space within the structure. Sampling-based approaches would, instead, find a path around
it as seen in the results section for such scenario. Improving the algorithm behaviour in
such scenarios would greatly benefit the overall applicability of HA*.

For the future, we are planning to integrate the approach with an AUV for real-world
tests. The tree pruning procedure in this paper assumes a directed connection between
nodes. Extending the tree pruning to include indirect connections could improve the
usage for vehicles able to reverse, as it would enable revisiting a previous state. As online
planning is critical for autonomous operation for AUVs, we are looking at reducing the
total planning time further and alternative approaches to pruning the tree more efficiently.

Author Contributions: The extension of hybrid A* for SE(3) was developed by J.S.W. and D.G.-A.;
the tree pruning was developed by J.S.W.; the mapping method was implemented by È.P.; the
sampling-based approaches used for the comparison was developed by J.D.H.; È.P., J.D.H. and Y.P.
have been contributing with scientifically advice and discussions. All authors have contributed
during the writing, editing and review of this document. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the EPSRC funded ORCA HUB (EP/R026173/1).

Acknowledgments: We would like to thank Yaniel Carreno and Joshua Roe for support with the
simulator and the simulated environment.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ADA* anytime dynamic A*
AUV autonomous underwater vehicle
C-Space configuration space
DVL doppler velocity log
DWA dynamic window approach
D* dynamic A*
EST expansive space trees
GA genetic algorithm
HA* hybrid A*
PRM probabilistic roadmap
ROS robot operating system
ROV remotely operated vehicle
RRT rapid-exploring random tree
RRT* asymptotic optimal RRT
FCL Flexible Collision Library
SLAM simultaneous localisation and mapping
SST stable sparse-RRT

Sensors 2021, 21, 1152 19 of 20

References
1. Robb, D.; Lopes, J.; Padilla, S.; Laskov, A.; Garcia, F.J.C.; Liu, X.; Willners, J.S.; Valeyrie, N.; Lohan, K.; Lane, D.; et al. Exploring

Interaction with Remote Autonomous Systems using Conversational Agents. In Proceedings of the DIS 2019—2019 ACM
Designing Interactive Systems Conference, Diego, CA, USA, 23–28 June 2019; pp. 1543–1556.

2. Sato, Y.; Maki, T.; Masuda, K.; Matsuda, T.; Sakamaki, T. Autonomous docking of hovering type AUV to seafloor charging station
based on acoustic and visual sensing. In Proceedings of the 2017 IEEE OES International Symposium on Underwater Technology
(UT 2017), Busan, Korea, 21–24 February 2017; pp. 1–6.

3. LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006.
4. Lozano-Pérez, T. Spatial Planning: A Configuration Space Approach. IEEE Trans. Comput. 1983, C-32, 108–120.
5. Dijkstra, E. A Note on Two Problems in Connection with Graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
6. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. Syst. Sci. Cybern.

1968, 4, 100–107. [CrossRef]
7. Tanakitkorn, K.; Wilson, P.A.; Turnock, S.R.; Phillips, A.B. Grid-based GA path planning with improved cost function for an

over-actuated hover-capable AUV. In Proceedings of the IEEE/OES Autonomous Underwater Vehicles, Oxford, MS, USA,
6–9 October 2014.

8. Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]

9. LaValle, S.M.; Kuffner, J.J. Randomized kinodynamic planning. Int. J. Robot. Res. 2001, 20, 378–400. [CrossRef]
10. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
11. Yan, Z.; Zhao, Y.; Chen, T.; Deng, C. 3D path planning for AUV based on circle searching. In Proceedings of the OCEANS 2012

MTS/IEEE: Harnessing the Power of the Ocean, Hampton Roads, VA, USA, 14–19 October 2012.
12. Pivtoraiko, M.; Kelly, A. Generating near minimal spanning control sets for constrained motion planning in discrete state spaces.

In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Edmonton, AB, Canada,
2–6 August 2005; pp. 594–600.

13. Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Practical search techniques in path planning for autonomous driving. Int. Symp.
Comb. Search SoCS 2008, 1001, 18–80.

14. Hsu, D. Randomized Single-query Motion Planning in Expansive Spaces. Ph.D. Thesis, Stanford University: Stanford, CA, USA, 2000.
15. Phillips, J.M.; Bedrossian, N.; Kavraki, L.E. Guided expansive spaces trees: A search strategy for motion- and cost-constrained

state spaces. In Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA,
26 April–1 May 2004.

16. Dubins, L.E. On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal
Positions and Tangents. Am. J. Math. 1957, 79, 497–516. [CrossRef]

17. Hernández, J.D.; Vidal, E.; Moll, M.; Palomeras, N.; Carreras, M.; Kavraki, L.E. Online motion planning for unexplored
underwater environments using autonomous underwater vehicles. J. Field Robot. 2019, 36, 370–396. [CrossRef]

18. Pairet, È.; Hernández, J.D.; Lahijanian, M.; Carreras, M. Uncertainty-based Online Mapping and Motion Planning for Marine
Robotics Guidance. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Madrid, Spain,
1–5 October 2018; pp. 2367–2374.

19. Vidal, E.; Moll, M.; Palomeras, N.; Hernández, J.D.; Carreras, M.; Kavraki, L.E. Online multilayered motion planning with
dynamic constraints for autonomous underwater vehicles. In Proceedings of the IEEE International Conference on Robotics and
Automation, Montreal, QC, Canada, 20–24 May 2019; pp. 8936–8942.

20. Pairet, È.; Hernández, J.D.; Petillot, Y.; Lahijanian, M. Online Mapping and Motion Planning under Uncertainty for Safe
Navigation in Unknown Environments. arXiv 2020, arXiv:2004.12317.

21. Jian, X.; Zou, T.; Vardy, A.; Bose, N. A hybrid path planning strategy of autonomous underwater vehicles. In Proceedings of the
IEEE/OES Autonomous Underwater Vehicles Symposium, St. Johns, NL, Canada, 30 September–2 October 2020.

22. Ferguson, D.; Stentz, A. Field D*: An interpolation-based path planner and replanner. Springer Tracts Adv. Robot. 2007, 28,
239–253.

23. Koenig, S.; Maxim Likhachev, M. Fast replanning for navigation in unknown terrain. IEEE Trans. Robot. 2005, 21, 354–363.
[CrossRef]

24. Likhachev, M.; Ferguson, D.; Gordon, G.; Stentz, A.; Thrun, S. Anytime dynamic a*: An anytime, replanning algorithm. In
Proceedings of the 15th International Conference on Automated Planning and Scheduling, Monterey, CA, USA, 5–10 June 2005;
pp. 262–271.

25. Petereit, J.; Emter, T.; Frey, C.; Kopfstedt, T.; Beutel, A. Application of Hybrid A* to an Autonomous Mobile Robot for Path
Planning in Unstructured Outdoor Environments. In Proceedings of the ROBOTIK 2012—7th German Conference on Robotics,
Munich, Germany, 21–22 May 2012; pp. 227–232.

26. Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Path planning for autonomous vehicles in unknown semi-structured environ-
ments. Int. J. Robot. Res. 2010, 29, 485–501. [CrossRef]

27. Heo, Y.J.; Chung, W.K. RRT-based path planning with kinematic constraints of AUV in underwater structured environment. In
Proceedings of the 2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2013), Jeju, Korea,
30 October–2 November 2013; pp. 523–525.

http://doi.org/10.1007/BF01386390
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1177/02783640122067453
http://dx.doi.org/10.1177/0278364911406761
http://dx.doi.org/10.2307/2372560
http://dx.doi.org/10.1002/rob.21827
http://dx.doi.org/10.1109/TRO.2004.838026
http://dx.doi.org/10.1177/0278364909359210

Sensors 2021, 21, 1152 20 of 20

28. Hernandez, J.D.; Vidal, E.; Vallicrosa, G.; Galceran, E.; Carreras, M. Online path planning for autonomous underwater vehicles in
unknown environments. In Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, WA, USA,
26–30 May 2015; pp. 1152–1157.

29. Petillot, Y.; Ruiz, I.; Lane, D. Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking
sonar. IEEE J. Ocean. Eng. 2001, 26, 240–251. [CrossRef]

30. Stentz, A. Optimal and efficient path planning for unknown and dynamic environments. Int. J. Robot. Autom. 1994, 10, 89–100.
31. Bekris, K.E.; Kavraki, L.E. Greedy but safe replanning under kinodynamic constraints. In Proceedings of the IEEE International

Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 704–710.
32. Ferguson, D.; Kalra, N.; Stentz, A. Replanning with RRTs. In Proceedings of the IEEE International Conference on Robotics and

Automation, Orlando, FL, USA, 15–19 May 2006.
33. Hernández, J.D.; Moll, M.; Vidal, E.; Carreras, M.; Kavraki, L.E. Planning feasible and safe paths online for autonomous

underwater vehicles in unknown environments. In Proceedings of the IEEE International Conference on Intelligent Robots and
Systems, Daejeon, Korea, 9–14 October 2016; Volume 4, pp. 214–221.

34. Carreras, M.; Candela, C.; Ribas, D.; Palomeras, N.; Magií, L.; Mallios, A.; Vidal, E.; Pairet, È.; Ridao, P. Testing SPARUS II AUV, an
Open Platform for Industrial, Scientific and Academic Applications; Instrumentation Viewpoint: Canary Islands, Spain, 2015.

35. Carreras, M.; Hernández, J.D.; Vidal, E.; Palomeras, N.; Ribas, D.; Ridao, P. Sparus II AUV—A Hovering Vehicle for Seabed
Inspection. IEEE J. Ocean. Eng. 2018, 43, 344–355. [CrossRef]

36. Ribas, D.; Palomeras, N.; Ridao, P.; Carreras, M.; Mallios, A. Girona 500 AUV: From survey to intervention. IEEE/ASME Trans.
Mechatron. 2011, 17, 46–53. [CrossRef]

37. Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall Press: Upper Saddle River, NJ, USA, 2009.
38. Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem Solving; Addison-Wesley Longman Publishing Co. Inc.: Boston,

MA, USA, 1984.
39. Sucan, I.A.; Moll, M.; Kavraki, L.E. The Open Motion Planning Library. IEEE Robot. Autom. Mag. 2012, 19, 72–82. [CrossRef]
40. Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping (SLAM): Part I The Essential Algorithms. Robot. Autom.

Mag. 2006, 2, 99–110. [CrossRef]
41. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D mapping framework

based on octrees. Auton. Robot. 2013, 34, 189–206. [CrossRef]
42. Pan, J.; Chitta, S.; Manocha, D. FCL: A general purpose library for collision and proximity queries. In Proceedings of the IEEE

International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 3859–3866.
43. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS : An open-source Robot Operating

System. IEEE Robot. Autom. 2009, 15, 19.
44. Manhães, M.M.M.; Scherer, S.A.; Voss, M.; Douat, L.R.; Rauschenbach, T. UUV Simulator: A Gazebo-based package for

underwater intervention and multi-robot simulation. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA,
USA, 19–23 September 2016.

45. Cerqueira, R.; Trocoli, T.; Neves, G.; Joyeux, S.; Albiez, J.; Oliveira, L. A novel GPU-based sonar simulator for real-time
applications. Comput. Graph. 2017, 68, 66–76. [CrossRef]

http://dx.doi.org/10.1109/48.922790
http://dx.doi.org/10.1109/JOE.2018.2792278
http://dx.doi.org/10.1109/TMECH.2011.2174065
http://dx.doi.org/10.1109/MRA.2012.2205651
http://dx.doi.org/10.1109/MRA.2006.1638022
http://dx.doi.org/10.1007/s10514-012-9321-0
http://dx.doi.org/10.1016/j.cag.2017.08.008

	Introduction
	Related Work
	Statement of Contributions

	Hybrid-A* for the Underwater Domain
	Hybrid-A*
	Hybrid-A* in the Underwater Domain
	Expansion of a State Using Motion Primitives
	Binary Search for a Lower Cost Motion Primitive
	Priority of Expansion
	Expanding the Tree with a State

	Improved Replanning by Tree Pruning
	Online Mapping and Collision Detection
	Tree Pruning

	Tests and Evaluation
	Comparison in Known Environments
	Scenario 1: Gap
	Scenario 2: Canyon
	Scenario 3: Cave, Dead-End
	Known Environment—Results

	Comparison in Unknown Environments Using Tree Pruning

	Conclusions and Future Work
	References

