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Abstract: The intelligent prosthesis driven by electromyography (EMG) signal provides a solution 
for the movement of the disabled. The proper position of EMG sensors can improve the prosthesis’s 
motion recognition ability. To exert the amputee’s action-oriented ability and the prosthesis’ control 
ability, the EMG spatial distribution and internal connection of the prosthetic wearer is analyzed in 
three kinds of movement conditions: appropriate angle, excessive angle, and angle too small. Firstly, 
the correlation characteristics between the EMG channels are analyzed by mutual information to 
construct a muscle functional network. Secondly, the network’s features of different movement con-
ditions are analyzed by calculating the characteristic of nodes and evaluating the importance of 
nodes. Finally, the convergent cross-mapping method is applied to construct a directed network, 
and the critical muscle groups which can reflect the user’s movement intention are determined. 
Experiment shows that this method can accurately determine the EMG location and simplify the 
distribution of EMG sensors inside the prosthetic socket. The network characteristics of key muscle 
groups can distinguish different movements effectively and provide a new strategy for decoding 
the relationship between limb nerve control and body movement. 

Keywords: EMG sensors; residual limb; functional network; convergent cross-mapping; directed 
network 
 

1. Introduction 
The number of disabled persons is increasing every year due to accidents such as 

work-related injuries, diseases, traffic accidents, and natural disasters [1]. At present, the 
research of the medical rehabilitation industry focuses on the design and development of 
intelligent prosthesis and its structure optimization [2,3]. 

Lower limb prosthesis is a complex human–machine co-drive system, which requires 
that the binding force at the human–machine contact position should not be too strong. 
Otherwise, it will affect the effect of rehabilitation and even damage the stump [4]. If the 
movement of prosthesis is not in accordance with the intention of the amputee, the man–
machine movement is uncoordinated, and the amputee will contract his muscles con-
sciously to maintain the desired movement. The EMG generated when contracting mus-
cles is directly related to the body’s desired movements, containing rich neuromuscular 
information [5–7]. 

EMG can reflect the motion intention of the human body, and it is widely used in 
rehabilitation training of lower limb disabled persons [8–11]. In order to accurately deter-
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mine whether the trajectory of EMG-controlled prosthesis is the same as the expected tra-
jectory of the human body, it is very important to determine the acquisition position of 
the EMG signal of the residual limb [12–17]. 

Most current studies are based on statistical analysis of major muscle groups [18–22], 
comparing the correlation between EMG of each muscle group, and determining the EMG 
position which is most relevant to the motion intention. Reference [18] selected four thigh 
muscles as the EMG source of lower extremity through a large number of repeated exper-
iments. Reference [19] proposed a method for selecting the location of EMG signal based 
on ANOVA (analysis of variance) and BP (back propagation) neural network. Four sur-
face myoelectric electrodes were applied to collect the EMG of the subject during specific 
movements, and the optimal EMG measurement location was selected from the subset 
with the highest motion recognition accuracy and the minimum electrodes. Reference [20] 
collected sixteen muscles of the upper limbs to recognize the movement intention. How-
ever, because of the large amount of information, the difficulty of signal processing in-
creased, and there was a lot of useless information, which affected the speed and effect of 
recognition. Reference [21] reduced sixteen EMG signal channels to three by using a var-
iance-based method through a large number of experiments. Reference [22] reduced the 
EMG signal acquisition channel from fifty-seven to five of the upper limbs through the 
feature extraction and classification of large amounts of data. In the above studies, the 
EMG acquisition location covers most of the limb’s muscle groups with good research 
results. As the number of muscle groups increases, the workload of statistical analysis and 
experimentation will increase dramatically. It is not practical to compare EMG on all mus-
cle positions. On the other hand, as the muscles are destroyed, there is a marked difference 
between the EMG of a healthy limb and that of a stump [23,24]. The location selection 
method of EMG collection based on anatomy is not suitable for residual limb. Therefore, 
it is necessary to select the position of EMG signal acquisition of residual limb muscle by 
an appropriate method. 

The movement of the stump is the result of multi-muscular coordination [25]. Each 
muscle group can act independently and be interconnected to form a complex network 
system with a similar organization and complex intermediate connections. In recent years, 
the theory of complex networks [26–29] has developed rapidly. Its local and global char-
acteristics can clearly describe the relationship between different elements and the process 
of information flow. For example, the conversion of EEG (electroencephalogram) to brain 
network has seen rapid advances in electroencephalography in recent years [30,31]. There-
fore, the complex network theory can be applied to analyze the residual limb muscle 
groups. A complex network is constructed using the EMG of the stump’s muscle group 
and applied to analyze the spatial distribution and internal relation of the EMG from a 
global perspective. 

By analyzing the EMG of the stump in three motion conditions (appropriate angle, 
excessive angle, and angle too small), the connection relationship between different EMG 
channels is explored by the mutual information method. The complex relationship be-
tween each EMG channel is abstracted into a network, and the relationship between the 
motion conditions and the nodes of the network is discussed by analyzing the network 
topology and evaluating the importance of nodes. In order to analyze the electrophysio-
logical spatial distribution and working mechanism of muscle coordination during limb 
movement, the Convergence Cross-Mapping (CCM) algorithm is used to analyze the 
cause and effect of important nodes to construct a directional network of the residual limb. 
The technical route of this article is shown in Figure 1. 

 
Figure 1. Flowchart of all stages. 
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2. Materials and Methods 
2.1. EMG Acquisition 

As shown in Figure 2, through the size of the surface area of the residual limb and in 
order not to interfere with the signals between the two acquisition modules, 33 EMG elec-
trodes, which are denoted as V1~V33, are placed in the residual limb (Wireless acquisition 
system of Delsys in USA, acquisition frequency 2000 Hz). Starting from the front of the 
residual limb, EMG electrodes V1~V12 are placed, EMG electrodes V13~V23 are placed 
on the back of the residual limb, and EMG electrodes V24~V33 are placed on the outer 
side of the residual limb. Define each electrode as a network node, and the number of 
node is . The EMG signal of each node is collected, and a network is constructed accord-
ing to the nodes’ correlation characteristics. 

 
(a) 

 
                (b)                    (c)                   (d) 

Figure 2. EMG electrodes distribution of the residual limb, (a) schematic diagram of electrode dis-
tribution, (b) side view, (c) front view, (d) back view. 

Several subjects completed the experiment. All subjects gave their informed consent 
for inclusion before they participated in the study. The study was conducted in accord-
ance with the Declaration of Helsinki (HEBUThM BC2020003). In order to collect the high-
density EMG information of the stump surface and avoid the influence of the prosthesis 
on the movement, the subjects did not wear the prosthesis during this experiment. 

Three motion conditions are defined, as shown in Figure 3, which simulate three 
kinds of human–prosthesis disharmony. When the subjects wear the prosthesis to move 
normally, the appropriate angle is measured to be 35 degrees. Then, the angle at which 
the subjects step when applying traction and resistance is measured. Take the average 
value of the angle, we get three movement modes: 

(1) Appropriate angle: When the residual limb swings naturally, the expected angle is 
about 35°. 

(2) Excessive angle: The movement angle of the stump is greater than the expected angle. 
A forward traction force is exerted during the swing of the stump, and the swing angle 
is about 45°. 



Sensors 2021, 21, 1147 4 of 18 
 

 

(3) Angle too small: The movement angle of the stump is less than the expected angle. A 
backward resistance is applied during the swing of the stump, and the swing angle 
is about 25°. 

 

   
(a) (b) (c) 

Figure 3. The three movement conditions. (a) appropriate angle, θ = 35°, (b) excessive angle, θ = 
45°, (c) angle too small, θ = 25°. 

As shown in Figure 4, the knee joint rehabilitation robot of EXTREME MEDICAL 
TECH Company (Hangzhou, China) was applied to help the subjects simulate the above 
three movement conditions. The subjects were asked to perform the leg swing with 35°. 
(1) Appropriate angle: the angle of robot is set at 35°. The subject follows the rehabilitation 
robot to complete the leg swing. (2) Excessive angle: the angle of robot is set at 45°. The 
rehabilitation robot provides a forward traction to the stump of the subject after the leg 
swing with 35°, and the stump is forced up to 45°. (3) Angle too small: the angle is set at 
25°. The rehabilitation robot provides a back resistance to the stump of subject to limit its 
leg-swinging motion to 25°. Each movement is divided into three stages: lifting (1.5 s), 
maintaining (1 s), and putting down (1.5 s). These three movements are repeated 10 times 
at the same speed, and the subject rests 60 s after every five exercises to avoid the influence 
of muscle fatigue on the experiment. The Butterworth filtering was performed on the col-
lected EMG signal to eliminate noise and remove zero drift. 

 
Figure 4. Simulated exercise experiment of the residual limb by the rehabilitation robot. 

2.2. Functional Network Construction 
The key to abstract the residual muscle group system into a network is to clarify the 

connection relationship between the nodes and analyze the correlation between the two 
channels by using mutual information [32]. Two EMG channels  and  are defined. 
The EMG data of channel  is ,  …, , and the probability distribution is ( ), 

θ θ θ 
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( ), …, ( ). The EMG data of channel  is , , …, , and the probability distri-
bution is ( ), ( ), …, ( ). The joint distribution probability ( , ) is calcu-
lated. 

According to Shannon’s information theory [33], the entropy analysis can solve in-
formation quantification. The information entropy of  and  is defined as: ( )  =  − ∑ ( ) ( )° (1)( )  =  −  (2)

The information entropy reflects the amount of information contained in each EMG 
channel, and the joint entropy of channel  and channel  is calculated as: ( , )  =  − ,, ,  (3)

The joint entropy reflects the joint probability distribution of the two channels. The 
mutual information (MI) between the two channels is calculated as: ( , )  =  ( ) + ( ) − ( , ) (4)

when  =  0 , and the EMG of two channels are independent. The larger , the 
stronger the correlation between the EMG of two channels. The ×  adjacency matrix ( ) is constructed according to the correlation characteristics between the signals. The 
rows and columns represent nodes, and  represents MI between channel  and chan-
nel . The  is normalized, and the complex network formed by the matrix ( ) is 
simplified into a sparse binary, unweighted, undirected form by selecting an appropriate 
threshold, . If the mutual information ( ) is greater than , then  =  1, and a 
connection edge is established between channel  and channel . Otherwise,  =  0, 
and no connection edge is established. 

The threshold (TH) selection is critical and directly affects the statistical characteris-
tics and topology of the muscle function network. The selection of TH follows the follow-
ing principles: 
(1) Ensure network connectivity and avoid too many isolated points. 
(2) Network average degree < > (Equation (6)) is greater than 2 ln . 

2.3. Network Characteristics 
The analysis of the nodal characteristics [34] of muscle functional networks helps to 

understand the differences between networks in different movements and plays an im-
portant role in determining the connections between key muscle nodes. 
(1) Node degree 

Node degree, , represents the number of edges associated with node i. 

 =     (5)

The greater the node degree, the more important the node in the network is. 
Calculate the average of the degrees of all nodes and record it as the average degree 

of the entire network as: 

〈 〉   =  1
   (6)

In a network with n nodes, the proportion ( ) of nodes with degree k is: 
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( )  =   (7)

(2) Clustering coefficient 
Clustering coefficient,  , is applied to describe the degree of network aggregation. 

Take the average of all  in the network to get the network aggregation coefficient :   =  2( − 1) (8)

 =  1
   (9)

where  is the proportion of connections between the neighbors of node , and ( − 1) 2⁄  is the maximum of  for undirected networks. 
(3) Average path length 

Average path length, , represents the average distance between any two nodes:  =  1( − 1)  (10) 

where  represents the number of edges on the shortest path connecting node  and 
node , that is, the distance between two nodes. 

2.4. Node Contraction Method 
Define the cohesion of network  as: ( )  =  1×  =  − 1∑  (11)

Calculate the average path length between all pairs of nodes and the initial cohesion 
of the network. Merge node  and node-set  directly connected to node  into one 
node. All edges connected to set  are directly connected to the new node, then, calculate 
the importance of node  [35]: 

( )  =  1 − ( )( × )  =  1 − 1× ( )1( − ) × ( × )  (12)

where ×  is the new network after node  contracts in network . The higher the 
contraction’s importance, the higher the degree of network cohesion after the contraction. 
Therefore, it can be used to evaluate the importance of the node. 

2.5. Convergent Cross-Mapping Algorithm 
The CCM algorithm can clearly express the relationship between variables in a non-

linear coupled system and is suitable for detecting EMG signals’ causality. According to 
the time delay embedding theorem, in the same dynamic system, the two related varia-
bles,  and , and the corresponding reconstructed manifolds,  and , are all dif-
ferential isomorphic to the manifold, , of the original system. Since both  and  
are differential isomorphic to , for each element [ ], [ ], ..., [ ] in , there are 
also [ ], [ ], ..., [ ] corresponding to each element in . At some point on , its 
corresponding nearest neighbor cannot be accurately mapped to the nearest neighbor of 
the corresponding point on , and the distance is very far, so  contains very little in-
formation about . On the contrary, the nearest neighbor corresponding to a point on  
can be accurately mapped to the nearest neighbor of the corresponding point on , then 



Sensors 2021, 21, 1147 7 of 18 
 

 

the information of  is contained in , and a one-way causal relationship from  to  is 
formed. 

Suppose there is a -dimensional ( ≤ ) manifold, , that changes with time in 
the -dimensional space. { } is the sequence of length, , produced by the projection of 
the manifold, , on a certain dimension, and { } is the sequence of the same length pro-
duced by the projection of the manifold, , on another dimension. To reconstruct these 
two sequences, set the reconstruction dimension as  and the delay time as . The coor-
dinates of the reconstructed sequence at time  can be obtained as: ( )  =  ⟨ [ ], [ − ], ⋯ , [ − ( − 1) ]⟩ (13)( )  =  ⟨ [ ], [ − ], ⋯ , [ − ( − 1) ]⟩ (14)

From equations (13) and (14), the reconstructed manifolds  =  { ( )} and  = { ( )} can be obtained. From the Takens embedding theorem, the manifolds , , and 
 are differential homeomorphisms. According to the simplex projection operator theory 

[36,37], 
∧[ ]  is defined as the cross-mapping estimation of [ ] through equations 

(14) to (16) to { }. Find the + 1 points closest to ( ) from the manifold , which 
corresponds to [ ] on [ ]: 

∧[ ]  =  [ ]   (15)

 =  ∑    (16)

 =  { − [ ( ), ( )][ ( ), ( )] } (17)

where [ ( ), ( )] represents the Euclidean distance between ( ) and ( ) on the 
manifold. This allows for calculation of the correlation coefficient between 

∧[ ]  and [ ], with the following formula: 

 =  ∑ ( [ ] − [ ])( [ ] − [ ] )  ∑ ( [ ] − [ ]) ∑ ( [ ] − [ ] )     (18)

with the increase of the time series length, , 
∧[ ]  gradually converges to [ ], that is, 

the correlation coefficient, , converges to a number greater than 0 and less than 1. There 
is a causal relationship from  to . When  is close to one, then the causality is large. 

3. Results 
3.1. Network Establishment and Characteristics Analysis 

Because the impact of the prosthetic limb on the stump occurs mainly in the lifting 
phase, the EMG signals of the lifting phase are analyzed. The EMG signals are recorded 
by 33 EMG electrodes, the entropy of each channel is calculated, the mutual information 
between any two channels is analyzed, and the weighted adjacency matrix of the muscle 
function network is obtained. By analyzing the main characteristic in the process of 
threshold, , from 0 to 1, the appropriate threshold (  =  0.55) is selected. Threshold, 
TH, needs to meet the following conditions: (1)  < > needs to be greater than  2 ln  = 6.99 (Figure 5). (2) Ensure network connectivity and avoid too many isolated points. When 
the threshold, TH, exceeds 0.60, isolated points begin to appear in the network (Figure 6). 
When the threshold, TH, is 0.55, the three movements have the biggest difference (p < 
0.0001). 
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Figure 5. Changes in average node degree under different thresholds. 

 
Figure 6. The network of appropriate angle with the threshold TH = 0.60. There are four isolated 
nodes, V8, V18, V20, and V23. 

The mutual information matrix is converted into a binary matrix (Figure 7). The black 
area indicates that the mutual information value is below the threshold (there is no con-
nectivity between corresponding nodes). The white area means that the mutual infor-
mation value is higher than the threshold (the network’s corresponding nodes are con-
nected). 

 

(a)                        (b) 

Figure 7. The adjacency matrix of the muscle function network. The weighted adjacent matrix be-
comes a binary adjacent matrix after proper threshold processing (TH = 0.55). (a) weighted adja-
cent matrix, (b) binary adjacent matrix. 
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Calculate the node degree distribution ( ) of the network in three kinds of motion 
(appropriate angle, excessive angle, angle too small). As shown in Figure 8,  represents 
the degree value, and ( ) represents the distribution probability of each degree. In the 
movement condition of appropriate angle, the node distribution is relatively uniform, and 
the connections between nodes are partly strong and partly weak (Figure 8a). In the move-
ment condition of excessive angle, the nodes are mainly distributed in the region with 
middle and high node degree, and only a few nodes have small node degrees, which in-
dicates that the connection of the network is tight (Figure 8b). In the movement condition 
of angle too small, the node moves to the area with the higher node degree compared to 
Figure 8b, the value of the overall distribution is high, and the connection between nodes 
is the tightest (Figure 8c). The results show that when the residual limb is not disturbed 
by external forces, the residual limb’s movement is the most steady. When the residual 
limb is subjected to external forces, whether it is forward traction or backward resistance, 
the residual limb muscles respond to external changes. The software SPSS 25.0 is used to 
analyze the variance of the average degree characteristics of the three networks of all sub-
jects. The results show that there is a significant difference between the appropriate angle 
and the other two movements (p < 0.04). 

 
(a) (b) 

 
(c) 

Figure 8. The degree distribution in the three kinds of movements: (a) appropriate angle, (b) exces-
sive angle, (c) angle too small. 

To study whether the muscles close to the wound or far away from the wound are 
different during exercise, the residual limb’s three surfaces are divided into six areas (Fig-
ure 9). These six areas are divided due to distance from the wound and the number of 
nodes. Ensure that the number of nodes in each area is roughly the same. The average 
degree < > of the different areas in the three types of exercise is analyzed, as shown in 
Figure 10. 
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Figure 9. The surface of the residual limb is divided into six areas. The standard for distinguishing 
the areas is the distance from the wound. Area 1 and Area 2 are on the front, Area 3 and Area 4 are 
on the back, and Area 5 and Area 6 are on the outer side. 

As shown in Figure 10, there are differences in the average node degree in different 
areas. There is little difference between Area 1 and Area 2, indicating that the frontal mus-
cles are not significantly affected by trauma. 

Area 3 and Area 4 are different. When doing different exercises, < > is also differ-
ent. When the angle is appropriate, the value of < > is obviously lower than the aver-
age value, so the back area is greatly affected by limb amputation. 

There are also differences in the two areas on the outer side (Area 5 and Area 6). 
Whether it is close to the wound or far away from the wound, the mean value of < > 
is greater than the overall mean value, and the < > far away from the wound is larger. 
From the above results, when the residual limb is amputated, the muscles far away from 
the wound act obviously higher than those close to the wound. Moreover, the side mus-
cles play the most critical role in the residual limb’s movement, which is consistent with 
the actual situation. 

 
Figure 10. The average degree of the six areas is analyzed. The value change in the radar chart 
from inside to outside indicates the change of average degree value. The smaller value is near the 
center, and the greater value is near the outside. Six corners represent six areas. The blue line rep-
resents the appropriate angle, the red line represents the excessive angle, and the yellow line rep-
resents the angle too small. 
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3.2. Node Importance Evaluation 
The node importance represents the criticality of the node in the network. The higher 

the importance of the node, the higher the contribution of the node in the network, and 
the node has the strongest influence on the network. Evaluate the importance of nodes in 
the network and discover important nodes in the network. The key nodes of information 
perception are related to their central location and the time when information is ex-
changed with other nodes. 

The node contraction method is used to analyze the node importance under three 
movement conditions (appropriate angle, excessive angle, and angle too small). The node 
importance of each movement is calculated by Equation (12), and the result is shown in 
Figure 11. The higher the node’s importance, the more critical the node’s position, and the 
more significant the contribution to the entire network. Therefore, a threshold can be set, 
and nodes with greater importance than the threshold can be selected to construct a net-
work. 

 
Figure 11. The importance of 33 nodes. The blue bar represents the appropriate angle, the red bar 
represents the excessive angle, and the yellow bar represents the angle too small. 

The nodes whose values are greater than the threshold value of 0.5 are selected based 
on the network size and node importance distribution. Nine nodes with significant differ-
ences (V2, V4, V7, V12, V17, V24, V28, V29, and V32) are chosen to construct a muscle 
function network for each of the movement conditions, as shown in Figure 12. When the 
angle is appropriate, the connection between important nodes is the tightest and smooth-
est (Figure 12a). In excessive angle and the angle too small, the connection between the 
nodes will react due to external forces’ appearance. When the angle is too small, the con-
nection between nodes is the weakest, which is consistent with the results of the previous 
study on the degree distribution (Figure 12c). Each movement state has apparent differ-
ences, which is helpful for further analysis and application of node information. 

  
(a) (b) 
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(c) 

Figure 12. Muscle functional network of selected nodes: (a) appropriate angle, (b) excessive angle, 
(c) angle too small. 

As shown in Figure 12, the nodes are mainly distributed on the residual limb’s front 
and side muscles, and the back muscles are the least distributed. The connection degree 
of the nodes at the frontal muscles is not related to whether they are close to the wound. 
Most of the key nodes at the side muscles are located far away from the wound and are 
most connected with other nodes. The back muscle has only one key node which is located 
away from the wound. The above results are consistent with the results of node degree 
differences in different areas. As shown in Figure 12, the network connections of the three 
movements are different. In the appropriate angle, the connection between nodes is the 
closest. In the excessive angle, the degree of connection is weakened. When the angle is 
too small, the connection is the weakest. The above results are the same as the results of 
the network characteristic analysis in the previous section. 
(1) Appropriate angle: the residual limb performs a regular leg swing exercise, the mus-

cle contraction is the strongest, all the muscles work together, and the movement is 
the most stable. 

(2) Excessive angle: the side muscles act slightly more potent than the front when the 
residual limb receives forward traction. 

(3) Angle too small: the residual limb is subjected to backward resistance. To reduce the 
discomfort to not cause damage to itself, the muscle contraction is not apparent. 

3.3. Construction of Directed Network 
The two sets of EMG signals,  and , mentioned in Section 2.5, can be regarded as 

variables related to one system, so as the length of the data increases, the correlation coef-
ficient, r (Equation (18)), will converge to a value greater than 0 and less than 1. When the 
correlation coefficient, r, is closer to 1, and the greater the coefficient differential value 
between the two detected channel EMG signals, the stronger the causal relationship. As 
shown in Figure 13, there are four possible convergence cross-mapping situations be-
tween the EMG signals in the residual limb movement experiment. 

  
(a) (b) 
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(c) (d) 

Figure 13. Convergent cross-mapping situation. (a) Mx–My > 0.3, (b) Mx–My < 0.1, (c) 0.1 < Mx–
My < 0.3, Mx > 0.5, and (d) 0.1 < Mx–My < 0.3, Mx < 0.5. 

The causality is defined based on the differential value: 
(1) When Mx–My > 0.3, the strength of causality from x to y is much stronger than the 

strength of causality from y to x, so there is a one-way causal relationship from x to 
y. 

(2) When Mx–My < 0.1, there is not only the information containing y in x but also the 
information containing x in y, and the causal relationship strength is similar between 
the two, so there is no one-way causal relationship between x and y, and there is no 
information flow. 

(3) When 0.1 < Mx–My < 0.3, Mx > 0.5, there is no one-way causal relationship. 
(4) When 0.1 < Mx–My < 0.3, Mx < 0.5, there is a one-way causal relationship from x to y. 

By causality detection, if there is a causal relationship between X and Y, X is the cause, 
and Y is the effect. There is information flowing from X to Y, and due to the loss in the 
information flow process, X contains more information than Y. According to the conver-
gent cross-mapping evaluation results, the information flow network of the three move-
ments is constructed, as shown in Figure 14. 

  
(a) (b) 

 
(c) 

Figure 14. Information flow diagram of the three movement conditions: (a) appropriate angle, (b) 
excessive angle, (c) angle too small. 

(1) Appropriate angle: the arrow pointing represents the direction of information flow, 
the starting end of the arrow is the cause, and the pointing end is the effect. V12 is 
the top of the information outflow point, which contains the most information. In 
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addition to V12, the points V7, V17, and V28 are also at the front end of the infor-
mation flow, indicating that these nodes also contain relatively more motion infor-
mation. The information inflow points V2 and V29 are located at the bottom of the 
information flow. There are more information inflows, indicating that participation 
is of secondary importance when the angle is appropriate. 

(2) Excessive angle: V7 is the vertex of the information outflow point. V2, V24, and V28 
also have more information outflow, indicating that these nodes contain the most 
motion information when the angle is too large. 

(3) Angle too small: V28 is located at the starting point of information flow and is rela-
tively most important in the movement process. V28, V24, and V32 nodes contain 
more motion information when the angle is too small. V4 and V7 are at the end of the 
information flow chain when the angle is too small. 
Synthesizing the information flow diagrams, a directed network of the stump in the 

three movements (appropriate angle, excessive angle, and angle too small) can be con-
structed, as shown in Figure 15. 

 
Figure 15. A directed network on the surface of the residual limb. The red line represents the uni-
directional flow line, and the green line represents the bidirectional flow line. 

The topmost node of the network contains the most information, so it is most critical. 
As shown in Figure 15, V12 and V28, as the topmost layer of the directed network, are the 
nodes with the fastest reach of motor nerve information transmission, and they contain 
the most information. V17 and V24 are on the second layer of the directed network, and 
they only contain less information than V12 and V28. Because there is an information flow 
from V24 to V17, V24 contains more information than V17. V2 is located at the bottom of 
the network, which means it contains the least information. Because V29 and V32 only 
have one layer of connection with V2 and there are two layers between V17 and V2, the 
strength of V29 and V32 are equivalent and both weaker than V17. V7 has one layer of 
connection with V2, but there is no network layer before V7, so V7 is more important than 
V29 and V32. V4 does not participate in the construction of the directed network, and it is 
located at the end of the ranging. It can be determined that the importance of the residual 
limb muscles in the movement of thigh amputation patients is: V12 = V28 > V24 > V17 > 
V7 > V32 = V29 > V2 > V4. 

Too many acquisition modules inside the prosthesis will result in a complex structure 
of the prosthesis. In order to optimize the structure of the prosthesis and collect enough 
information, the front, back, and side of the residual limb need to have collection modules. 
The three conditions of the number of modules, module distribution area, and directed 
network are taken into consideration. There are the following schemes for node selection: 
The information outflow point is the node where the movement information reaches the 
fastest, and the outflow point contains more movement information and is more critical 
in the movement process. According to the information outflow point and information 
inflow point of the directed network, the five nodes V12, V28, V24, V17, and V7 are se-
lected as the residual limbs’ key nodes. The key nodes are mainly distributed in the rectus 
femoris, vastus lateralis, tensor fascia lata, and semitendinosus, as shown in Figure 16. 
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Figure 16. Key nodes’ distribution. 

3.4. Analysis of Movement Difference 
To quantify the differences in every movement, the muscle function network of key 

nodes is analyzed. The clustering coefficient, , the average degree, < >, and the aver-
age path length, , of the three movement networks are calculated. The results are shown 
in Table 1. 

Table 1. Muscle functional network characteristics of key nodes. 

Movement Clustering Coefficient,  Average Degree, < > Average Path Length,  
appropriate angle 0.69 ± 0.029 28.8 ± 2.23  1.32 ± 0.12 

excessive angle 0.87 ± 0.057 25.2 ± 3.03  1.22 ± 0.33 
angle too small 0.80 ± 0.034  26.2 ± 2.44 1.24 ± 0.23 

The higher the clustering coefficient, the better the connectivity of the network. The 
larger the average degree, the stronger the correlation between the channels, and the more 
pronounced the promoting effect of the network topology on cooperative behavior. The 
average path length represents the average value of the distance between any two nodes. 
The shorter the length, the faster the information flows. It can be seen from Table 1 that 
there are significant differences in the muscle function network characteristics of the key 
nodes of each movement. When the angle is appropriate, the correlation between nodes 
is the highest, which is higher than when the angle is too large and when the angle is too 
small. It shows that the muscles cooperate smoothly without being affected by the exces-
sive restraint of the prosthesis. When the angle is too large and the angle is too small, the 
clustering coefficient and the average path length are significantly higher than when the 
angle is appropriate (p < 0.001), indicating that the connectivity between nodes is en-
hanced when affected by external forces. The transmission rate of information in the mus-
cle function network is increased to deal with the outside external force influence. 

In summary, when no external force is applied, the correlation between the residual 
limb muscles is stronger, and the coordination between the muscles is more coordinated 
and the movement is steadier. When affected by the prosthesis’ excessive restraint, the 
connectivity between the residual limb muscles is better, and the information flow be-
tween the muscles is more efficient to respond to the external force interference and make 
corresponding stress responses. 

By using the classification function of the software SPSS 25.0, the three movements 
are clustered using the network characteristics of Table 1, and the clustering results are 
shown in Figure 17. The abscissa represents the type of movement variable. The ordinate 
represents the rescaled Euclidean distance. Take the distance as 2, it can be divided into 
two categories, and the clustering results are: {appropriate angle}, {excessive angle, angle 
too small}. The network characteristics can be used to divide the limb’s movement into 
two categories: affected by the excessive restraint of the prosthesis and not affected by 
excessive restraint. The results are consistent with the above research results. 
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Figure 17. Dendrograms of the clustering for different movements. The two ends of the yellow line 
are classified into one category. The end of the blue line is classified into one category. 

4. Discussion 
The control trajectory of the intelligent lower limb prosthesis may be different from 

the expected trajectory of the prosthesis wearers. In general, the wearers need to adjust 
themselves to fit the artificial limb, which may cause fatigue and even safety problems for 
amputees. In this study, the gait of the residual limb after being subjected to the exces-
sively strong restraint of the prosthesis was divided into three types: appropriate angle, 
excessive angle, and angle too small. The correlations of multi-channel EMGs were ana-
lyzed by the mutual information method, and the complex system of residual muscle 
group was abstracted into a muscle function network. The features of the muscle function 
network of three kinds of movements were analyzed, and the importance of nodes was 
evaluated. 

A directed network was constructed after each important node’s causal analysis by 
using the convergent cross-mapping method. The accurate decoding of the residual limb’s 
movement information was realized, and the real-time performance and accuracy of the 
sensing function network were improved. The research results show an absolute differ-
ence between the movement subject to the excessively strong restraint of the artificial limb 
and the movement that is not restrained. 

The muscles close to the residual limb wound are different from those far away from 
the wound. The muscles which play a crucial role are also affected by the amputated 
wound. This method can quickly and effectively determine the smart prosthesis’ EMG 
collection location, avoiding the one-sidedness of measuring the importance of nodes by 
the node degree and bridge coefficient and the high cost of node betweenness evaluation. 
It can accurately distinguish whether there is an excessive binding force between humans 
and prosthesis by analyzing the muscle function network characteristics and can avoid 
secondary damage to the residual limb due to uncoordinated motion and provide state 
recognition results or triggers for the intelligent prosthetic control command. The estab-
lishment and analysis of residual limb EMG function network and directed network offer 
new ideas and new methods for decoding the relationship between neural control and 
body movement, and it provides an effective method for simplifying the position of the 
EMG sensors of the dynamic lower limb prosthesis and optimizing the internal space 
structure of the prosthesis. 

The experiments have been carried out on three subjects only, and hence the results 
need further validation. The methodology used has, to the best of our knowledge, never 
been applied on motion coordinated analysis for amputees 

This paper selected the key nodes of the residual limb, and the next step needs to 
verify the effectiveness of the key nodes. It is planned to use multiple methods such as 
time domain, frequency domain, and nonlinearity to extract feature values at key nodes, 
and then apply multiple classifiers for feature recognition. 
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