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Abstract: Visual object tracking is a significant technology for camera-based sensor networks ap-
plications. Multilayer convolutional features comprehensively used in correlation filter (CF)-based
tracking algorithms have achieved excellent performance. However, there are tracking failures
in some challenging situations because ordinary features are not able to well represent the object
appearance variations and the correlation filters are updated irrationally. In this paper, we propose
a local–global multiple correlation filters (LGCF) tracking algorithm for edge computing systems
capturing moving targets, such as vehicles and pedestrians. First, we construct a global correlation
filter model with deep convolutional features, and choose horizontal or vertical division according to
the aspect ratio to build two local filters with hand-crafted features. Then, we propose a local–global
collaborative strategy to exchange information between local and global correlation filters. This strat-
egy can avoid the wrong learning of the object appearance model. Finally, we propose a time-space
peak to sidelobe ratio (TSPSR) to evaluate the stability of the current CF. When the estimated results
of the current CF are not reliable, the Kalman filter redetection (KFR) model would be enabled to
recapture the object. The experimental results show that our presented algorithm achieves better
performances on OTB-2013 and OTB-2015 compared with the other latest 12 tracking algorithms.
Moreover, our algorithm handles various challenges in object tracking well.

Keywords: object tracking; correlation filter; convolutional neural networks; local–global collaborative
strategy; Kalman filter

1. Introduction

With the development of artificial intelligence, sensor networks nodes equipped
with more sophisticated sensing units such as cameras have become ubiquitous in cities.
Camera-based sensor networks have been widely used in intelligent transportation and
smart cities. Because big video data are generated by cameras, the video analysis of smart
nodes or edge servers needs to be energy efficient and intelligent. Visual object tracking is
one of the fundamental problems in various application fields of computer vision, such
as autonomous driving, precise navigation, video surveillance, and human–computer
interaction. However, because of partial or complete occlusion, fast motion, lighting
changes, scale changes, and similar objects and complex backgrounds, high-precision and
robust visual target tracking is still a difficult task.

Building a target appearance model with strong representation capability is one of
the keys to achieving the high precision and robustness of object tracking. According to
the different categories of target appearance representation models used, the methods of
visual object tracking can be divided into two types: generative methods [1,2] and discrim-
inative methods [3,4]. The generative methods extract the target features for learning the
appearance model representing the target at first, and then search the image area for pattern
matching. The discriminative methods use the positive and negative samples collected from
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each frame to train a binary classifier that distinguishes the target from the background;
the candidate sample with the highest confidence in the current frame being selected as the
tracking result. In recent years, discriminative correlation filter (DCF)-based trackers [5–7]
have gained more and more attention from researchers due to their excellent performance.
The DCF-based trackers can convert all samples into a diagonal matrix and transform
the calculation into the frequency domain by Fourier transform, which greatly improves
the speed of obtaining the solution to the correlation filter. The extraction method of the
target appearance features mostly determines the performance of the DCF-based tracking
algorithm. In order to train high-quality CF, it is necessary for the tracking algorithm to
select an appropriate descriptor or a combination of multiple feature descriptors including
a histogram of oriented gradient features (HoG) [8], color names (CN) features [9], Point of
Interest features [10], Haar-like rectangular features [11], superpixel features [12], etc. This
work uses a local–global multiple correlation filters model constructed by convolutional
features and hand-crafted features to improve tracking performance.

1.1. Motivation

As a result of the strong discriminative capabilities of the convolutional features
extracted by deep convolutional neural networks (CNN), they have been widely used in
correlation filter tracking algorithms [13–16]. The features in the earlier layers of CNN
retain high spatial resolution information that can be used for precise localization for
targets, while rich semantic information contained in the features in the higher layers can
be used to deal with the dramatic appearance changes for the target. General combination
of low-level and high-level features can greatly improve the performance of the tracker,
but there are still some limitations.

Deep features are used to represent targets in the CF-based trackers [17–20]. Compared
with deep features, hand-crafted features are more robust to occlusion and shape changes.
We visualize the above features as shown in Figure 1. It is important to improve the
accuracy and robustness of the tracker to find a reasonable combination of multiple features.
Moreover, due to the interference of factors such as occlusions and illumination changes
during the tracking process, errors will gradually accumulate through the online update
of CF, which will cause model drift and loss. Trackers with a single model can only learn
one kind of appearance model, therefore the targets are prone to be lost. One recent
approach [21] proposed a part-based multiple correlation filter tracking method that relies
on the cooperation between a global filter and several part filters. However, this method
uses only hand-crafted features, which makes it difficult to achieve excellent results. Thus, it
is imperative to construct a reasonable multiple correlation filters cooperation mechanism.

Figure 1. Visualization of multi-level features. (a) Three challenging frames on the DragonBaby sequence. (b) Histogram of
oriented gradient (HoG). (c) Color Name. (d–f) are high-level features extracted from Conv3-4, Conv4-4, and Conv5-4 of
VGGNet-19.

These CF-based trackers have achieved rather good performance in visual object
tracking. However, because they can only use the maximum value of the response map
as the predicted result for candidate target position, it may be unreliable when the target
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is out of view or completely occluded. More specifically, the response map may have
multiple peaks or a decrease in maximum value when it comes to target occlusion or out of
view objects. Therefore, an effective redetection mechanism is especially important in the
tracking algorithm [22–24], when target occlusion and out of view occurs.

1.2. Contribution

In view of the above-mentioned two points, we put forward a local–global multiple
correlation filter model and Kalman filter redetection mechanism to achieve accurate and
robust object tracking. The main contributions are outlined below:

1. We propose an intelligent local–global multiple correlation filter (LGCF) learning
model. Our global filter uses multilayer CNN features to capture the whole appear-
ance of the target. At the same time, the object is divided into two equal sized parts to
construct local filters, which use handcraft features to capture the partial appearance
of the target. We choose a position estimation method from coarse to fine and use a
combination of multiple features to achieve accurate object tracking.

2. We introduce an effective method where the target can be tracked accurately through
Kalman filter redetection (KFR). We also propose time-space peak to sidelobe ratio
(TSPSR) as a confidence value to measure the reliability of the current estimated
position. Compared with CF with a different appearance model, we comprehensively
use the time and motion information of the target instead of just the appearance
information. If the tracking result of the correlation filter with the appearance model
is unreliable, this method can make the target position regained to continue the
tracking procedure.

3. Based on the local–global learning model, we propose a collaborative update strategy
with multiple correlation filters. In the update phase, we divide the global filter into
three cases according to the state of the local filter: normal update, slow update, and
no update. This method can effectively prevent the collaborative filters from learning
the wrong target appearance.

4. We have evaluated the performance of the proposed LGCF algorithm on the OTB-
2013 [25] and OTB-2015 [26] datasets, and verified the effectiveness of each contribu-
tion. Experimental data show that this method can improve the tracking accuracy
and success rate effectively. The precision and success rates on the OTB-2013 reached
90.6% and 64.9%, respectively. On OTB-2015, the accuracy of our tracker reached
86.2%, and the success rate reached 61.6%.

The remainder of this paper is organized as follows: Section 2 briefly introduces related
work. The proposed tracking method is described in detail in Section 3. Experimental
results are reported and analyzed in Section 4. We conclude our paper in Section 5.

2. Related Work

In this section, three types of tracking algorithms related to our algorithm are mainly
introduced: tracking by correlation filters, tracking by deep learning, and tracking by
Kalman filter (KF).

2.1. Tracking by CF

A tracking algorithm based on a correlation filter transforms the process of solving the
filter into the frequency domain through a fast Fourier transform (FFT) to accelerate the cal-
culation. Bolme et al. proposed the Minimum Output Sum of Squared Errors (MOSSE) [5]
algorithm in 2010, which first introduced CF into visual tracking. The Kernelized Correla-
tion Filter Tracker (KCF) uses CN and HoG features to compose multi-channel features, and
uses kernels to map the calculation of low-dimensional feature space to linearly separable
high-dimensional feature space [7]. Henriques et al. [8] propose Kernel Regularized Least
Squares, which improves the speed of classifying samples in high-dimensional feature
space. Bertinetto et al. [27] use statistical color histogram and HoG features to represent the
target to train the CF. The fusion of these two features further improves tracking accuracy.
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With the widespread application of convolutional neural networks [28,29], the hierarchical
convolutional features tracker (HCF) [17] and Correlation Filters with Weighted Convo-
lution Responses (CFWCR) [18] choose deep features extracted from VGGNet to train
CF, and the tracking performance is further improved. Danelljan et al. [30] establish an
interpolation model for training samples in [31], combine features in different resolutions to
obtain feature maps with continuous spatial resolution, and use Gaussian mixture models
to classify samples in the training set so that the similar samples are in one group. This
method avoids overfitting between the samples in consequent frames. References [32,33]
introduce multiscale estimation models. These two models have become commonly used in
the process of object tracking. In order to solve the boundary effect caused by the periodic
hypothesis, a spatial regularization term is introduced [6]. In the block object tracking [34],
a probabilistic model is proposed to estimate the distribution of reliable patches under
the sequential Monte Carlo framework. However, it is difficult for a filter trained by one
type of feature to deal with the effects of multiple factors such as illumination and defor-
mation at the same time. Therefore, we must find a reasonable way to combine multiple
features. In our work, we comprehensively consider the invariance of hand-crafted features
to geometry and illumination, as well as the fine-grained and semantic information of
convolutional features. Therefore, the global filters are learned by multilayer convolutional
features, while local filters are learned by the combination of HoG and CN features.

2.2. Tracking by Deep Learning

Deep convolutional neural networks require large-scale data for training, but this does
not stop them from being widely used in object tracking due to their strong feature charac-
terization capabilities. Some trackers directly apply deep features to the DCF framework,
such as the Hedged deep tracker (HDT) [15]. Learning continuous convolution operators
(CCOT) [31] and efficient convolution operators (ECO) [30] integrate the deep feature maps
in different resolutions after interpolation. In addition, the Fully-convolutional Siamese
network (SiamFC) [35] uses an end-to-end learning method and deep features to find a
similarity between the target and the templates for object tracking. Dynamic Siamese
(Dsiam) [36] can learn the appearance changes of the target online and use consequent
video sequences for training to improve the tracking performance. The Siamese region
proposal network (SiamRPN) [37] considers the tracking problem as a detection problem
by utilizing a Regional Proposal Network (RPN) commonly used in object detection to
obtain more accurate predictions of the tracking targets. A combined online tracking and
segmentation method named SiamMask [38] introduces a binary mask branch to improve
speed and accuracy in object tracking. Despite great success, trackers based on deep learn-
ing are still limited in many ways. On the one hand, a CNN model trained by a generic
dataset such as ImageNet [39] is suitable for unspecified targets and is easily affected by
background clutter. On the other hand, a tracker based on deep learning usually only
learns the positive samples around the target and executes the strategy of not updating or
slowly updating the model during the tracking process, which are easy to be influenced
by occlusion or out of view. In this paper, we use multi-layer deep convolutional features
extracted from VGGNet-19 [40] to train a global filter in the way of weighted combination.
The global filter is used to achieve the coarse localization of the target. Then, HoG and
CN features combined into 41-dimensional features are utilized to train our local filters.
The local filters are used to achieve fine target localization and correct the coarse position
estimation of global filters.

2.3. Tracking by KF

Kalman filter is an optimal linear recursive filter algorithm that can be easily imple-
mented in a computer. It can effectively deal with problems relevant to filters under linear
Gaussian. Multi-hierarchical Independent Correlation Filters for Visual Tracking (MFT) [41]
uses KF to construct a motion estimation module to predict the trajectory of the tracking
target. Reference [42] proposes Strong Tracking Marginalized Kalman Filter (STMKF) for
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robust tracking with an edge Kalman filter. By using an attenuation factor in the Marginal-
ized Kalman Filter (MKF), this reduces the impact of the previous filter on the current filter,
considering the object in 3D space. Reference [43] analyzes the performance of extended
KF using the azimuth to track single and multiple objects, respectively. Reference [44]
compares the performance of the Kalman filter and particle filter for two-dimensional
visual multi-object tracking in different environments. Reference [45] describes a method
for detection and tracking on moving objects using KF. Aimed at cases where the object
is occluded, this method can only rely on the state of the target in the previous frame to
predict the target position in the current frame. However, the accuracy of the KF-based
tracker is limited, and the mechanism of KF that needs to update every frame is likely to
cause an accumulation of errors. Our method is similar to that in [45]. We use the tracking
results of CF to replace target detection results. When the tracking target is occluded, the
tracking result of the CF will drift or be lost. At this time, our KFR module will predict the
target position in the current frame according to the status information of the target in the
previous frame.

3. Our Approach
3.1. Overview

In this paper, we propose a novel local–global tracking algorithm to achieve the
combination of multiple features and introduce a redetection mechanism based on Kalman
filter, which can achieve accurate object tracking. The overall framework of our proposed
algorithm is shown in Figure 2. Algorithm 1 describes the main steps of our proposed
LGCF tracker.

Algorithm 1 The Main Steps of Our Algorithm

Input: Initial object position p1 in the first frame,
VGGNet-19 pretrained models;
Output:Estimated position pt; updated multiple correlation filters.
1. Divided target as Figure 3;
2. Initiate global filter models using Equation (19);
3. Initiate Kalman filter redetection models using Equations (22) and (23);
4. for t = 2, 3, . . . do
5. Exploit the VGGNet-19 to obtain multi-layer deep features;
6. Compute the response maps of global filter using Equation (5);
7. Compute the TSPSR using Equations (28) and (29);

8. Find the final global target position pos(g)
t using Equation (17);

9. Compute the response maps of local filter using Equation (5);

10. Find the final local target position pos(l)t using Equation (15);
11. if TSPSRt < ψ, ∀iri

max < rtre then
12. Obtain the target position of the current frame by Kalman filter using Equation (26);
13. Update Kalman filter redetection models using Equations (24)–(27);
14. else
15. Obtain the target position of the current frame by multiple correlation filters using
Equation (16);
16. end if
17. Update global filters using Equation (19);
18. Update local filters using Equation (20);
19. end for



Sensors 2021, 21, 1129 6 of 20

Figure 2. System overview of our proposed tracking algorithm. We divide the target according to its aspect ratio, and
then use a combination of local filters and global filters to achieve accurate object tracking. When the robustness scores of
the CF are lower than a certain threshold, we enable the KFR mechanism to recapture the target. (a) Visualization of data
flow in our proposed tracking algorithm. (b) The functional components and their connections in our proposed tracking
algorithm. The blue dashed line indicates the collaborative update strategy of the correlation filter (CF), and the red dashed
line indicates that the Kalman filter (KF) needs to be updated after Kalman filter redetection (KFR) is turned on.

Figure 3. The way to divide the object when building two local filters. This layout is selected according to aspect ratio of the
target object. Sequences are from Human2 and BlurCar1, respectively.

First, our tracker consists of two parts: the global CF and the local CFs. The global
CF is trained by multi-layer convolutional features extracted from VGGNet-19, while the
local CF is trained by a combination of 31 dimensional HoG features and 11 dimensional
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CN features. We directly solve the ridge regression problem in the linear space to learn
our global filter, but map the ridge regression to the non-linear space through the kernel
function to obtain the local filter. Our global filter and local filter can work together
to make full use of the global overall information and local detailed information of the
target. At the same time, the global and local filters can achieve information transfer and
mutual correction.

Secondly, based on our local–global model, we propose a local–global filter collabora-
tive update strategy. According to the different states of the local filter, we divide the target
tracking states into three cases: no occlusion, partial occlusion, and complete occlusion.
An optimal update strategy for the global filter is given for different tracking situations.
This update strategy can prevent our filter from learning the fake target’s appearance and
error accumulation.

Finally, we propose TSPSR to measure the reliability of the current tracking results.
Under normal circumstances, the tracking results calculated by the CF are fed to the KF for
parameter update. In some challenging situations such as target loss, out-of-view rotation,
or complete occlusion, the KF completely relies on the status and parameters of the target
in the previous frame to predict the target position in the current frame. When the CF
tracking results are unreliable, we will perform a resampling operation, and then use the
KFR to estimate the current correct target position.

3.2. Global Filter

We use convolutional feature maps extracted from VGGNet-19 to build the global
appearance of the target and train our global filter. xl ∈ RM×N×D is denoted as the
convolutional feature maps of size M × N × D from the l-th layer in VGGNet-19. The
differences of M, N, and D at the l-th level are not considered and xl is regarded as the
training sample. Circular samples xm,n, (m, n) ∈ {0, 1, . . . , M− 1} × {0, 1, . . . N − 1} are
generated by circular matrices of xl . Each circular sample xm,n corresponds to a two-
dimensional Gaussian label function:

y(m, n) = e−
(m−M/2)2+(n−N/2)2

2σ2 , (1)

where M and N represent the width and height of the convolutional feature map, respec-
tively; σ is the width of the kernel, and the correlation filters w have the same size as xm,n.
The goal is to find a function f (z) = wTz that minimizes the squared error between the
sample xm,n and the regression target y(m, n):

w∗ = argmin
w

∑
m,n
‖w·xm,n − y(m, n)‖+ λ‖w‖2

2, (2)

where λ(λ > 0) is the regularization factor. The inner product is induced by a linear kernel,

e.g., w·xm,n =
D
∑

d=1
wT

m,n,dxm,n,d. There are many channels of convolutional features; in order

to simplify the calculation, we use a linear kernel in Hilbert space to derive f (xm,n):

f (xm,n) = w·xm,n = ∑D
d=1 wT

n,m,dxm,n,d. (3)

Similar to the method in [46], using Fast Fourier transform (FFT) in each channel,
the filter Wd can be solved in the frequency domain. Each channel of the learned filter is
represented in the frequency domain as follows:

Wd =
Y�

¯
X

d

∑D
i=1 Xi �

¯
X

i

+ λ

, (4)
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where d ∈ {1, 2, . . . , D}, Y = F (y), Xd = F (xd), and F (y) means Discrete Fourier trans-
form (DFT). The bars above the variables represent complex conjugates. The operator
� represents a Hadamard (element-wise) product. In the next frame, the convolutional
features of the Region of Interest (ROI) are extracted, where the l-th layer is defined as
zl ∈ RM,N,D. The layer l response map Rl is calculated as follows:

Rl = F−1(
D

∑
d=1

Wd �
¯
Z

d

). (5)

The operator F (·)−1 denote the inverse Fourier transform operation. We can obtain
the estimated position of the target given by the l-th layer by searching the maximum
value in the response map. We comprehensively consider the response maps generated by
multiple feature layers. Specifically, we fuse the response maps of multiple convolutional
layers by weights. The position of the maximum value of the weighted fusion response
map is used to estimate the final position of global tracking:

R̂(m, n) = α1R1(m, n) + α2R2(m, n) + . . . + αl Rl(m, n), (6)

(x(g), y(g)) = argm,nmaxR̂(m, n), (7)

pos(g) = (x(g), y(g)), (8)

where αl is the weight of the l-th layer convolution feature response map. pos(g) is the
target position estimated by our global filter.

3.3. Local Filter

Our local filter does not rely on local variability between different targets and uses
the variant of HoG [47] features and color name (CN) [48] features to capture the gradient
and color information of the target, respectively. HoG features and CN features have
low dimensionality, so we refer to the method in KCF [8] and use the Gaussian kernel
function to map the ridge regression to a nonlinear space to construct two local trackers.
For different parts of the target, each tracker is considered as a separate tracker. At the same
time, they have constraints on each other and there are also constraints between partial
filters and global filters. We refer to the block method in [21]. According to the aspect ratio
of the target, we use two methods of horizontal block and vertical block to split the target,
as the Figure 3 shows.

Using the kernel function to extend the ridge regression (Equation (2)) to the non-linear
domain, we can obtain the closed-form solution of the best filter kernel version:

αi = (K + λI)−1yi. (9)

Note that the subscript in Equation (9) indicates the i-th local filter. αi represents the
form of the filter hi in the dual domain. Kij = κ(xi, xj) is the kernel matrix, I is the identity
matrix, and yi is a vector form of the desired output yi.

For a kernel matrix with a cyclic structure, it is easy to construct a kernel solving
Equation (2) without considering all the samples generated by the cyclic shifts. Given a
kernel matrix K = C(kxx) kxx is the kernel correlation of x with itself, where C(·) represents
the cyclic data matrix generated by concatenating all possible cyclic shifts. The closed-form
solution can be written as:

αi = F−1
(

F (yi)

F (kxx
i ) + λ

)
. (10)
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We use the HoG and CN features to construct our local target appearance representa-
tion and use the following Gaussian kernel to construct the kernel matrix:

kxx
′

= exp

(
− 1

σ2

(
‖x‖2 +

∥∥∥x
′
∥∥∥2
− 2F−1

(
∑

c
x̂∗c � x̂

′
c

)))
, (11)

where x̂ is the Fourier transform of x, x̂∗ is the complex conjugate of x̂, and � is element-
wise. For the trained local filter αi, an image block of the same size as xi is cropped and its
feature is z. Confidence maps of the local filter and predicted target position are calculated
as follows:

R̂i = F−1(F (kxz
i )�F (αi)), (12)

(xi
(l), yi

(l)) = argmax
m,n

R̂i(m, n), (13)

where kxz
i represents the kernel correlation of extracted feature zi, and the learned partial

appearance model xi. R̂i represents the response map of the i-th local filter. We use the
midpoint of the predicted position of the two local filters as the final position pos(l) of
local tracking:

(x(l), y(l)) = (
x1

(l) + x2
(l)

2
,

y1
(l) + y2

(l)

2
), (14)

pos(l) = (x(l), y(l)), (15)

3.4. Local–Global Collaboration Model

We propose a global-to-local tracking algorithm, using the method in Figure 2 to build
the target appearance model. Our global tracker is trained by convolutional features from
the VGGNet-19 network, and the local tracker is trained by 31 dimensional HoG and 11
dimensional CN features. In the tracking process, the position and state of all filters are
considered comprehensively to predict the final position of the target.

Specifically, whether the current local part of the target is occluded is determined by
the maximum value of the local filter. When the maximum value of the local filter response
ri

max is less than the threshold rtre, we consider that the current local tracker results are not
reliable. Considering the relationship between the local prediction position and the global
prediction position, we set a reliable circle area around the global prediction position, the
radius of which is related to the target scale, and the radius value is r =

√
W2 + H2. The

Euclidean distance between the predicted position of the global tracking and the final
position of the local tracking is calculated as d =

∥∥∥pos(g) − pos(l)
∥∥∥. To figure out whether

the final position of the local tracking is within the reliable circle, that is, the relationship
between r and d, the final tracking position is obtained as follows:

pos =


pos(g) if d < θ · r
(1− β)pos(g) + βpos(l) if d > θ · r, ∃iri

max > rtre
KFR if d > θ · r, ∀iri

max < rtre

, (16)

where ∆(l)
t−1 is the displacement vector of the center position of the two local correlation

filters at time t relative to time t− 1.
For the global filter, the filter of the first layer can be updated by minimizing the

output error of all training samples, which still includes solving the correlation filters of D
channels. Online learning will consume a lot of time, so we update the numerator Ad

t+1,
and denominator Bd

t+1, of the global filter Hd
t+1, respectively, as follows:

Ad
t+1 = (1− η)Ad

t + ηgG� Fd
t , (17)

Bd
t+1 = (1− η)Bd

t + ηg∑D
i=1 Fi

t � Fi
t, (18)
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Hd
t+1 =

Ad
t

Bd
t + λg

, (19)

where ηg is the update factor of the global filter. We use the maximum value of the local
filter to determine whether the current target is occluded and whether the local–global
learning model is updated is based on the state of the two local filters. We divide the
tracking target status into the following three cases: no occlusion, partial occlusion, and
complete occlusion. For three different cases, the global filter update method is as Table 1.

Table 1. Three different update states.

No State of Tracker State of Learning Rate Value of Learning Rate Condition in t-th Frame

1 No occlusion Normal update ηn ∀iri
max > rtre

2 Partial occlusion Slow update ηp ∃iri
max > rtre

3 Complete occlusion Not update ηc ∀iri
max < rtre

For local filters, we consider the state of each local filter separately. According to the
maximum response values of the two local filters, the update method is selected as follows:

αt
i =

{
(1− ηl)α

t−1
i i f ri

max > rtre
αt−1

i otherwise
, (20)

where ηl is the update factor of the local filter. In the next section, we will discuss our
proposed TSPSR index and how we recapture targets using KF when the local–global
multiple CFs tracking model fails to track the target.

3.5. Kalman Filter Redetection

Most CF-based trackers and KCF trackers only consider appearance change, fail to
utilize the motion information of the target, and rely too much on the maximum response
value to determine the target position. When the target is partially or completely occluded
or is in situations such as fast motion and complex background, the tracker may lose the
target. Therefore, we propose a redetection module based on KF for the local–global tracker.
KF is an algorithm that makes an optimal estimation of the current true status based on
the current measurement. The equation of the KF is divided into two parts: the time
update equation and the measurement update equation. The time update equation uses
historical predictions to estimate the current state, which can be regarded as a prediction
equation; the measurement update equation adjusts the estimation of the target status
through the current actual measurement, which can be regarded as a correction equation.
The prediction equation can be expressed as:

x̂k|k−1 = Fk x̂k−1|k−1 + Bkuk, (21)

where x̂k|k−1 represents the target state vector predicted at time k, uk is the control variant,
and Bk is the control matrix, which shows how the control variant uk acts on the current
state. x̂ is a four-dimensional vector [ x y dx dy ], where x and y represent the coordi-
nates of the center position of the target, and dx, dy represent the speed of the target. Fk is
the state transition matrix, which is expressed as:

Fk =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

. (22)

We set Pk|k−1 to the covariance matrix of the posterior estimation error at time k; the
transfer process of the noise covariance matrix can be expressed as:

Pk|k−1 = FkPk−1|k−1FT
k + Qk, (23)
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where the covariance matrix Qk represents the error caused by the prediction model at time
k. In the updating equation, the KF uses the current measurement to correct the estimated
results given by the prediction equation. The observed value Zt can be expressed as:

Zk = Hk x̂k|k−1 + Vk. (24)

The role of Hk is to transform the state space to the measurement space, and Vk is
the observation noise at time k. We use Rk to represent the error covariance matrix of the
observational measurement Zk. The role of Kalman coefficient Kk is to weigh the magnitude
of the predictive error covariance matrix Pk|k−1 and the observational measurement error
covariance matrix Rk, determine which of the prediction model and the observation model
is more reliable, and switch the system from the observation domain to the state domain.
The Kalman coefficient Kk can be expressed as:

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)
−1

. (25)

Based on what has been mentioned above, we update our KF using the following equation:

x̂k|k = x̂k|k−1 + Kk(zk − Hk x̂k|k−1), (26)

Pk|k−1 = (I − Kk Hk)Pk|k−1. (27)

When the local–global tracker is tracking normally, we input the results of the trackers
as observations into the KF for parameter update. When target occlusion or tracking failure
occurs, we completely use KF to predict the movement of the target. We use the Peak to
Sidelobe Ratio (PSR) value of the global filter response map and the maximum value of the
local filter response map to judge the reliability of the tracker. The calculation of PSR is
as follows:

PSRt
l =

max(Rt
l)− µt

l
σt

l
, (28)

where Rt
l is the response graph of the global filter on the l-th layer at time t, max(Rt)

represents the maximum value of the global filter response map, and µt and σt are the
mean and standard deviation of the response map, respectively. When the target starts to
enter the occlusion situation, the PSR value will decrease; when the target is completely
occluded, the filter will learn the appearance characteristics of the occluded, and the PSR
value will increase instead. In addition, different convolutional layers have different
sensitivities to occlusion or rotation. The lower level convolutional features contain more
spatial detail information and are more sensitive to changes in the appearance of the target.
Therefore, we propose a time-space weighted PSR (TSPSR), which is calculated as follows:

TSPSRt =
T

∑
t=1

ωt
1
L

L

∑
l=1

βl PSRt
l , (29)

where βl is the spatial weighting coefficient for the current l-th layer, and ωt is the time
weighting coefficient for t frames before the start of the current frame. In our algorithm,
the switching mechanism for the correlation filter-based tracker (CFT) and Kalman filter
based tracker (KFT) is as follows:{

TSPSRt < ψ, ∀iri
max < rtre tracking by KFT

otherwise tracking by CFT
, (30)

where ψ is the TSPSR threshold we set. TSPSR can effectively reflect the reliability of the
current correlation filter tracking results. Figure 4 intuitively reflects the distribution of
TSPSR on the Girl2 sequence. In this figure, we use green to represent the stage of tracking
by CF, and purple to represent the stage of tracking by KF. Points B and C indicate that the
girls in frame #552 and frame #900 are not occluded, and the TSPSR value is higher than
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the threshold; therefore, we use CF for tracking. However, the two points A and D indicate
that the girl is occluded by a pedestrian in frames #110 and frame #1391, and the TSPSR
value is lower than the threshold; therefore, we use KF for tracking.

Figure 4. Distributions and analysis of time-space peak to sidelobe ratio (TSPSR) value on the Girl2 sequence. The green
line represents the stage of tracking by CF, and the purple line represents the stage of tracking by KF. The four points A to D
correspond to different frames, and the tracking model is selected according to the value of TSPSR.

4. Performance Analysis

In this section, we perform extensive experiments for the proposed algorithm using
several benchmarks. First, we describe the detailed implementation and parameter settings
of our tracker. Second, we analyze the effectiveness of each contribution in our proposed
algorithm. Finally, we present the tracking performance of our proposed tracker compared
with some state-of-the-art trackers. We perform qualitative-, quantitative-, and attributes-
based evaluations on the OTB-2013 and OTB-2015 datasets to evaluate the performance of
our algorithm.

4.1. Experimental Setup
4.1.1. Implementation Details

Our proposed tracker was implemented in MATLAB 2016b on a computer with an
Intel (R) Xeon (R) CPU e5-2640 2.40 GHz CPU and a NVIDIA GeForce GTX1080Ti GPU
(11 g memory) (OMNISKY, Beijing, China). The CUDA version is 10.1. We use MatConvNet
which is a common deep learning toolbox in MATLAB to implement the extraction of
convolutional features of VGGNet-19. More specifically, parameters of the tracker are
set as follows: the kernel width of the local filter σ is set to 0.1, the global regularization
parameter λg is set to 0.0001, and the local learning rate ηl is set to 0.18. We use the features
of conv3-4, conv4-4, and conv5-4 of VGGNet-19 with their weights set to 0.25, 0.5, and 1,
respectively. The local tracker reliability threshold rtre is set to 0.55, In the TSPSR, the first
five frames are taken, the spatial weight vector βl is set to [0.25 0.5 0.1], the time weights
vector of the previous five frames ωt are set to [0.4 0.2 0.2 0.1 0.1], and the confidence circle
radius weight is set to 0.9.

4.1.2. Datasets

In order to fully verify the effectiveness of our proposed algorithm, we perform com-
parative experiments on the OTB-2013 and OTB-2015 datasets, which contain 50 image
sequences and 100 image sequences, respectively. These two datasets contain 11 com-
mon challenge attributes, including illumination variation (IV), occlusion (OCC), scale
change (SV), fast motion (FM), deformation (DEF), motion blur (MB), out-of-view (OV),
background clutter (BC), low resolution (LR), in-plane rotation (IPR), and out-of-plane
rotation (OPR).
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4.1.3. Evaluation Indicators

The One-Pass Evaluation (OPE) proposed in OTB-2013 [25] is used to objectively
evaluate the performance of the tracker, mainly using two indicators: precision and success
rate. Precision is defined as the percentage of frames whose average Euclidean distance
between the center position of the tracked target and ground-truth is less than the given
threshold. The success rate represents the percentage of successful frames whose overlap
rate between the tracked bounding boxes and ground-truth is greater than the given
threshold. The compared trackers are ranked by the area under the curve (AUC).

4.2. Effectiveness Analysis
4.2.1. Analysis of Local–Global Multiple CF Learning Model

We design experiments to verify the effectiveness of our LGCF learning model, which
are shown in Table 2. Global (baseline) represents that we use the global model as a
baseline. Compared with a single global correlation filter model, it can be found that the
local–global multiple correlative filter collaborative model achieves a 1.34% rise in accuracy
and a 1.89% rise in success rate on OTB-2013, a 1.30% improvement in accuracy, and a
1.82% improvement in success rate on OTB-2015.

Table 2. Effectiveness study of proposed local–global cooperation mechanism and KFR.

Types of Models OTB-2013
Precision

OTB-2013
Success Rate

OTB-2015
Precision

OTB-2015
Success Rate

Global (Baseline) 0.891 0.635 0.845 0.603
Global + Local 0.903 0.647 0.856 0.614

Global + Local + KFR 0.906 0.649 0.862 0.616

4.2.2. Analysis of Collaborative Update Strategy

As is shown in Figure 5, experimental results show the effectiveness of a local–global
collaborative updating strategy on OTB-2013 and OTB-2015. We conduct experiments on
the different values of the updating parameter ηP in the partial occlusion of the global
tracker. ηP set to 0 represents whether the target is partially or fully occluded and the
global tracker will stop updating. ηP set to 0.01 represents only when the target is fully
occluded and then the global tracker will stop updating. When the ηP is set to 0.005, the
best performance is obtained.

Figure 5. The experimental results for different reliability ratio threshold ηP on OTB-2015.

4.3. Overall Performance

We compare the proposed trackers with the other 12 state-of-the-art trackers, and we
divided these trackers into the following categories: (1) DCF-based trackers: SRDCF [6],
SAMF_AT [49], MUSter [50], DSST [33], LCT [22], Staple [51]. (2) CNN-based trackers:
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HCF [17], SiamFC [35], HDT [15], CFNet [52], DeepSRDCF [13]. (3) Set-based tracker:
MEEM [53].

4.3.1. Quantitative Evaluation

We compare the overall accuracy and success rate of the proposed tracker with the
other 12 trackers on OTB-2013 and OTB-2015. Figures 6 and 7 show the evaluation results on
these two datasets. It can be seen that compared with the other latest methods, our proposed
tracker shows excellent performance in both success rate and accuracy, because the OTB-
2015 dataset contains the OTB-2013 dataset but includes some more challenging sequences.

Figure 6. Precision and success rate of our proposed tracker and compared other 12 trackers on OTB-2013.

Figure 7. Precision and success rate of our proposed tracker and compared other 12 trackers on OTB-2015.

4.3.2. Attribute-Based Evaluation

We use 11 challenging attributes on OTB-2013 and OTB-2015 to comprehensively
evaluate the accuracy and robustness of our proposed tracker in various challenging
scenarios. Figures 8 and 9 show the evaluation results of our tracker and the other 12 state-
of-the-art trackers based on different attributes on OTB-2013, respectively. Table 3 shows
the results of the attribute-based accuracy rate on OTB-2015. It can be seen from the figure
that our proposed algorithm performs well in most of the 11 attributes, especially in the
2 attributes OV and OCC. Owing to our local tracking module and KFR module, it can
effectively deal with challenging situations such as out-of-view and occlusion. In addition,
the local–global collaborative updating strategy enables our filter to correctly learn the
appearance of the tracking target, and avoids learning the appearance of foreground
occlusions or backgrounds.
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Figure 8. Success rate plots of 11 tracking challenging on OTB-2013. The plots illustrate the experimental results using
11 attributes. The legend shows the success rate and we show the results of 12 trackers.

Figure 9. Precision plots of 11 tracking challenging on OTB-2013. The plots illustrate the experimental results using
11 attributes. The legend shows the success rate and we show the results of 12 trackers.
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Table 3. Performance evaluations of different attributes on OTB-2015. We use red and blue fonts to mark the top two scores.

Trackers IV OR SV OCC DEF MB FM IR OV BC LR

CNN-
SVM 0.789 0.806 0.791 0.73 0.793 0.767 0.742 0.798 0.659 0.776 0.79

SRDCF 0.786 0.724 0.75 0.703 0.699 0.782 0.762 0.739 0.572 0.775 0.631
Staple 0.776 0.738 0.739 0.728 0.751 0.719 0.709 0.772 0.644 0.749 0.591

MUSTer 0.776 0.753 0.72 0.734 0.689 0.699 0.684 0.756 0.603 0.784 0.677
LCT 0.739 0.748 0.687 0.682 0.689 0.673 0.667 0.768 0.616 0.734 0.49

MEEM 0.733 0.795 0.74 0.741 0.754 0.722 0.728 0.79 0.690 0.746 0.605
SiamFC 0.728 0.75 0.739 0.722 0.69 0.724 0.741 0.752 0.65 0.69 0.815
SAMF_AT 0.723 0.764 0.75 0.748 0.687 0.765 0.718 0.778 0.652 0.713 0.716

DSST 0.714 0.641 0.655 0.597 0.542 0.595 0.562 0.689 0.483 0.704 0.55
CFNet 0.686 0.728 0.715 0.674 0.643 0.687 0.695 0.759 0.572 0.724 0.787
HDT 0.815 0.807 0.812 0.774 0.821 0.794 0.802 0.834 0.687 0.844 0.766
HCF 0.835 0.817 0.807 0.776 0.791 0.804 0.792 0.849 0.689 0.852 0.822
Ours 0.87 0.85 0.835 0.817 0.806 0.846 0.796 0.856 0.784 0.851 0.867

* For the scores in Table 3, 11 columns represent the performance of different algorithms under 11 challenge attributes, and 13 rows
represent the performance of 13 algorithms under different challenge attributes. The best and the second-best precision in each column are
highlighted in red and blue respectively.

4.3.3. Qualitative Evaluation

Figure 10 shows the tracking results of our proposed tracker and five other trackers
(including Staple [51], HDT [15], CFNet [52], SiamFC [35], and HCF [17]) on ten challenging
video sequences. These frame sequences are from the public benchmarks OTB-2013 [25]
and OTB-2015 [26]. In general, our tracker can track targets more accurately. In the “Box”
sequence, the target is almost completely occluded at the 47th frame, and our tracker can
still track it accurately. At the 508th frame, only our tracker can track the object correctly. In
the “Girl2” sequence, when the little girl is completely occluded by a pedestrian and then
appears in view, only our tracker can accurately recognize it, which contributes to our KFR
mechanism. For “Lemming” sequences with OCC, IPR, and IR challenges, occlusion at the
372nd frame forces most trackers to lose their targets. In the 408th frame, only our tracker
and SiamFC could accurately track the target. For “Soccer”, “Skating1”, and “Ironman”
sequences with IV and BC, our tracker copes with illumination variation and background
clutter very well. For “Dragonbaby” sequences with OPRs and OV challenges, SiamFC
and CFNet have lost targets, but our tracker is still able to accurately capture targets. At
the same time, as shown in the “Trellis 1” sequence with the SV challenge, our tracker can
also handle scale changes very well. For “Clifbar” and “MotorRolling” sequences with BC,
IV, and FB challenges, the other five methods perform poorly, but our tracker can handle
this complex situation.
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Figure 10. The comparisons of bounding box for different algorithms on 7 challenging image sequences of OTB-2013 and
OTB-2015 (from top to down are Box, Girl2, Lemming, ClifBar, Ironman, DragonBaby, and Soccer, respectively).

5. Conclusions

This paper proposes a local–global multiple correlation filters-based object tracking
algorithm. First of all, global filters and local filters transferring information to each other
can effectively cope with the challenges of occlusion and rotation with the comprehensive
use of convolutional features and hand-crafted features. Based on our learning model, we
propose a local–global collaborative updating strategy, which can prevent the tracker from
learning the appearance of foreground occlusions or background clutter. In addition, we
propose the time-space peak to sidelobe ratio (TSPSR) index, which can effectively reflect
the reliability of the current KF tracker. When the current KF fails, the KFR model can
be used to accurately recapture the target and predict the position of the original target.
The experimental results on the OBT-2013 and OTB-2015 show that our tracker performs
favorably against the other latest 12 trackers over accuracy and robustness.
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