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Abstract: In this study, we propose a high-sensitivity sensorless viscometer based on a piezoelectric
device. Viscosity is an essential parameter frequently used in many fields. The vibration type
viscometer based on self-excited oscillation generally requires displacement sensor although they
can measure high viscosity without deterioration of sensitivity. The proposed viscometer utilizes
the sensorless self-excited oscillation without any detection of the displacement of the cantilever,
which uses the interaction between the mechanical dynamics of the cantilever and the electrical
dynamics of the piezoelectric device attached to the cantilever. Since the proposed viscometer has
fourth-order dynamics and two coupled oscillator systems, the systems can produce different self-
excited oscillations through different Hopf bifurcations. We theoretically showed that the response
frequency jumps at the two Hopf bifurcation points and this distance between them depends on
the viscosity. Using this distance makes measurement highly sensitive and easier because the jump
in the response frequency can be easily detected. We experimentally demonstrate the efficiency of
the proposed sensorless viscometer by a macro-scale measurement system. The results show the
sensitivity of the proposed method is higher than that of the previous method based on self-excited
oscillation with a displacement sensor.

Keywords: viscometer; sensorless self-excited oscillation; piezoelectric device; Hopf bifurcation;
double Hopf bifurcation; jump phenomenon

1. Introduction

Viscosity is an essential parameter frequently used in many fields such as food, petro-
chemistry, and biology. While a variety of viscosity sensors have been proposed [1,2],
vibrational sensors are receiving special attention because they provide instantaneous and
continuous readings of the target viscosity as it changes with time [3–5]. In recent years,
there has been increasing need to determine the rheological properties of cells, blood, and
other biological matter [6–10]. Hence, miniaturized sensing probes such as the micro-
cantilever [11–14], fabricated with micro-electro-mechanical system (MEMS) technology,
are used for those measurements. Many sensing principles have been proposed to meet
these requirements.

The three existing excitation methods for a vibrational viscosity sensor are: frequency
response under external forcing, feedback control with a sensor, and using the electric
impedance of equivalent circuits. The most basic method is based on the frequency response
under external forcing, which uses the fact that a higher viscous environment blunts the
shape of the resonator’s frequency response curve. This method detects viscosities from the
quantitative change in the peak frequency or the quality factor [15–19]. The quality factor,
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or Q-value, indicates the sharpness of the curve. The external excitation method is very
simple, but its accuracy and sensitivity may deteriorate in high-viscosity sensing because
the peak of the frequency response curve cannot be identified accurately. Moreover, the
method is not applicable to much higher viscosities where the resonance peak does not
appear in the frequency response curve. The second method, based on feedback control
using oscillating velocity feedback [20–22], a phase-locked-loop (PLL) [23], and a phase
shifter [24,25], can overcome this difficulty because it directly determines the viscosity
without using the frequency response curve.

In the first and second methods, it is essential to use a sensor such as a laser displace-
ment sensor or laser Doppler vibrometer (LDV). The third method, based on equivalent
circuit models and impedance analysis, does not require a sensor. Equations of motion
expressed with mechanical parameters such as the mass, stiffness, and viscous damping
characteristic of the resonator can be equivalently converted to circuit equations expressed
with electrical parameters such as the capacitance, inductance, and electric resistance. The
Butterworth-Van Dyke (BVD) model is often used as an equivalent model for mass or vis-
cosity sensors [26–30]. Because these methods determine the viscosity from the frequency
characteristic of the impedance, they cannot overcome the difficulty in the first method.
Furthermore, because impedance is influenced by not only mechanical properties but also
circuit properties such as the resistance of the electro-probe itself, a change in viscosity may
not provide enough change in impedance.

In this study, we propose a new viscosity measurement method with sensorless self-
excited oscillation to enhance the sensitivity and usability of micro-fabrication systems.
Our research group has developed sensorless self-excited oscillation for cantilevers, that
do not require any detection of the displacement or velocity of the resonator [31]. This sen-
sorless self-excited oscillation uses the interaction between the mechanical dynamics of the
cantilever and the electrical dynamics of the piezoelectric device attached to the cantilever.
The current supplied to the piezoelectric actuator consists of components proportional to
the voltage of the piezoelectric device and to its differential. There are existing uses of
sensorless self-excited oscillation, but it has not been applied to viscosity measurement.

For application to viscosity measurement, we focus on jumps in the response frequency.
The proposed sensorless self-excited oscillation viscometer has fourth-order dynamics and
two coupled oscillator systems for feedback control. The low-pass filter included in the
feedback control was used not only for noise elimination in [31], but also as a control
parameter to detect the viscosity. In cases when the cut-off frequency of the filter is swept
forward or backward, the systems can produce different self-excited oscillations through
different Hopf bifurcations. Then, we find the relationship between the width of the hys-
teresis and the viscosity. This enables highly sensitive measurements because the width of
the hysteresis can be easily determined from jumps in the response frequency in the sweeps.
We theoretically derive the condition for the existence of hysteresis and the relationship
between the width of the hysteresis and the viscosity. Furthermore, we experimentally
demonstrate the efficiency of the proposed sensorless viscosity measurement system using
a macro-scale cantilever with a bimorphic piezoelectric device.

2. Principle of Viscosity Measurement Based on Sensorless Self-Excited Oscillation
2.1. Theoretical Modeling of the Sensorless Viscometer System
2.1.1. Analytical Model and Governing Equations

We introduce the analytical model of the sensorless viscometer shown in Figure 1. The
system consists of a cantilever with a bimorphic piezoelectric device, whose free end has
a rigid thin disk. The disk is immersed in a Newtonian sample fluid and subject to fluid
force Ff . The mass of the disk is small enough for us to neglect its inertial and gravitational
forces, while the fluid force acting on the disk affects the dynamics of the cantilever.
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Figure 1. Analytical model of sensorless self-excited vibrational viscometer driven by piezoelectric
device. The oscillating thin rigid disk is subjected to fluid force Ff from the measured fluid.

The x and y axes denote the downward direction from the fixed end of the cantilever
and the lateral direction, respectively. The ends of the bimorphic piezoelectric device are at-
tached at distances l1 and l2 from the fixed end of the cantilever. The quantities w(x, t), v(t),
and i(t) are the flexure of the cantilever, the voltage across the terminals of the piezoelectric
device, and the current supplied to the piezoelectric device, respectively. Additionally,
w(x, t) can be expressed as the product of a function depending on time t and one depend-
ing on vertical coordinate x: w(x, t) = ∑∞

i=1 ai(t)Φi(x), where Φi(x) and ai(t) are the ith
modal function and the corresponding time-dependent displacement, respectively. By
assuming that the cantilever oscillates with the first mode and projecting the flexure w(x, t)
onto the first mode according to [21,31], we obtain the governing equations as

m
d2a1

dt2 +
(

c0 + c f

)da1

dt
+
(

k0 + k f

)
a1 = −ψv, (1)

dv
dt

=
1

Cp
i +

ψ

Cp

da1

dt
, (2)

where a1 is the displacement of the cantilever in the first mode. Equations (1) and (2)
describe the dynamics of the first-mode cantilever oscillation and the electric circuit of
the piezoelectric device, respectively. The first, second, and third terms on the left side of
Equation (1) express the inertial, damping, and restoring forces, respectively, and the term
on the right side of Equation (1) is the control input of the piezoelectric actuator. The mass,
damping, and bending stiffness of the cantilever itself are denoted by the terms that include
m, c0, and k0, respectively, and the fluid force Ff is represented by the terms with c f and
k f [20,21]. The quantity ψ on the right side of Equations (1) and (2) is the electro-mechanical
coupling coefficient between the cantilever and the piezoelectric device, and Cp on the
right side of Equation (2) is the capacitance of the piezoelectric device [31]. Because the
mechanical dynamics of the cantilever and the electrical dynamics of the piezoelectric
device influence each other via the coupling coefficient ψ in Equations (1) and (2), the entire
system is regarded as a third-order coupling system.
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2.1.2. Proposed Feedback Control

We propose the following feedback controller to produce the self-excited oscillation
without any sensors:

1
f f

dvLPF

dt
+ vLPF = v, (3)

i = αvLPF + β
dvLPF

dt
, (4)

which is schematically shown in Figure 2. The input and output signals of the controller
are the voltage across the terminals of the piezoelectric device, v, and the current supplied
to the piezoelectric device, i. Then, the original third-order coupling system is transformed
into a fourth-order coupling system. Equations (3) and (4) express the low-pass filter and
the proportional and derivative feedbacks with respect to v, respectively, where α, β, and
f f are the proportional gain, derivative gain, and cut-off frequency of the filter, respectively.
By suitably setting the control parameters, α, β, and f f , we can realize sensorless self-
excited oscillation for a highly sensitive viscometer. The system of Equation (3) plays a role
not only as the filter for noise reduction, but also as the phase-shift controller proposed
in [24,25]. This filter system is essential to the proposed viscometer because a change in the
cut-off frequency f f qualitatively changes the dynamics of the whole fourth-order coupling
system of Equations (1)–(4).

Filter system PD system

Figure 2. Illustration of the feedback controller. The feedback controller is constructed as the cascade
connection of a first-order filter system and PD (proportional-derivative) feedback system. v and
i denote the voltage across the terminals of the piezoelectric device and the current supplied to
the piezoelectric device, respectively. The voltage v and current i are input and output signals,
respectively, and vLPF is the output signal of the filter system.

We introduce the representative time as Tr = 1/ω0 =
√

m
k0+k f

, where ω0 is the natural

frequency of the first mode of the cantilever. Using the dimensionless independent variable
t∗ = t/Tr, we obtain the dimensionless governing equations of the entire sensorless
viscometer system as

ä + 2γȧ + a = − ψ̃1

δ f f
v̇LPF − ψ̃1vLPF, (5)

v̈LPF + β̃δ f f v̇LPF − α̃δ f f vLPF = ψ̃2δ f f ȧ, (6)

where [ ˙ ] denotes the derivative with respect to the dimensionless time t∗. The other
dimensionless parameters are expressed as

γ =
c0 + c f

2
√

m
(

k0 + k f

) , ψ̃1 =
ψ

k0 + k f
, ψ̃2 =

ψ

Cp
, α̃ =

α

Cp

m
k0 + k f

, β̃ = 1− β

Cp
, δ f f =

√
m

k0 + k f
f f , (7)

where γ is the damping ratio (since this damping ratio corresponds to the measured
viscosity as described in Section 3.2, we sometimes call γ viscosity in the theoretical
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analysis); ψ̃1 and ψ̃2 are constant; and α̃, β̃, and δ f f are dimensionless control parameters,
which are suitably set. The matrix forms of Equations (5) and (6) are

d
dt∗


a
ȧ

vLPF
v̇LPF

 = A


a
ȧ

vLPF
v̇LPF

, (8)

where

A =


0 1 0 0
−1 −γ −ψ̃1 −ψ̃1/δ f f
0 0 0 1
0 ψ̃2δ f f α̃δ f f −β̃δ f f

. (9)

2.2. Dynamics of the Viscometer System

When the negative real part varies to positive, the self-excited oscillation is produced
through Hopf bifurcation. The eigenvalues at the Hopf bifurcation point include a pair
of conjugate pure imaginary values. Because Equations (8) and (9) are a fourth-order
system, two different Hopf bifurcation points can exist at different values of the feedback
control parameters, α̃, β̃, and δ f f . In other words, two kinds of self-excited oscillations with
different modes corresponding to lower and higher response frequencies can be produced
in a parameter range. Figure 3 shows a schematic of the proposed method. We increase the
control parameter δ f f (forward sweep) from the state where a self-excited oscillation occurs
with mode 1, which is related to the lower response frequency. The control parameter
δ f f reaches its value at Hopf bifurcation II. The other self-excited oscillation with mode 2,
which is related to the higher response frequency, is not produced, but the original self-
excited oscillation with mode 1 continues. We continue increasing δ f f until it reaches
Hopf bifurcation I, where the original self-excited oscillation with mode 1 stops and the
self-excited oscillation with mode 2 is suddenly produced. Then, the response frequency
jumps up to the higher response frequency related to mode 2. This self-excited oscillation
is maintained by increasing δ f f more.

Cut-off frequency δ ff 

R
es

po
ns

e 
fr

eq
ue

cy

forward sweep

backward
     sweep

Hopf bif. point II

Hopf bif. point I

mode 1

mode 2

0

Figure 3. Schematic of the proposed method.

From this state, we decrease δ f f (backward sweep). Different from the forward sweep,
the parameter value reaches first the value at the Hopf bifurcation I. The self-excited
oscillation with mode 1 is not produced, but the self-excited oscillation with mode 2
continues. The control parameter δ f f is increased further, until it reaches Hopf bifurcation
II, where the self-excited oscillation with mode 2 stops and the self-excited oscillation with
mode 1 is suddenly produced. Here, the response jumps down to its lower frequency.

The distance between the two Hopf bifurcation points, I and II, is the width of the
hysteresis. As theoretically shown below, this distance depends on the viscosity. The values
of δ f f at the two bifurcation points are obtained by detecting the jumps in the response
frequency. Thus, the hysteresis between Hopf bifurcation points I and II is used in the
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proposed sensorless viscometer. Because this behavior is similar to the bi-stable range and
jump phenomenon in nonlinear dynamics, we call this hysteresis “bi-unstable.” Using the
bi-unstable range makes measurement highly sensitive and easier because the jump in the
response frequency can be easily detected.

We next find the conditions for the existence of this bi-unstable range.
The characteristic equation of A can be expressed as

λ4 +
(

2γ + β̃δ f f

)
λ3 +

(
−α̃δ f f + 2γβ̃δ f f + ψ̃1ψ̃2 + 1

)
λ2 + δ f f

(
−2γα̃ + β̃ + ψ̃1ψ̃2

)
λ− α̃δ f f = 0, (10)

where λ is an eigenvalue. Before analyzing the eigenvalue, we determine the condition
for producing the Hopf bifurcation points to clarify how the measured viscosity γ affects
these points. The condition for the control parameters at the Hopf bifurcation point can be
derived by substituting λ = jω, where j =

√
−1, into Equation (10) to obtain

ω4 −
(
−α̃crδ f f−cr + 2γβ̃crδ f f−cr + ψ̃1ψ̃2 + 1

)
ω2 − α̃crδ f f−cr = 0, (11)

−
(

2γ + β̃crδ f f−cr

)
ω2 + δ f f−cr

(
−2γα̃cr + β̃cr + ψ̃1ψ̃2

)
= 0, (12)

where ω is the dimensionless self-excited frequency. Equations (11) and (12) can be rewrit-
ten in the linear form

[
ω2 − 1 −2γω2 ω2(ω2 − 1

)
− ψ̃1ψ̃2ω2

2γ 1−ω2 2γω2

] α̃cr
β̃cr

1/δ f f−cr

 =

[
0

ψ̃1ψ̃2

]
. (13)

This linear form shows that the Hopf bifurcation point and its corresponding frequency
ω are not unique. This indicates that it is possible to realize bi-unstable states.

2.3. Proposed Highly Sensitive Viscosity Measurement Using the Bi-Unstable Range
2.3.1. Analysis of the Root Locus

Figure 4 shows the typical root loci obtained from Equation (10), where the filter
parameter δ f f is increased from 0.1 to 6 and the other control parameters are shown in
the figure legend. The self-excited oscillation occurs when the eigenvalues are in the right
half-plane.

First, we analyze the change from Figure 4a–c. Figure 4a shows a case in which
the bi-unstable range does not exist because the eigenvalues corresponding to modes
1 and 2 are always in the unstable and stable plane, respectively. In this case, the self-
excited oscillation of mode 1 is always produced regardless of the variation in the control
parameter δ f f . Hence, the condition of Figure 4a is not suitable for the measurement.
For the relatively low viscosity, the condition qualitatively changes as follows. When the
measured viscosity γ decreases, the root locus in Figure 4a transforms to that in (c) via
that in (b). At γ = γpb, the root locus is expressed as in Figure 4b, and multiple complex
conjugate eigenvalues are produced. When the measured viscosity γ decreases further,
the root locus changes to that in Figure 4c. The eigenvalues move in ascending order of
label number: 1©× → 2©.→ 3©/→ 4©◦. As the control parameter δ f f is swept forward in
the cases of (b) and (c), the eigenvalues of mode 1 enter the stable plane when δ f f reaches
the value corresponding to Hopf bifurcation I, which is related to the lower response
frequency. Before the eigenvalues of mode 1 enter the stable plane, the eigenvalues of mode
2 enter the unstable plane when the control parameter reaches Hopf bifurcation point II,
which is related to the higher response frequency. The bi-unstable range is realized in
this state. Hence, the condition of Figure 4c is suitable for the measurement. The above
investigation shows that the viscosity γ = γpb in (b) is the boundary value of γ that realizes
the bi-unstable range of (c), meaning it produces multiple complex conjugate eigenvalues.
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Figure 4. Numerical examples of the root locus when δ f f varies from 0.1 to 6: (a) modes 1 and 2 are
always unstable and stable, respectively; (b) multiple complex conjugate eigenvalues exist; (c) the
bi-unstable range exists; (d) the bi-unstable range exists and includes a Double Hopf bifurcation
point; (e) δ f f has passed the Double Hopf bifurcation; (f) magnified view of (e). The root locus of
(c), which is a possible case for viscosity measurement, transforms to that in (a) via the existence of
multiple eigenvalues in (b), and to (e,f) via the Double Hopf bifurcation in (d).

Second, we investigate the state of Figure 4c in more detail. Under the forward sweep
of the control parameter δ f f , the eigenvalues of mode 2 first enter the unstable plane ( 2© .)
at Hopf bifurcation point II (λ = ±jωII) when δ f f = δ f f−II. Second, as δ f f increases
further, the eigenvalues of mode 1 enter the stable plane ( 3©/) at Hopf bifurcation point
I (λ = ±jωI) when δ f f = δ f f−I. This indicates that the bi-unstable range exists when
δ f f−I > δ f f−II. These values of δ f f−I and δ f f−II are endpoints of the bi-unstable range,
representing the width of the hysteresis. The proposed sensorless viscometer is based
on measuring the difference between these endpoints depending on the viscosity. Here,
we consider the change of the root locus for much lower γ referring to the change from
(c) to (e). This bi-unstable range monotonically shrinks as the viscosity γ increases, and
becomes zero at γ = γDH, where the root locus is expressed as in (d). In this situation,
the eigenvalues of both modes become a pair of pure imaginary eigenvalues at the same
parameter value. This situation is called a Double Hopf bifurcation point [32,33].

Figure 4e shows the case when the viscosity γ is higher than γDH at the Double Hopf
bifurcation point, and (f) is its magnified view. Unlike the case of (c), the eigenvalues of
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mode 2 enter the unstable plane ( 3© .) after the eigenvalues of mode 1 enter the stable plane
( 2©/). This indicates that both modes are stable between 2© and 3©, and the bi-unstable
range does not exist, meaning δ f f−I < δ f f−II. Hence, the conditions of Figure 4e,f are not
suitable for the measurement.

As the viscosity γ increases, the bi-unstable range (the difference δ f f−I − δ f f−II)
monotonically shrinks and disappears at the Double Hopf bifurcation point (γ = γDH) as
shown in Figure 4c–f. From the next section, we analyze the relationship between γpb and
the control parameter δ f f and examine the endpoints δ f f−I and δ f f−II.

2.3.2. Condition for the Multiple Eigenvalues

First, we find the condition for the matrix A of Equation (8) to have two multiple
complex conjugate eigenvalues as shown in Figure 4b. The characteristic equation can be
written as

(λ− λm)
2(λ− λm

)2
= 0, (14)

where λm is a multiple complex eigenvalue. Comparing the coefficients of Equation (14)
with those of Equation (10) leads to the following equations:

λ3 : Re[λm] = 2γpb + β̃δ f f−pb, (15)

λ2 : 2|λm|2 + 4Re[λm]
2 = −α̃δ f f−pb + 2γpbδ f f−pb + ψ̃1ψ̃2 + 1, (16)

λ2 : − 4Re[λm]|λm|2 = δ f f−pb

(
−2γpbα̃ + β̃ + ψ̃1ψ̃2

)
, (17)

λ0 : |λm|4 = −α̃δ f f−pb, (18)

where Re[λm] denotes the real part of λm. To determine the parameters δ f f and γ that
produce the multiple complex conjugate eigenvalues, we eliminate λm to obtain(

1
2

β̃ + γpb

)(
β̃2δ f f−pb

4
+ γ2

pb + α̃δ f f−pb + β̃δ f f−pbγpb − ψ̃1ψ̃2 − 1

)
= δ f f−pb

(
2γpbα̃− β̃− ψ̃1ψ̃2

)
,

(19)

2
√
−α̃δ f f−pb +

β̃2δ f f−pb

4
+ γpb − β̃δ f f−pbγpb + α̃δ f f−pb − ψ̃1ψ̃2 − 1 = 0, (20)

where subscript ‘pb’ denotes the parameter values that produce the multiple complex
conjugate eigenvalues. When the parameters δ f f and γ satisfy Equations (19) and (20), the
multiple complex conjugate eigenvalues appear as shown in Figure 4b. If the viscosity γ is
greater than the boundary value γpb, the eigenvalues of one mode become always unstable;
the root locus in this situation is shown in Figure 4a.

2.3.3. Derivation of the Endpoints of the Bi-Unstable Range

To derive the values of δ f f−I and δ f f−II at the endpoints in Figure 4c–f, we ana-
lyze Equations (11)–(13). Solving Equation (11) for ω2 yields two self-excited oscillation
frequencies at the Hopf bifurcation points:

ω2
I =

r2I −
√

r2
2I − 4r0I

2
' r0I

r2I
,

where r2I = −α̃crδ f f−I + 2γβ̃crδ f f−I + ψ̃1ψ̃2 + 1, r0I = −α̃crδ f f−I,

(21)
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ω2
II =

r2II +
√

r2
2II − 4r0II

2
' r2II,

where r2II = −α̃crδ f f−II + 2γβ̃crδ f f−II + ψ̃1ψ̃2 + 1, r0II = −α̃crδ f f−II.

(22)

The conditions 4r0I
r2

2I
<< 1 and 4r0II

r2
2II

<< 1 are assumed, and ωI and ωII are the response

frequencies at Hopf bifurcation points I and II, respectively, as shown in Figure 4c–e. Sub-
stituting Equations (21) and (22) into Equation (12) and solving for δ f f−I and δ f f−II yields

δ f f−I =
−2ψ̃1ψ̃2α̃crγ +

(
β̃cr + ψ̃1ψ̃2

)
(1 + ψ̃1ψ̃2)

4α̃cr β̃crγ2 − 2
(

β̃2
cr + ψ̃1ψ̃2 β̃cr + α̃2

cr
)
γ + ψ̃1ψ̃2α̃cr

, (23)

δ f f−II =
4β̃crγ2 − ψ̃1ψ̃2

(
1− β̃cr

)
+
√

D
−2β̃cr

(
2β̃crγ− α̃cr

) , (24)

where D =
[
4β̃crγ2 − ψ̃1ψ̃2

(
1− β̃cr

)]2 − 8β̃cr
(
2β̃crγ− α̃cr

)
(1 + ψ̃1ψ̃2)γ. Equations (23)

and (24) respectively denote the endpoint values of the control parameter, δ f f−I and δ f f−II,
that produce the Hopf bifurcations λ = ±jωI and λ ± jωII in Figure 4c–f.

2.4. Summary of the Proposed Method

In this section, we summarize the proposed method by showing a numerical ex-
ample of the endpoints. Figure 5a shows a numerical example of a change in the
bi-unstable range depending on the viscosity γ obtained from Equations (23) and (24).
This describes the changes in the endpoints of the bi-unstable range in the root loci of
Figure 4c–e. Furthermore, γ = γpb, which is the limit condition in Figure 4b, is obtained
from Equations (19) and (20) and is shown with the black dashed line. The parameter
values are the same as those of Figure 4. Because γpb > γDH is satisfied in Figure 5, the
bi-unstable range disappears at the Double Hopf bifurcation point γ = γDH. If γpb < γDH,
the bi-unstable range is 0 < γ < γpb.

The values of δ f f−I and δ f f−II decrease and increase monotonically with increasing
viscosity γ, respectively. The rates of change in δ f f−II and δ f f−I with respect to γ are
smaller than that of the difference δ f f−I − δ f f−II. Because these rates are related to the
sensitivity, using two Hopf bifurcations provides higher sensitivity. This changing rate of
the difference in endpoints, δ f f−I − δ f f−II, with increasing viscosity γ can be changed by
setting α̃ and β̃. The above discussion gives the method to appropriately set the parameters
of the measurement system depending on the measured viscosity range.

In practical measurements, only the response frequency corresponding to the imagi-
nary part of the eigenvalue can be measured. Figure 5b shows the change in the dimen-
sionless response frequency depending on the control parameter δ f f . The figure shows the
results for four different viscosities: γ = 0.1γDH, γ = 0.3γDH, γ = 0.6γDH, and γ = 0.9γDH,
where γDH denotes γ at the Double Hopf bifurcation point. The bi-unstable range appears
between the square (�) and circle (◦) markers and decreases with increasing γ. When the
control parameter δ f f is set at a point � or ◦, the jump occurs depending on the sweep
direction. By measuring the jump occurring at the markers � and ◦, we experimentally
detect the endpoints of the hysteresis (the hysteresis width) depending on viscosity.
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Figure 5. Numerical example of the relationship between the viscosity γ and the bi-unstable range.
(a) Change in the bi-unstable range obtained from Equations (23) and (24). The black dashed line
denotes the boundary value that produces the multiple eigenvalues in Figure 4b obtained by solving
Equations (19) and (20). The blue and red dashed lines show the control parameters, Equations (23) and (24),
respectively, and the black line shows their difference. γpb and γDH correspond to the root loci of
Figure 4b,d, respectively. (b) Response frequency of the sensorless self-excited oscillation. The black,
light blue, red, and light green lines show the expected dimensionless response frequency ω when
γ = 0.1γDH, γ = 0.3γDH, γ = 0.6γDH, and γ = 0.9γDH, respectively, where γDH is the same as in (a).
The circle and square markers show the Hopf bifurcation points for modes 1 and 2. The difference in
δ f f of the square and circle markers for each γ is the hysteresis width. The hysteresis depends on
viscosity γ.

3. Experiment

We verified the efficiency of the method constructed above by experimentally measur-
ing viscosity using the proposed viscometer based on sensorless self-excited oscillation.

3.1. Experimental Setup and Basic Properties

Figure 6a,b show the signal flow for the measurement system and a photograph of the
experimental equipment, respectively. A bimorphic piezoelectric device (100 × 5 × 0.5 mm,
Fuji Ceramics Corp. (Fujinomiya, Japan), c91) was attached to a phosphor bronze macro-
cantilever (207 × 5 × 0.7 mm). A thin rigid disk (diameter: 100 mm; thickness: 1.0 mm)
was attached at the free end of the cantilever to measure the viscosity of sample fluids. The
voltage v between the terminals of the piezoelectric device was measured and analyzed
using a fast Fourier transform (FFT). The control input i to produce self-excited oscillation
was calculated according to Equations (3) and (4) on a digital signal processing (DSP) board
(DS1104, dSPACE GmbH, Paderborn, Germany) and applied through a V-I converter circuit.
The response displacement was measured using a laser displacement sensor (LK-G35A,
Keyence Corp., Osaka, Japan) to preliminary collect the fundamental dynamics of the
cantilever with the piezoelectric device, but was not used for feedback control. We used
three sample fluids: water and two different standard hydrocarbon liquids (JS5 and JS2.5,
Nippon Grease Corp., Yokohama, Japan). The accuracies of the properties of JS5 and JS2.5
comply with Japanese Industrial Standard (JIS) Z 8809 (https://www.jisc.go.jp/app/jis/
general/GnrJISSearch.html (accessed on 5 February 2021)). Their nominal viscosities are
shown in Table 1. The other parameters are shown in Table 2. We further assumed that the
natural frequency shift due to the fluid could be neglected because the bending stiffness of
the cantilever was sufficiently higher than that added by the measured fluid.

https://www.jisc.go.jp/app/jis/general/GnrJISSearch.html
https://www.jisc.go.jp/app/jis/general/GnrJISSearch.html
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Figure 6. Experimental setup. (a) Signal flow for producing the self-excited oscillation. (b) Photo-
graph of the sensorless viscometer system.

Table 1. Nominal properties of the sample fluids. The accuracies for JS2.5 and JS5 comply with
Japanese Industrial Standard (JIS) Z 8809.

Sample Label JS5 JS2.5 Water

density ρ [kg/m3] 8.130 × 102 7.728 × 102 1 × 103

viscosity η [mPa s] 4.067 1.936 1

Table 2. Parameter values of the viscometer system.

Symbol Value Unit

ψ 3.27 × 10−3 N/V
m 4 × 10−2 kg
ω0 10.5 rad/s
Cp 1.86× 10−7 F

First, in Figure 7a,b, we compare with a conventional method by showing the fre-
quency response under the external harmonic excitation, which was measured with the
displacement sensor for each condition. The black circles show the frequency response
curve of the resonator itself, i.e., the cantilever with the piezoelectric device, which is
labeled “air.” The green, red, and blue markers show the frequency response curves for
water, JS2.5, and JS5, respectively. While the Q-value of the resonator itself is much greater
than those of the three samples, the Q-values of the three samples do not seem different
from each other. The viscosities of these three sample fluids are almost the same and
cannot be determined from the frequency response curves under external excitation in the
conventional method.
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Figure 7. Frequency response curves under external harmonic excitation measured with the laser
displacement sensor: (a) overall view; (b) magnified view. The black markers show the characteristic
of the resonator itself. The green, red, and blue markers show the characteristics when the thin disk is
immersed in the water and sample fluids with viscosities of 1.94 mPa s and 4.06 mPa s, respectively.

3.2. Viscosity Measurement via the Proposed Method

The experimental procedure consisted of three steps. The first step was producing the
sensorless self-excited oscillation. This step was setting the feedback gains so that the self-
excited oscillation occurred with a fixed cut-off frequency f f . The second step was varying
f f and seeking two Hopf bifurcation points. By detecting the response frequency while
varying f f , the Hopf bifurcation points can be easily found from the jumps up and down
in the response frequency if the bi-unstable range exists. The third step was calculating
the magnitude of the bi-unstable range, which is the difference in values of f f for the two
Hopf bifurcation points (the hysteresis width). We carried out these measurements using
two fixedPD (proportional-derivative) feedback controllers (Case A and Case B), whose
parameters are shown in Table 3.

Table 3. Experimental conditions.

Condition Label Case A Case B

Proportional gain α [A/V] −4.46 × 10−8 −4.46 × 10−8

Derivative gain β [A/Vs] 1.47 × 10−7 1.25 × 10−7

Figure 8 shows the experimental plot of the response frequency with varying cut-off
frequency f f corresponding to Figure 5b. Figure 8a,c show the response frequencies for
cases A and B, respectively, and (b) and (d) show the magnified views of the dashed squares
in (a) and (c), respectively. The black, blue, red, and green markers show the responses of
the thin rigid disk when it is immersed in air, JS5, JS2.5, and water, respectively, and the
colored markers denote the jump points at the Hopf bifurcations. The lower and upper
branches in both results of Figure 8 (cases A and B) are experimentally detected from the
cut-off frequency f f . As for the theoretical response in Figure 5b, the bi-unstable ranges
exist in the region between the colored markers. The theoretical result shows that both
modes can be destabilized simultaneously, but the experimental results do not show such a
destabilization. It is ensured in the experiments that one of the self-excited oscillations even
in the bi-unstable range is excited and hysteresis is produced. The theoretical prediction
that the two modes are not simultaneously destabilized requires nonlinear stability analysis
that is left for future work. In both cases A and B, the magnitude of the bi-unstable range
(the hysteresis width) monotonically shrinks with increasing viscosity of the immersed
fluid. This characteristic is shown in Figure 5a.

Next, Figure 9 shows the experimentally obtained bi-unstable ranges depending on
the kinematic viscosity ρ× η, where the red and blue markers are the results for cases A
and B, respectively, and the dashed lines denote their linear fits. This bi-unstable range
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directly depends on the damping ratio γ, not viscosity η. However, the measurement
of the damping ratio γ corresponds to that of the kinematic viscosity ρ× η because the
damping ratio γ is a function of the kinematic viscosity ρ× η under the condition that
the response frequency of the vibrational viscometer is approximately constant as in the
present experiments: Figure 8 (for detail, see Appendix A). Accurate estimation of density ρ
is much easier because static measurement methods can be used as a pycnometer based on
Archimedes’ principle [34]. For these reasons, the proposed measurement method based
on the bi-instability can be regarded as a measurement for viscosity. Because this plot
also agrees well with the theoretical result in Figure 5a, it is fair to say that the proposed
sensorless viscometer measures the viscosity.
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Figure 8. Response frequency under the sweep of the control parameter δ f f . (a–d) show the responses
for Case A and Case B, respectively. (b,d) are the magnified views of (a,c), respectively. The black,
blue, red, and green markers show the response frequency when the disk is not immersed in fluid,
is immersed in JS5, JS2.5, and water, respectively. For all conditions, the response frequencies are
divided into upper and lower branches. The response frequencies on the lower branch increase
continuously with increasing cut-off frequency f f and jump up to the upper branch at each Hopf
bifurcation point depending on the viscosity, which is denoted by colored makers. Those on the
upper branch decrease continuously with decreasing cut-off frequency f f and jump down to the
lower branch at the other Hopf bifurcation point depending on the viscosity of the sample fluid,
which is denoted by colored markers.
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Figure 9. Relationship between the width of the bi-unstable range and added kinematic viscosity
ρ × η. The red and blue markers denote the magnitude of the bi-unstable range obtained from
Figure 8. The dashed lines are their linear fits. Both monotonically decrease with increasing measured
kinematic viscosity. The gradient of Case B is greater than that of Case A.

3.3. Evaluation and Discussion

Finally, we examine the sensitivity of the experimental results. The experimental
results in Figure 9 show the characteristic of the bi-unstable range (the hysteresis width)
depending on the viscosity of the fluid in which the disk at the tip of the cantilever is
immersed. This is enough to confirm whether the proposed principle works as a sensor, but
Figure 9 is not suitable for validation because the result is affected by the viscosity owing
to the cantilever itself and the magnitude of the natural frequency. Because the proposed
method is constructed using the dimensionless Equations (8) and (9), the experimental
results need to be nondimensionalized to verify their sensitivity fairly. To derive the
dimensionless results, we estimate the damping ratio from preliminary experiments that
measured the free decay response of the cantilever using the laser displacement sensor.
Figure 10 shows the nondimensionalized experimental results. The horizontal and vertical
axes are the estimated damping ratio and the dimensionless cut-off frequency of the filter
(2π f f /ω0 in Figure 9), respectively.
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Figure 10. Nondimensionalized experimental results of Figure 9: (a) overall view; (b) magnified view.
The horizontal and vertical axes show the damping ratio estimated from the preliminary experiments
and the dimensionless cut-off frequency, respectively. The dimensionless cut-off frequency is the
cut-off frequency divided by the natural frequency of the cantilever. The dashed lines in (b) are the
linear fits of the markers.

First, we validate the sensitivity by comparing the experimental results of the proposed
method with those of the previous method, which uses self-excited oscillation with a
sensor [20,21]. The previous viscometer, based on feedback control with a displacement
sensor, determines the viscosity from the critical feedback control parameter that exactly
cancels the viscosity [20,21]. The measured feedback control parameter is proportional
to the viscosity with a proportionality ratio of 1. In contrast, the dimensionless control
parameter δ f f in the proposed method is approximately proportional to the viscosity with
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a proportionality ratio greater than 1 as shown in Figure 10b. In particular, the ratio in the
result for Case B, which is denoted by blue, is approximately 117 because its linear fit is
δ f f = −117.2γ + 9.59.

The proposed method needs only to detect the jump points, which are indicated in
Figures 5b and 8, unlike other methods that use frequency analysis or phase detection.
This method makes measurement easier in two ways: no displacement sensors are used,
and no complicated analysis such as phase detection or highly accurate FFT is needed.
Although there is a limitation due to the condition for the bi-unstable range as stated in
Section 2.3, the proposed viscometer based on sensorless self-excited oscillation provides
highly sensitive and easy viscosity measurement.

4. Conclusions

In this study, we have realized a sensorless viscometer by producing self-excited
oscillation based on the interaction between the mechanical dynamics of a cantilever
and the electrical dynamics of a circuit including a piezoelectric device. To enhance the
sensitivity and ease of viscosity measurement, we proposed measurement based on bi-
instability and on the jump occurring at the endpoints while the cut-off frequency is
varied. The efficiency of the proposed method was demonstrated via practical viscosity
measurements using a macro-scale cantilever with a bimorphic piezoelectric device. We
measured the viscosity according to the theoretically proposed method of detecting the filter
gains occurring at jumps in the response frequency. The results show the sensitivity of the
proposed method is higher than that of the previous feedback method with a displacement
sensor. Although the proposed method is limited to the measurement in the bi-unstable
region, the magnitude of the region can be changed by the setting of the feedback gains.
The proposed method features its high-usability, i.e., the proposed method does not require
any detection and complex analysis of the response displacement or velocity.

Author Contributions: Conceptualization, H.Y., Y.Y. and S.M.; methodology, S.U. and H.Y.; Software,
S.U.; validation, S.U. and H.Y.; formal analysis, S.U.; investigation, S.U. and H.Y.; resources, H.Y.; data
curation, S.U. and H.Y.; writing—original draft preparation, S.U.; writing—review and editing, H.Y.;
visualization, S.U. and H.Y.; supervision, H.Y.; project administration, H.Y., Y.Y. and S.M.; funding
acquisition, H.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a Grant-in-Aid for Scientific Research B (Grant No. 16H02318)
from the Japan Society for the Promotion of Science (JSPS).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

We show the characteristic between the damping ratio γ and measured viscosity η.
The damping ratio γ is expressed as

γ = cγ
√

ρ η, (A1)

where the coefficient cγ is derived from the first mode function of the cantilever Φ1 and
the area of the oscillating disk immersed in the sample fluid [21,30]. On the other hand,
an experimentally obtained relationship between the damping ratio γ and the kinematic
viscosity ρ× η is shown in Figure A1. Figure A1 qualitatively agrees with Equation (A1):
the reason why the intercept is not zero is that the damping of the cantilever itself is not
considered in Equation (A1).
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