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Abstract: Sign language is the most important way of communication for hearing-impaired people. 

Research on sign language recognition can help normal people understand sign language. We re-

viewed the classic methods of sign language recognition, and the recognition accuracy is not high 

enough because of redundant information, human finger occlusion, motion blurring, the diversified 

signing styles of different people, and so on. To overcome these shortcomings, we propose a multi-

scale and dual sign language recognition Network (SLR-Net) based on a graph convolutional net-

work (GCN). The original input data was RGB videos. We first extracted the skeleton data from 

them and then used the skeleton data for sign language recognition. SLR-Net is mainly composed 

of three sub-modules: multi-scale attention network (MSA), multi-scale spatiotemporal attention 

network (MSSTA) and attention enhanced temporal convolution network (ATCN). MSA allows the 

GCN to learn the dependencies between long-distance vertices; MSSTA can directly learn the spa-

tiotemporal features; ATCN allows the GCN network to better learn the long temporal dependen-

cies. The three different attention mechanisms, multi-scale attention mechanism, spatiotemporal at-

tention mechanism, and temporal attention mechanism, are proposed to further improve the ro-

bustness and accuracy. Besides, a keyframe extraction algorithm is proposed, which can greatly 

improve efficiency by sacrificing a little accuracy. Experimental results showed that our method can 

reach 98.08% accuracy rate in the CSL-500 dataset with a 500-word vocabulary. Even on the chal-

lenging dataset DEVISIGN-L with a 2000-word vocabulary, it also reached a 64.57% accuracy rate, 

outperforming other state-of-the-art sign language recognition methods. 

Keywords: sign language recognition; GCN; attention mechanism; keyframes extraction; large-vo-

cabulary 

 

1. Introduction 

Sign language is the most important way of communication between hearing-im-

paired people. It plays an irreplaceable role in the hearing-impaired community, but most 

normal people cannot understand it. Therefore, research on automatic sign language 

recognition algorithms will help build a bridge of communication between hearing-im-

paired people and others, which will greatly facilitate the life of hearing-impaired people. 

Sign language mainly conveys semantic information through hand shapes, motion trajec-

tory, facial expressions, lip movements, and eye contact, etc. It is usually composed of one 

or more gestures, movements, and transitions between them. A slight change in one of 

these components may lead to another completely different meaning. 

According to different data modalities, sign language recognition can be divided into 

sensor-based and vision-based methods. Some researchers use sensors such as EMU, data 

gloves or IMUs to recognize sign language. Zhang et al. [1] combined 3-axis accelerometer 

signals and the 5-channel EMG signal on the user’s hand to recognize 72 sign language 

words with 93.1% accuracy. The sensor-based methods have fast recognition speed and 
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high accuracy, but it is inconvenient for signers to wear sensors for the following reasons: 

(1) the users have to take the electronic devices with them, which could be a burden for 

people; (2) all the portable electronic devices need batteries that have to be charged fre-

quently; (3) signals from the wearable devices can only be processed by the specific equip-

ment instead of commonly used cameras. In contrast, vision-based methods have the ad-

vantages of low cost and convenience, and the users do not have to take anything with 

them, just need to “say” the words in front of a common cameras, and the others can 

understand what they’re expressing. For example, setting up vision-based sign language 

translators at ticket counters and bank counters could greatly facilitate the daily life of 

hearing-impaired people. Therefore, vision-based methods have become the main re-

search direction of sign language recognition. However, there are still several problems 

in vision-based sign language recognition: 

 low recognition efficiency caused by too much redundant information. 

 poor recognition accuracy caused by finger occlusion and motion blurring. 

 poor generalization of algorithms caused by differences in signing style between sign 

language speakers. 

 small recognizable vocabulary caused by the existence of similar words in large vo-

cabulary datasets. 

In this work, we propose an attention-enhanced multi-scale and dual Sign Language 

Recognition Network based on Graph Convolution Network (GCN), which is capable if 

matching the performance of the state-of-the-art on two large Chinese sign language da-

tasets. A large body of work has been proposed for sign language recognition (SLR) [2,3]. 

Before 2016, the traditional sign language recognition technology based on vision has been 

studied extensively, see [4] for details. Traditional sign language recognition methods are 

complex to implement, and can only recognize limited vocabularies, which cannot fully 

express human’s intelligent understanding of sign language. In recent years, deep learn-

ing technology has greatly exceeded the performance of manual features in many com-

puter vision tasks and therefore has become a new method for sign language recognition. 

Many vision-based methods have used video RGB data for sign language vocabulary 

recognition. Vincent et al. [5] combined a Convolutional Neural Network (CNN) and a 

Long Short-Term Memory Network (LSTM) for the recognition of American Sign Lan-

guage words, and used data enhancement techniques such as scaling and smoothing to 

improve the generalization of the network. Huang et al. [6] proposed a 3D-CNN network 

based on spatiotemporal attention mechanism for large vocabulary sign language recog-

nition. 

Some research works have used depth images, skeleton data, optical flow, and other 

different modal data for identification. Duan et al. [7] combined RGB data, depth images, 

and optical flow to recognize isolated gestures. They provided a convolutional two-

stream consensus voting network (2SCVN) to explicitly model the short-term and long-

term structure of the RGB sequences. To reduce the interference of complex backgrounds, 

a 3d depth-saliency convolution network (3DDSN) is used in parallel to extract motion 

features. The two networks, 2SCVN and 3DDSN, have been integrated into a framework 

to improve recognition accuracy. Huang et al. [8] proposed a deep sign language recogni-

tion model using a 3D CNN from multi-modal input (including RGB, depth, and skeleton 

data) to improve recognition accuracy. They verified the model’s effectiveness on their 

dataset and reported a recognition accuracy of 94.2%. 

Recognition algorithms based on multi-modal data can extract various features of 

different modal data, and while improving accuracy, they also greatly increase the com-

putational complexity. With the development of human pose estimation technology, we 

can extract the skeleton data of the body and hands from a single RGB frame [9,10]. Com-

pared with other modal sign language data, skeleton data reduces a lot of redundant in-

formation and is more robust to lighting and scene changes. 
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In sign language recognition, there have been two methods to extract skeleton data 

features in the past. One is to map the skeleton data to the image and use a CNN for 

processing. For example, Devineau et al. [11] proposed a CNN algorithm based on hand 

skeleton data for the recognition of three-dimensional dynamic gestures, using parallel 

convolution to process the position sequence of hand joints, and achieved high recogni-

tion accuracy. The other method is to use the Recurrent Neural Network (RNN) to recog-

nize the skeleton data. For instance, Konstantinidis et al. [12] used the multi-stream LSTM 

algorithm to recognize an Argentine sign language dataset (LSA64). However, neither 

RNNs nor CNNs can fully represent the structure of skeleton data, because skeleton data 

is natural graph data, not sequences data or European data. Yan et al. [13] first applied a 

graph convolution network (GCN) to model skeletal data for the field of action recogni-

tion. The model they developed which aims to use body skeleton data to recognize some 

daily actions like sit up, bowing, etc., is named ST-GCN. After that, various GCN algo-

rithms for action recognition have been proposed. Shi et al. [14] proposed an adaptive 

algorithm to construct graph data, and alternately used spatial convolution and temporal 

convolution to learn spatial and temporal features. Liu et al. [15] proposed the MS-G3D 

network to learn different levels of semantic information by using multiple parallel GCN 

networks, which inspired us. Si et al. [16] used GCN to learn the spatial features of each 

frame separately and then used LSTM to learn the temporal features to recognize actions. 

Although these algorithms have achieved great success in the field of action recognition, 

there are still many demerits in applying them to the task of sign language recognition: 

(1) The graph structure is fixed and is constructed through the natural connection of 

human bones, which may not be suitable for SLR. For example, in many sign language 

vocabularies, the relationship between the left and right fingers is significant, but in nat-

ural connection, their distances are too long to allow GCN to learn the dependencies be-

tween the joints over such long distances. (2) The above methods learned spatial and tem-

poral features separately, so that the complex spatiotemporal features in sign language 

cannot be learned. (3) Due to the phenomenon of figure occlusion, some hand joints are 

difficult to accurately identify, and these occluded joints are not so important for recog-

nizing this word. If they are treated equally, this can easily cause misjudgments. (4) The 

temporal dependences of sign language are longer than that of actions. This includes sign 

language actions and transition actions. The former are the key to recognition, while tran-

sition actions are interference. The above algorithms treat sign language movements and 

transition movements equally. Moreover, there are motion blur frames in sign language 

videos, which makes it difficult to accurately extract the joint points of this frame, which 

seriously affects the subsequent recognition accuracy. 

To address these shortcomings, we proposed our method based on the following hy-

potheses: (1) a human’s head, arms and hands can clearly express the sign language in-

formation, which can be analyzed and processed using mathematical graph theory; (2) it 

is better to use spatiotemporal features from the video frames than spatial or temporal 

features separately; (3) although there are a lot of frames in the sign language video, we 

believe that not all the frames play the same roles, and attention mechanism and key 

frames technique can improve the accuracy and speed of the algorithm. 

In this work, we first extracted the skeleton data of the body, hands, and part of the 

face from the RGB images based on the works of [9,10]. The original skeleton data is nor-

malized to eliminate the differences in height and body shape of different sign language 

speakers. We applied the GCN algorithm to sign language recognition tasks for the first 

time and proposed a multi-scale attention network (MSA) to learn the long-distance de-

pendencies, which can model the dependencies between remote vertices without consid-

ering the distance. We also proposed a multi-scale spatiotemporal attention network 

(MSSTA) to learn the complex spatiotemporal dependencies in sign language. Aiming at 

the problem of long-temporal dependencies in sign language and inaccurate recognition 

of motion blur frame joints, we proposed an attention enhanced temporal convolutional 

network, which can automatically assign different weights to different frames, thereby 
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improving the recognition accuracy. For example, blurry motion frames are often not 

helpful for vocabulary recognition, so under the action of temporal attention, the weight 

of the blurred frame should be minimal, thereby improving the robustness of the algo-

rithm. Finally, two-stream network integration of joints and bone data is used to improve 

performance. Besides, we also proposed a keyframe detection algorithm, which can sig-

nificantly improve the practice of the algorithm while maintaining high recognition accu-

racy. 

In summary, the main contributions of our work are: (1) Estimate the skeleton data 

of the body, hands, and part of the face from the RGB data, and mormalize the original 

skeleton data to eliminate the differences in height and body shape caused by different 

sign speakers. (2) We used the GCN algorithm to isolate sign language recognition for the 

first time, which provides a new idea for sign language recognition. We designed the SLR-

Net network, which allows the GCN network to directly learn the spatiotemporal features 

and the dependencies between long-distance vertices. (3) We proposed three attention 

mechanisms based on SLR-Net to further improve the robustness and accuracy of the al-

gorithm. (4) We proposed a keyframe extraction algorithm, which can greatly improve 

recognition efficiency while maintaining high recognition accuracy. (5) We conducted a 

lot of experiments on two large-vocabulary public sign language datasets and reached 

state of the art. 

2. Related Work 

2.1. Sign Language Recognition Based on CNN 

Due to the basic status of convolutional neural networks (CNN) in deep learning net-

works, some research teams have conducted a series of CNN-based isolated sign language 

recognition studies since 2013 [6,17–25]. Based on CNN recognition, the algorithm can be 

optimized by adding multi-modal data (including depth, skeleton, key points of the hu-

man body, etc.), detecting hand regions, and feature fusion. Literature [26–29] proposed 

a sign language recognition CNN network based on multi-modal data, which can use 

multi-scale to capture image features at various levels. Kopuklu et al. [28] proposed a 

data-level fusion strategy for fusing motion information into static images, and sent the 

fused spatiotemporal features to the CNN network for subsequent classification, and 

achieved commendable recognition. 

The hands’ area is undoubtedly the most important areas in sign language recogni-

tion. Therefore, some research works use detection or tracking algorithms to extract the 

hand’s areas. Kim et al. [30,31] used the target detection network to find the hands’ area 

and combined the original sign language data to feed the CNN network, which improved 

the accuracy and reduced the training time by half. Although traditional 2D CNN has 

strong feature extraction capabilities, it is not very suitable for the input of multi-frame 

image data. Sign language recognition also needs to adopt some methods that can extract 

the correlation between frames, so researchers used 3D Convolutional Neural Network 

(3DCNN) to achieve more global recognition, which can learn spatiotemporal features 

and capture motion information. Liang et al. [32] proposed a sign language recognition 

algorithm based on multi-modal data and 3D-CNN network and verified its effectiveness 

on a large-scale dataset. 

Some researchers map skeleton data into pseudo-images and use CNN algorithms 

for recognition. Kumar et al. [33] identified the 3D joint coordinates of the human body 

and hands from the RGB image, then encoding joint angular displacement maps (JADMs) 

into color texture images for use in CNN-based recognition. 

2.2. Sign Language Recognition Based on RNN 

Compared with the network architecture described above, a Recurrent Neural Net-

work (RNN) is a type of network suitable for processing sequence data, which is better at 
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capturing long-term contextual semantic information. Therefore, in recent years, many 

works on sign language recognition based on RNN have emerged. 

Huang et al. [34] proposed an RNN-based sign language recognition algorithm, 

which embedded the keyframe algorithm into the RNN network, which allowed different 

levels of attention to the input frame and achieved remarkable recognition results. Liao et 

al. [35] proposed a sign language recognition framework based on the BLSTM network in 

2019. First, they use the detection network to extract the hand region, then input the hand 

region and the original RGB data into LSTM, to achieve dynamic long-temporal sequence 

feature modeling, and finally output the classification results. Yang et al. [36] proposed a 

method of combining CNN with LSTM, where they used RGB and optical flow data as 

two inputs and fused them at the full connection layer to output classification results. It is 

evaluated on the constructed small-scale sign language dataset they constructed and 

meets the real-time requirements of a small-scale sign language recognition system. Kon-

stantinidis et al. [12] used LSTM to model skeleton data to recognize sign language words 

and finally used 8-stream network fusion in the softmax layer to improve accuracy. 

2.3. Graph Convolution Network for Action Recognition 

In sign language recognition, the skeleton data of the body and hands are sufficient 

to represent most sign language words. Some works used a method like CNN or RNN to 

model skeleton data, which is inefficient. Skeleton data is natural graph data, which is 

very suitable for modeling with GCN algorithm. Gori et al. [37] first proposed the graph 

neural network (GNN), which is more suitable for dealing with non-Euclidean data. The 

vertices of the graph represent the object information, and the edges represent the rela-

tionship between the nodes. 

Inspired by the great success of the convolution network, Bruna et al. [38–40] created 

the GCN algorithm, which extends the graph data to the frequency domain for convolu-

tion operation. Yan et al. [13] designed the ST-GCN network, first applied the GCN algo-

rithm in the field of action recognition, and achieved great success on the NTU dataset 

and the kinects dataset, providing a new direction for the field of action recognition. Shi 

et al. [14] designed the 2S-AGCN algorithm based on the work of [13]. The main contri-

bution is the design of an adaptive graph convolution algorithm and the fusion of two-

stream GCN. Plizzari et al. [41] used the idea of word embedding algorithms to remap the 

input skeleton data. They designed a spatial attention module SSA and temporal attention 

module TSA to improve accuracy. Cheng et al. [42] introduced a lightweight shift opera-

tion into the GCN algorithm. They proposed a spatial shift operation and a temporal shift 

operation, which improved GCN’s operating efficiency and can automatically adjust the 

receptive field. Its performance is better than that of the conventional model. 

Although some GCN-based action recognition algorithms have achieved great suc-

cess, there is still a significant gap in their application to sign language recognition. Due 

to the inaccurate recognition of hand joints and the longer spatial and temporal depend-

encies of sign language, it is necessary for the algorithm to have good robustness and 

extract complex spatiotemporal dependencies. 

3. Method 

3.1. Preliminaries 

3.1.1. Construction of Graph Data 

We first extracted the 2D skeleton data from the RGB frames. The skeleton data can 

be regard as � ∈ ℝ�×�×�, where � is the number of joints in each frame, � is the number 

of channels, which corresponds to the dimension of each joint, � is the number of frames. 

As shown in Figure 1, the t-th frame skeleton data is �� ∈ ��×�. We constructed graph 

data � = (�, �) from �� , where � = (��, �� ⋯ ��) is the set of vertices, �  is the set of 

edges which connect any two vertices in the graph. We set the human joints as the vertices 

and the bones as the edges to construct the graph from the skeleton. 
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(b) 

Vertices

Edge
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Figure 1. (a) The t-th RGB frame; (b) The skeleton data extracted from RGB frame; (c) schematic diagram of graph data. 

Because the joint points we extracted are 2-dimensional(2D) coordinates, the intial � 

is 2. ε represents the connection between � vertices, which can be expressed by the ad-

jacency matrix of � ⊆ ℝ�×�. In addition, � is a symmetric matrix, because the graph we 

formed is undirected: 

��,� = �
1, �� ����, ��� = 1

0, ��ℎ������            
 (1)

where ����, ��� gives the minimum number of human bones between �� and ��. 

3.1.2. Graph Convolutional Networks 

For an action data � ∈ ℝ�×�×�, the traditional method [13] alternately used spatial 

convolution and temporal convolution to extract features. In the spatial convolution, each 

frame of data �� ∈ ℝ�×� is processed separately, which can be described by the following 

equation: 

X���� = �(���
�
������

�
������) 

�� = � + � 

(2)

where A represented the adjacency matrix of the undirected graph representing intrabody 

connections, which is defined by (1). � represented the identity matrix and W represented 

a trainable weight matrix of network. �� represented the diagonal degree matrix of ��, 

and σ(·) represented a ReLU activation function. Then the input of temporal convolution 

network (TCN) is ����� ∈ ℝ�×�×�, TCN could be designed as a 2D convolutional network: 

� and � are the convolution scope. We set the kernel as �� × 1, where �� is the number 

of frames in the accepted field. This means that the temporal convolution operation is only 

performed in the temporal domain. 

3.2. Overview 

In this section, we will first introduce the overall structure of our proposed method, 

as shown in Figure 2. Sign language recognition work is divided into two parts: data prep-

aration and sign language recognition network (SLR-Net). The data preparation part can 

convert the input RGB videos into skeleton data. The keyframes extraction part is optional 

and suitable for occasions that require high recognition speed. In the part of SLR-Net, we 

designed a dual-path feature extraction network, the one path uses MSA to extract multi-

scale features and then uses ATCN to extract temporal features. The other path uses 

MSSTA to learn spatiotemporal features directly. Finally, the global average pooling and 

fully connected layer are used to obtain the classification results. 
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Figure 2. The overview of our proposed method. “⊕” means add operation. 

3.3. MSA: Multi-Scale Attention GCN 

The above GCN algorithm is inefficient in modeling dependencies between remote 

vertices. In sign language recognition tasks, the distance of joints is usually longer than 

that of actions, so we proposed multi-scale attention GCN, and named it as MSA. MSA 

consists of two parts, as shown in Figure 3: one is multi-scale GCN(MS-GCN), which ex-

tracts features of different levels; the other is multi-scale attention mechanism (MS-ATT), 

which assigns attention weights to different scales. 

 

Figure 3. The structure of MSA. (a) The structure of MS-GCN, which uses k parallel GCNs to ex-

tract features of different levels and concatenate them on the channel layer; (b) The structure of 
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MS-ATT, fist perform global average pooling(GAP) on �� and turn its dimension into 
(�C��� × 1 × 1). AMP means the attention map, which contains attention information of different 

scales “⊕” means add operation, “⊗” means matrix dot product operation. 

3.3.1. MS-GCN: Multi-Scale GCN 

The input of MS-GCN is ����ℝ���×�×�, which is reshaped by moving T into the chan-

nel dimension, so that we can use the Equation (3) to perform GCN operations: 

�� = �(��
(�)

�
�
���(�)��

(�)

�
�
�����(�)) 

��(�) = �(�) + � 

(3)

where �(�) is a trainable weight matrix, �(�) is the k-adjacency matrix: 

�(�)�,� = �
1, �� ����, ��� = �

0, ��ℎ������            
 (4)

�(�) can extend � to more distant neighbors. In particular, �(�) = �. And � con-

trols the number of scales to aggregate. We modify the graph structure by setting a differ-

ent scale � and perform parallel GCN operations to extract different levels of semantic 

information. Then concatenate the k outputs of parallel GCNs into �′�ℝ�����×�×�. The 

larger the � is, the easier it is for the GCN to learn the dependencies between remote 

vertices. 

3.3.2. MS-ATT: Multi-Scale Attention Mechanism 

In the MS-GCN, graphs of different scales can learn features of different levels, which 

alleviates the problem that ordinary GCN is difficult to model the relationship between 

remote vertices. However, MS-GCN simply stacks the extracted features together. In the 

isolate sign language recognition task, some word needs to model the long-distance ver-

tices relationship. For example, the “person” in Chinese sign language is expressed by the 

touch of the left and right fingers. There are also some words that pay more attention to 

the closer vertices. For instance, the Chinese sign language “go out” is expressed by the 

left thumb and the little finger (Figure 4). Therefore, we proposed MS-ATT, which gives 

the network the ability to weight different scale features according to different sign lan-

guage words. 

 
(a) 

 
(b) 

Figure 4. (a) Chinese sign language word “person”; (b) Chinese sign language word “go out”. 

In the multi-scale aggregation scheme, graphs of different scales can learn features of 

different distance levels, which alleviates the problem that ordinary GCN is difficult to 

model the relationship between remote vertices. However, in sign language vocabulary 
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recognition, different vocabulary needs different scale graphs. Therefore, we proposed 

MS-ATT, which gives the network the ability to weight different features according to 

different sign language vocabularies. 

The input of MS-ATT is �′�ℝ�����×�×� , which is the output of MS-GCN. First, �′ 

is averaged in spatial dimension � and temporal dimension �, get ��ℝ�×����×�×�. Then 

add FC1 fully connection layer to extract the attention information about the multi-scale 

semantic features, the number of neurons in this layer is � × ����/�, (� > 1). And then 

use the FC2 fully connection layer to restore the features to the original dimension of 

� × ����, and then copy it on the dimensions � and � to get the attention map (AMP). 

Attention map and �′ are dotted to add attention information to the feature. Among 

them, � is an adjustable parameter, and we empirically set it to 2. The multi-scale atten-

tion mechanism can be described by the following equation: 

X��� = �� + �� ⊗ AMP (5)

where “⊗” means matrix dot product operation. 

3.4. ATCN: Attention Enhanced Temporal Convolutional Network 

Sign language actions are usually composed of several different key actions and their 

transitions. Therefore, sign language lasts a long time and have different importance at 

different times. Frames containing more discriminative information should get more at-

tention. Therefore, we design attention enhanced temporal convolution network (ATCN), 

which can pay more attention to the key actions in the sign language rather than the tran-

sition actions between key actions. (Figure 5). 

 

Figure 5. The structure of MSA. AMP means the attention map, which contains attention infor-

mation of different time. 

After MSA extracts multi-scale semantic features, we use the ATCN network to fur-

ther extract temporal features. It is composed of a temporal convolutional network (TCN) 

and a temporal attention mechanism (T-ATT). TCN follows the design of [14]. We send 

the TCN’s output �� to the T-ATT. We first perform a global average pooling operation 

to average the � dimension, and get a feature matrix with dimension of � × �, moving 

T to the batch dimension, and then perform a 1D convolution, the dimension of output is 
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� × 1, after the sigmoid function is activated, copy it in the V dimension and the ���� 

dimension to get the attention map. The dimension of attention map is ���� × V × T. ���� 

is calculated as in Equation (5). 

3.5. MSSTA: Multi-Scale Spatiotemporal Attention Network 

Many existing methods divide spatiotemporal features into temporal features and 

spatial features to extract separately, which separates the inherent connection of time and 

space. To solve this problem, we proposed a multi-scale spatiotemporal attention network 

(MSSTA) to learn spatiotemporal features directly (Figure 6). 

 

Figure 6. The structure of MSSTA. (a) The structure of MSST-GCN, which uses k parallel GCNs to 

extract features of different levels and concatenate them on the channel layer; (b) The structure of 

ST-ATT, GAP means global average pooling, which turns the dimension of ����(�) into 

�C��� × τV. AMP means the attention map. 

3.5.1. MSST-GCN: Multi-Scale Spatiotemporal GCN 

First, we set a time sliding window, a window includes � frames, which could be 

viewed as a spatiotemporal subgraph �(�) = ��(�), �(�)�, where �(�) = (��, �� ⋯ ���). �(�) 

is the union of all vertices sets across τ frames in the window. The edge set �(�) is defined 

by tiling �� into a block adjacency matrix ��(�) (Equation (6)): 

��(�)=�
�� ⋯ ��

⋮ ⋱ ⋮
�� ⋯ ��

� ����×�� (6)

This means that the j-th vertex of the i-th vertex subset �� will be connected to the 

adjacent vertices in the one-hop neighbor in ��, and will also be connected to all the j-th 

vertices and its one-hop neighboring nodes in the other � − 1 vertices subsets. Then the 

input become ���(�) ∈ ℝ�×��×�. We can get the multi-scale spatiotemporal GCN as Equa-

tion (7): 
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�(�)
� = �(��(�,�)

�
�
� ��(�,�)��(�,�)

�
�
� �(�)�(�)) 

��(�,�)=�

A�(�) ⋯ A�(�)

⋮ ⋱ ⋮
A�(�) ⋯ A�(�)

� ����×�� 

(7)

where ��(�,�) is the diagonal degree matrix of ��(�,�). 

3.5.2. ST-ATT: Spatiotemporal Attention Mechanism 

The MSST-ATT network can directly learn spatiotemporal features. However, in sign 

language recognition, the importance of joints varies for different actions and times; and 

some hand joints output by PoseNet are inaccurate because of the finger occlusion prob-

lem. These inaccurate joints are often of little significance for understanding the semantics 

of words. Therefore, we combined multi-scale GCN to propose a multi-scale 3D spatio-

temporal attention mechanism, which allows the algorithm to pay more attention to im-

portant joint points and reduces the influence of inaccurate hand joint points on the final 

word recognition result. 

3.6. Two-Stream SLR-Net 

Inspired by the two-stream network [14], we applied the same strategy to SLR-Net, 

as shown in Figure 7. Specifically, the input of the first-stream is the joints data, and the 

input of the other-stream is the bones data between the joints. The scores output by the 

two-stream networks is added as a new score to recognize sign language words. The joints 

data is extracted by PoseNet, and the bone data can be calculated from the joint point data. 

For example, one joint coordinates are �� = (��, ��), another joint coordinates are ��  = 

(��, ��), if there is a human bone between �� and ��, then the bone data can be expressed 

as ��,� = (�� − ��, �� − ��). Bones data can be regarded as high-level information of joints 

data. Joints data expresses position information clearly, while bone data pays more atten-

tion to length and direction information. Both of them have important roles in under-

standing sign language. Therefore, a two-stream fused network will effectively improve 

the recognition accuracy. 

 

Figure 7. The structure of two-stream fused SLR-Net (SLR-Net-J+B). 

3.7. Keyframes Extraction 

A sign language action consists of many frames, these frames can be divided into 

keyframes and transition frames, where keyframes include specific gestures and regular 

actions. If the keyframes can be extracted accurately, it will help to recognize sign lan-

guage efficiently. Video keyframes extraction methods include: Perceived Motion Energy 

Model [43], Visual frame Descriptors [44], Motion Attention Model [45], Multiple Visual 

Descriptor Features [46], Motion focusing [47], Camera Motion and Object Motion [48], 

Visual Attention Clues [49]. 

SLR-Net-J

SLR-Net-B Source

Source

Add Words
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We designed a keyframes extraction algorithm based on image entropy. First, we 

divided the video into n frames and grouped them into � categories, and used the inter-

frame difference method [50] to measure the similarity to obtain � − 1 difference values 

as shown in Figure 8. Then we find out the � − 1 local extremes of the difference se-

quence, and use these local extremes to aggregate n classes into � classes (� < �), the 

video frames in the same class are similar, and the frames between classes are not similar. 

If the definition of a picture in the class is greater than the threshold, select the frame with 

the largest image entropy in the class as keyframe, otherwise, the picture in this class is 

considered to be too fuzzy and unrepresentative, and select the keyframe from the next 

class. 

 

Figure 8. The output of Inter-frame difference method. The purple dots are the differences between two adjacent frames, 

and the green rectangle boxes are local extremes. The horizontal axis is the number of frames, and the vertical axis is the 

difference value between frames. 

In order to verify the rationality of using local maximum to segment the videos, we 

used paired T test to analyze if the two groups were significantly different. The difference 

values of local maximum were set as group 1 (green rectangle boxes in Figure 8), and that 

of the others were set as group 2 (the other purple dots in Figure 8). The statistical results 

were shown in Table 1, which indicated that the average score of group 1 was significantly 

higher than that of the group 2. 

Table 1. Paired T test. (Std. is an abbreviation of Standard. Df means degree of freedom. Sig. is an abbreviation of Signifi-

cant.). 

 

Paired Differences 

t df Sig. (2-Tailed) 
Mean Std. DeviationStd. Error Mean 

95% Confidence Interval of the 

Difference 

Lower Upper 

sample 1–sample 2 304,990.5000 192,013.19871 51,317.68595 194,125.37975 415,855.62025 5.943 13 0.000 

In order to avoid the problem of inaccurate recognition of joint points caused by 

blurred frames, the frames whose definition is less than the threshold should be removed. 

Considering that the definition of the image can be judged by its edge, and the gradient 
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of the image can well reflect the edge gray of the target object in the image (Equation (8)). 

The definition of the image definition based on the Tenengrad gradient function is as fol-

lows: 

�(�) = ����|�(�, �)| (8)

where �(�, �) is the convolution of the Laplacian operator at the pixel (x,y), and the La-

placian operator is: 

� =
1

6
�
1 4 1
4 −20 4
1 4 1

� (9)

The concept of information entropy was proposed by Shannon to measure the uncer-

tainty of information [51]. An image is a two-dimensional discrete signal and the amount 

of image information can be measured by information entropy, which can also be called 

image entropy. For a gray image I with a gray level of � (1 < � < 256)  and size of  � ´ �, 

use �(�, �) to represent the grayscale of the pixels in the image with coordinates (�, �) 

Value, the range of �(�, �) is 0, L − 1. Let �� be the number of gray levels i in the image, 

the probability of gray level i is: 

�� =
��

� × �
 , i = (0,1, … , � − 1)  (10)

The image entropy is: 

� = − � ��log (��)

���

���

 (11)

where �� ∈ (0,1),  ∑ �� = 1���
��� ; log represents a logarithm, and the base of derivation in 

information theory is 2. After filtering out the blur frames with image definition, the frame 

with the largest image entropy is selected as keyframe, and the final selected keyframes 

are as follows (Figure 9): 

 
4-6.476 

 
17-6.467 

 
32-6.466 

 
47-6.5137 

 
57-6.511 

 
61-6.511 

 
63-6.498 

 
69-6.481 

 
71-6.501 

 
77-6.536 

 
83-6.503 

 
87-6.457 

 
95-6.462 

 
102-6.511 

 
112-6.468 

Figure 9. Keyframes of Chinese Sign Language word “Heavy”. Below the picture are the frame number and the values of 

image entropy. For example, 4-6.476 means the frame number is 4, and the image entropy is 6.476. 

The algorithm in this paper needn’t set the cluster number, and the algorithm will 

automatically find keyframes. Using the keyframe extraction algorithm on CLS-500 da-

taset, we can reduce the number of frames from a maximum of 220 to a maximum of 40, 
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which greatly decreases the amount of calculation. At the same time, the keyframe extrac-

tion could be regarded as a re-sampling work, which alleviates the influence of different 

people’s inconsistent movement speed and blurred frames. 

3.8. Skeleton Data Normalization 

In sign language recognition, the motion trajectories of different sign language speak-

ers often vary due to the differences in height and body shape, which harms sign language 

recognition. To solve this problem, we proposed a normalization algorithm: firstly, se-

lected a benchmark sign language speaker, then translated and zoomed the joints data of 

other sign speakers until their neck joint position and shoulder width were the same as 

the benchmark sign language speaker (Figure 10). 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Skeleton data normalization example. (a) Benchmark sign language speaker; (b) Joints data before normaliza-

tion; (c) Joints data after normalization. 

4. Experiments 

4.1. Datasets 

4.1.1. CSL-500 

The Chinese Sign Language Dataset (CSL-500) contains 25,000 labeled video samples, 

taken by 50 operators, which has multiple modal data, including RGB, depth, and skeleton 

data. There are 500 words in the dataset, which contains 50 examples of each word and 21 

body joints coordinate sequences. Each video instance is marked by a professional Chi-

nese sign language teacher. The specific CSL500 dataset parameters are shown in Table 2. 

Table 2. Details of the CSL-500 dataset. 

RGB Resolution 1280 × 720 

Depth Resolution 512 × 424 

Number of joints 21 (only body) 

Fps 30 

Per video duration(s) 2–5 

Number of videos per word 50 

Vocabulary 500 

Total videos of samples 25,000 

4.1.2. DEVISIGN-L  

The DEVISIGN-L dataset contains 2000 Chinese sign language words, which is cur-

rently the largest Chinese sign language dataset with the largest vocabulary (Figure 11). 

The data was recorded by eight sign language speakers. For four of the speakers, the data 

of all vocabularies were recorded twice; for the other four speakers, the data was recorded 
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only once. The following table summarizes the details of DEVISIGN-L. The details of DE-

VISIGN-L are shown in Table 3. 

Table 3. Details of the DEVISIGN-L dataset. 

RGB Resolution 640 × 480 

Number of joints 21 (only body) 

Fps 30 

Per video duration(s) 2–5 

Number of videos per word 12 

Vocabulary 2000 

Total videos of samples 24000 

 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Example of DEVISIGN-L dataset. (a) RGB data; (b) depth image data; (c) Skeleton data. 

4.2. Evaluation Metrics 

Sign language vocabulary recognition can be regarded as a multi-classification task. 

In such tasks, the artificial neural network will output a probability vector. The dimension 

of the vector is the same as the number of categories, indicating the probability of classi-

fying the sample into each category (Figure 12). 

Sign Language 
Recognition Network

Happiness

Friends

Classmates

Friends Classmates Happiness

probability

words

Input Sign Language Words

 

Figure 12. The output of each sample is a probability vector. 

This work used top-1 accuracy and top-5 accuracy to evaluate the performance of the 

algorithm. Top-1 accuracy: Input a sign language word, and if the word with the highest 

probability output by the algorithm is consistent with the ground-truth, the word is con-

sidered to be correctly recognized. Top-5 accuracy: Input a sign language word, and if the 

top five words with the highest probability output by the algorithm contain the ground-

truth, the word recognition is correct. The calculation formula for accuracy is as follows 

(Equation (12)): 
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�������� =
������ �� ��������� ���������� �������

�ℎ� ����� ������ �� ������� �� �ℎ� ���� ���
 (12)

4.3. Implementation Details 

Although both of these two datasets provide skeleton data generated by the Kinect 

device, the joints data is only body parts, and the joint data of the hands are missing, which 

cannot be used for sign language recognition. This work used the RGB data in the CSL-

500 and DEVISIGN-L datasets to generate 2D skeleton data of hands, body, and part of 

the face, and then used the GCN algorithm for sign language recognition. All experiments 

are based on the PyTorch deep learning framework [52]. 

Each vocabulary of the CSL-500 dataset has fifty corresponding sign language videos. 

We randomly divide 90% of the data into the training set and use the remaining 10% as 

the test set. The dataset has a total of 25,000 videos, and we resized the number of frames 

of each video to 220. From each frame, we extracted 52 human joints, and there are 51 

human bones between them. In the model of SLR-Net-J, the number of vertices is 52 and 

the number of edges is 51. And in the model of SLR-Net-B, the number of vertices and 

edges are both 51. There are three bones data and four joints data for each finger. A total 

of 50 epochs were trained, the batch size was 12. The initial learning rate is set to 0.1, 

attenuates by a factor of 10 at the 30th and 40th epoch. When using the keyframe algo-

rithm, we set the maximum number of frames to 40, set the batch size to 80, and leave the 

remaining parameters unchanged. The entire network was trained end-to-end using Sto-

chastic Gradient Descent (SGD) with a momentum of 0.9. 

For the DEVISIGN-L dataset, its vocabulary size is 2000, but the sample size of each 

vocabulary is only 12. We use 75% of the data as the training set and 25% of the data as 

the test set. Three sign speakers were randomly selected from the four sign speakers who 

were only collected once, and the data of these three presenters were set as the test set. 

The dataset has a total of 24,000 videos, and we resized the number of frames of each video 

to 260. The other experimental details were the same as the CSL-500 dataset. 

 

4.4. Ablation Experiment 

To verify the effectiveness of the various modules we proposed, we conducted a large 

number of experiments on the two Chinese sign language datasets: CSL-500 and DEVIS-

IGN-L. We used ST-GCN [13] as our baseline, which was originally used for action recog-

nition, and we modified it to test the sign language dataset. 

4.4.1. Skeleton Data Normalization 

We used the baseline algorithm to test the normalization algorithm on the CSL-500 

dataset, and the experimental results were shown in Table 4: 

Table 4. Action recognition accuracies by baseline, tested on CSL-500 dataset. 

Method Top-1 Accuracy (%) Top-5 Accuracy (%) 

No normalize 93.8 99.56 

Normalized 94.4 99.64 

The experimental results showed the effectiveness of the normalization algorithm. In 

the following experiments, we used the normalized skeleton data for experiments. 
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4.4.2. Dual-Path Feature Extraction Network 

In the feature extraction part, we designed a dual-path network fusion structure, one 

of which was MSSTA, and the other was MSA + ATCN. From Table 5 we can see that the 

accuracy of MSSTA is slightly higher than MSA + ATCN, because MSSTA could directly 

learn spatiotemporal features. Finally, they were compared with the complete SLR-Net, 

and the experiment proved that the dual-path fusion could effectively improve the recog-

nition accuracy. 

Table 5. The experiment of dual-path feature extraction network, MSSTA is the one path of SLR-

Net and MSA + ATCN is another path. Tested on CSL-500 dataset. 

Method Top-1 Accuracy (%) Top-5 Accuracy (%) 

MSSTA 96.44 99.64 

MSA + ATCN 95.68 99.68 

SLR-Net 97.36 99.68 

4.4.3. Attention Mechanism 

In this section, we verified the validity of MS-ATT, ST-ATT, and T-ATT, respectively. 

As shown in Table 6, SLR-Net added the above three attention mechanisms, SLR-Net (No-

ATT) did not add any attention mechanism. 

Table 6. Sign languages recognition accuracies by SLR-Net with attention mechanisms, tested on 

CSL-500 dataset. 

Method Top-1 Accuracy (%) Top-5 Accuracy (%) 

ST-GCN [13] 94.4 99.64 

SLR-Net (No-ATT) 96.1 99.6 

SLR-Net (only MS-ATT) 96.84 99.64 

SLR-Net (only ST-ATT) 96.88 99.72 

SLR-Net (only T-ATT) 96.56 99.68 

SLR-Net 97.36 99.68 

From Table 6, even without any attention mechanism, the recognition accuracy of 

SLR-Net (No-ATT) was still better than the baseline. This is because SLR-Net can learn 

farther spatial dependence and has the ability to directly learn spatiotemporal features, 

which is more suitable for sign language recognition. Compared with SLR-Net (No-ATT), 

adding MS-ATT, ST-ATT, and T-ALL can also increase the accuracy by 0.74%, 0.78% and 

0.46% respectively. Among them, ST-ATT performed best. SLR-Net was the complete 

model with three attention mechanisms, whose accuracy was 2.96% higher than that of 

the baseline. 

The attention mechanisms have also been experimented on the DEVISIGN-L dataset. 

As shown in Table 7. This dataset is more challenging because the dataset has a large 

vocabulary, but the number of samples per vocabulary is only 12, the accuracy of baseline 

recognition on this dataset was only 44.6%. The SLR-Net and three attention mechanisms 

have significantly improved recognition accuracy. Compared with the SLR-Net without 

attention (No-ATT), the addition of MSATT increased the accuracy by 3.62%, ST-ATT in-

creased the accuracy by 4.7%, and T-ATT increased the accuracy by 5.1%. Adding three 

attention mechanisms at the same time, SLR-Net increased by 5.95%. 

Table 7. Sign languages recognition accuracies by SLR-Net with attention mechanisms, tested on 

DEVISIGN-L dataset. 

Method Top-1 Accuracy (%) Top-5 Accuracy (%) 

ST-GCN [13] 44.6 69.68 

SLR-Net (No-ATT) 59.62 81.28 

SLR-Net (only MS-ATT) 62.88 81.73 
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SLR-Net (only ST-ATT) 64.32 84.17 

SLR-Net (only T-ATT) 64.72 83.53 

SLR-Net 65.57 84.27 

4.4.4. Two-Stream Framework 

Here we verified the effectiveness of the two-stream framework. In Table 8, SLR-Net-

J means that the input of the network is joints data, SLR-Net-B means that the input is 

bone data, and SLR-Net-J+B means the fusion of the two-stream. It can be seen that alt-

hough the recognition accuracy of SLR-Net-B was 0.68% lower than that of SLR-Net-J, the 

two-stream fusion has reached the optimal accuracy rate of 98.08%. 

Table 8. The results of two-stream framework on CSL-500 dataset. 

Method Top-1 Accuracy (%) Top-5 Accuracy (%) 

SLR-Net-J 97.36 99.68 

SLR-Net-B 96.68 99.72 

SLR-Net-J+B 98.08 99.84 

4.4.5. Keyframes Extraction 

We used the keyframe extraction algorithm to extract a subset of CSL-500 dataset: 

CSL-500-key. The experimental results on the CSL-500-key dataset were as Table 9: 

Table 9. Sign languages recognition accuracies by SLR-Net with attention mechanisms, tested on 

CSL-500-key dataset. 

Method Top-1 Accuracy (%) Top-5 Accuracy (%) 

ST-GCN [13] 76.4 95.32 

2S-AGCN [14] 87.48 97.8 

SLR-Net (No-ATT) 89.08 97.6 

SLR-Net (only MS-ATT) 92.6 98.92% 

SLR-Net (only ST-ATT) 92.88 98.8% 

SLR-Net (only T-ATT) 91.64 99.00% 

SLR-Net 93.04 98.92% 

It can be seen that the network and attention mechanism we proposed also perform 

well on the CSL-500-key dataset. Compared with the baseline, the method in this paper 

increases the accuracy by 16.64%. The running time is compared in Table 10. Based on the 

analysis of Table 10, the keyframe algorithm will sacrifice 3.84% accuracy, but it saves 

46.3% of the time, which greatly improves the recognition efficiency. 

Table 10. The accuracy and runtime comparisons. 

Method Runtime Per Sample Top-1 Accuracy (%) 

SLR-Net 19 ms 96.88 

SLR-Net + keyframe 8.8 ms 93.04 

4.5. Comparison to Other State-of-the-Art Methods 

We compared our method with other methods; the recognition accuracy compared 

with other methods on CSL-500 is shown in Table 11; the recognition accuracy compared 

with other methods on DEVISIGN-L is shown in Table 12. The Tsn, I3d, Tsm and Atten-

tion 3D-CNN are CNN based methods, the B3D-ResNet is based on CNN and RNN. The 

above methods was designed for sign language recognition. The ST-GCN, 2S-AGCN are 

GCN based method for action recognition, we modified them to recognize sign language 

words to compare with SLR-Net. 
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Table 11. The accuracy comparisons with state-of-the-art methods on the CSL-500 dataset. 

Method Year Top-1 Accuracy (%) Top-5 Accuracy (%) 

Tsn [53] 2016 74.96 91.00 

I3d [54] 2017 89 98.16 

Tsm [55] 2019 90.84 99.16 

Attention 3D-CNN [6] 2018 88.70 - 

B3D-ResNet [35] 2019 86.9 - 

ST-GCN [13] 2018 94.40 99.64 

2s-AGCN-J [14] 2019 95.6 98.56 

2s-AGCN-B [14] 2019 95.84 98.52 

2s-AGCN-J+B [14] 2019 96.72 99.72 

SLR-Net-J (ours) - 97.36 99.68 

SLR-Net-B (ours) - 96.68 99.72 

SLR-Net-J+B (ours) - 98.08 99.84 

Table 12. The accuracy comparisons with state-of-the-art methods on the DEVISIGN-L dataset. 

Method Year Top-1 Accuracy (%) Top-5 Accuracy (%) 

Tsn [53] 2016 2.13 5.87 

I3d [54] 2017 5.98 17.32 

Tsm [55] 2019 25.4 51.63 

ST-GCN [13] 2018 44.60 69.68 

2S-AGCN [14] 2019 62.68 82.40 

SLR-Net (ours) - 65.57 84.27 

Tables 11 and 12 showed that in sign language recognition tasks, GCN-based algo-

rithms outperformed the other CNN and RNN based sign language recognition algo-

rithms and our proposed SLR-Net worked well on the two public datasets. 

5. Conclusions 

This paper proposed a new GCN based sign language vocabulary recognition net-

work: SLR-Net. The article introduced a series of processes from data preparation to vo-

cabulary recognition, providing new ideas for sign language recognition. SLR-Net is com-

posed of three sub-modules MSSTA, MSA, and ATCN. They can extract features between 

vertices at long distances and have the ability to directly learn spatiotemporal features. 

The ablation experiment also verified our original hypothesis. We have also added three 

different attention mechanisms to each sub-module to further improve the robustness of 

the model. Besides, a keyframe extraction algorithm is proposed, which can greatly im-

prove efficiency by sacrificing a little accuracy. Finally, we did a lot of experiments on two 

large-scale sign language datasets and reached the best performance on both of them. 
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