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Abstract: This paper addresses the challenge of embedded computing resources required by future
autonomous Unmanned Aircraft Systems (UAS). Based on an analysis of the required onboard
functions that will lead to higher levels of autonomy, we look at most common UAS tasks to first
propose a classification of UAS tasks considering categories such as flight, navigation, safety, mission
and executing entities such as human, offline machine, embedded system. We then analyse how a
given combination of tasks can lead to higher levels of autonomy by defining an autonomy level.
We link UAS applications, the tasks required by those applications, the autonomy level and the
implications on computing resources to achieve that autonomy level. We provide insights on how to
define a given autonomy level for a given application based on a number of tasks. Our study relies
on the state-of-the-art hardware and software implementations of the most common tasks currently
used by UAS, also expected tasks according to the nature of their future missions. We conclude that
current computing architectures are unlikely to meet the autonomy requirements of future UAS.
Our proposed approach is based on dynamically reconfigurable hardware that offers benefits in
computational performance and energy usage. We believe that UAS designers must now consider
the embedded system as a masterpiece of the system.

Keywords: UAS; autonomy; computing architectures; UAS applications

1. Introduction

Unmanned Aircraft Systems (UAS), commonly referred to as drones, are reported
to be the breakthrough and transformative technology that will provide huge economic
benefits globally [1]. The Teal Group alone forecasts global UAS production to reach
USD$93 billion within the next 10 years, with 28% of this value residing in the civilian
domain. The greatest areas of economic growth benefiting from the application of UAS
technology are agriculture, asset management, mining and construction sectors. The list of
application areas is rapidly expanding, but includes disaster response, search and rescue,
wildlife monitoring, real estate photography, media and many more. With the growing use
of UAS across many sectors of society and industry comes a series of requirements and
specifications that needs to be met before this occurs. Whereas the platform technology
is developing rapidly and affordability increasing, there remains the issue of upholding
acceptable safety standards and airspace integration with other airspace users including
manned aviation.

The UAS that are more likely to be used in the application areas indicated above are
small or very small, depending on the definitions adopted by national regulatory authori-
ties. These platforms will have greater limitations in size, weight and power (electrical)
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(SWaP) compared to their larger counterparts. From a technology capability perspective,
current UAS can perform multiple tasks such as collision avoidance, SLAM (simultaneous
localization and mapping) navigation, waypoint navigation, autonomous takeoff and land-
ing, path planning and decision making, among others, simultaneously. If we then consider
the emerging drivers of beyond visual line-of-sight (BVLOS) operations, airspace integra-
tion, functional safety, autonomy, multiple UAS operations, industrial internet of things
and cognitive functions, the computation demands coupled with SWaP constraints of the
onboard embedded computers is drawn into question. This computational demand comes
with the cost of requiring high speed and powerful embedded computers that more often
than not require high power. This scenario might be achievable in large UAS (such military
UAS) in which size, weight and power (SWaP) are not limiting factors. Unfortunately, these
types of UAS are not likely to be cost effective for civilian applications.

Mini or micro UAS are a beneficial technology in civilian and military contexts due
to attributes such as easy transport, low power consumption, rapid deployment and
configurable payloads. These UAS are generally easy to deploy in remote areas at much
reduced costs. However, they lack the ability to carry heavy payloads, namely computers,
batteries and sensors. In this scenario, a new onboard computing paradigm needs to be
proposed to address these limitations.

Embedded, low power and reconfigurable hardware offers a feasible alternative to
reduce the burden of carrying payloads without compromising computing capability.
Reconfigurable computing has become an alternative to performing multiple onboard tasks
that are potentially computing intensive at no extra cost in terms of SWaP.

Furthermore, UAS in civilian contexts need to deal with the inherent unpredictability
and dynamic nature of real world environments. This requires the design of new comput-
ing architectures that are flexible and fast enough to respond to environments in which
information might not be accurate or certain. In these cases, UAS must be enabled with
levels of autonomy, cognition and reasoning that will demand computing resources from
the onboard systems.

In this paper, we provide an analysis of what autonomy means in terms of processing
tasks and resulting embedded computing requirements. We analyse the most common
tasks onboard UAS and their relationship with the applications. Our methodology is based
on three stages. At first, and detailed in Section 2, we draw a relationship a between tasks
and autonomy levels. Then we study and quantify, considering an emerging case study
and perspectives, the impact a UAS AL (Autonomy Level) has on the computation platform
in Section 5. Finally, in Section 6, we analyse the computing demand and draw conclusions
about a possible promising architecture and associated design methodology.

2. Relating UAS Applications and Autonomy

In this section, we present an overview of the most common tasks executed onboard
an unmanned aircraft and attempt to define the relationship between these tasks and the
level of autonomy. We argue that the higher in the autonomy definition a UAS is required
to operate, an increase in the number of tasks running onboard will be expected when
compared to lower autonomy levels. Hence, increasing the autonomy level will then
impose demands on the computational resources needed.

2.1. Existing Attempts to Define Autonomy in Autonomous Systems

The International Civil Aviation Organization (ICAO) [2] classifies unmanned aircraft
into two categories under the Circular 328 AN/190 [3]: remotely piloted aircraft and
autonomous aircraft. In this work, we use the term UAS with reference to autonomous
aircraft, noting that at times a piloted takeoff/landing might be in place while the rest of the
mission is autonomous. UAS typically consists of Unmanned Aerial Vehicle(s) (UAV), also
referred to as unmanned aircraft, ground control station(s), control link and other related
support equipment working harmoniously to conduct its mission successfully. UAS in
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this sense, have not yet reached their full potential in civilian settings. Herein, autonomy is
defined as proposed by the National Institute for Standards and Technology [4]:

“An unmanned system’s own ability of integrated sensing, perceiving, analyzing,
communicating, planning, decision-making, and acting/executing, to achieve
its goals as assigned by its human operator(s) through designed Human-Robot
Interface or by another system that the unmanned system communicates with.”

Attempts to define levels of autonomy are not new. Dating back to the 1970s, one
the most used classification definitions was by Sheridan [5]. In this work, ten levels of
autonomy ranging from human in full control to computer in full control are presented.
A revised version was later presented in [6]. This early definition has constituted the
foundation to many modern autonomy classifications [7]. Nowadays, most autonomy
classifications are based on the Observe-Orient-Decide-Act (OODA) framework proposed
by the US Air Force [8]. For autonomous systems, the US Air Force has used this framework
to define 11 levels of autonomy [8,9]. The ALFUS framework [10] is another common
classification tool to define autonomy levels. Recently, an extension of this framework was
presented by Kendoul [11]. Organisations such as NATO have also proposed frameworks
that define human level of interaction with automation, a well known framework is the
Policy for (pilot) Authorisation and Control of Tasks (PACT) [12]. Other generic attempts
to define automation levels for UAS include [13–16].

In this paper, to capture the performance of a UAS from the technical and operational
perspectives, the ALFUS performance model will be used [17]. In the ALFUS framework,
an autonomy level is defined by weighting a metric score for three aspects namely human
independence (HI), mission complexity (MC), and environmental complexity (EC). This
framework, visually, places each of the three aspects in an axis, and then determines the
overall autonomy of the UAS with the required level of human independence to perform un-
der a given mission complexity, while remaining in safety boundaries related to environment
complexity (Figure 1).

MC

HIEC

mision 1: HI low
MC high
EC high

mision 2: HI high
MC low
EC low

HI MC EC

• UAV degree of 
sensing environmental 
phenomena 

• UAV degree of 
understanding and 
analyze of the 
perceived situations

• When a larger portion 
of the mission plan is 
generated by the UAV 
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generate high-level, 
complex plans as 
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the UAV
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per time
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etc.
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required 
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• Man-made structures,  

Figure 1. Autonomy model in the ALFUS framework. Two hypothetical missions are shown to
exemplify the relationship between mission complexity (MC), environmental complexity (EC) and
human independence (HI).

Some of the criteria (see [17] for a complete list) used to assess the degree of complexity
or difficulty for each axis are for example:

• HI: UAS degree of sensing environmental phenomena, UAS degree of understanding
and analysing perceived situations, what/when a larger portion of the mission plan is
generated by the UAS, UAS ability to generate high-level, complex plans as opposed
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to low-level, straightforward plans, degree of communication with the UAS and
number of decisions per unit of time.

• MC: Mission time constraint, precision constraints and repeatability in navigation,
manipulation, detection, perception, level of collaboration required, concurrence and
synchronization of events and behaviours, resource management and ammunition
and authority hierarchy for data access and plan execution.

• EC: Electromagnetic interference, use of absolute and fiducial reference points to
facilitate navigation and reduce the complexity, objects size, type, density and intent;
including natural or man made, lighting conditions and man-made structures.

2.2. UAS Applications and Autonomy

Without doubt, the definition of autonomy level has to account for many factors, e.g.,
multidimensional. In this paper, of particular interest are mission complexity (MC) and
environmental complexity (EC) because they establish the degree of human independence
(HI) or in other words, the level of autonomy. Human independence is used in this paper
as the degree in which a UAS relies on humans to operate and make decisions. Hence, low
HI is seen as a manual or remotely controlled vehicle, whereas high HI is autonomous. We
argue that complex missions in complex environments achieve better performance when
they are highly automated. Therefore, we are interested to link the type of mission and the
environment in which it is conducted with the level of autonomy, and seamlessly with the
degree of computational resources needed to achieve high levels of autonomy. In order to
do that, we group applications into two main categories: visual line-of-sight (VLOS) and
beyond VLOS (BVLOS) (see Figure 2). VLOS is defined as flying a unmanned aircraft in
visual line-of-sight at all times, not obstructed by clouds or fog, trees, buildings or other
structures. Typical applications in this domain include Photography, Drone Racing and
Hobby. Precision Agriculture and local Infrastructure Inspection can also be conducted
within VLOS, however there might be cases in which these applications can be conducted
in BVLOS or extended VLOS (using humans other than pilot to keep visual contact with the
aircraft). BVLOS is defined as flying a unmanned aircraft without the pilot having visual
contact with the aircraft at all times. Instead, the pilot flies the aircraft by instruments from
a Ground Control Centre (GCC). Common applications in this category include Search and
Rescue, Parcel Delivery, Border Patrol and remote Infrastructure Inspection. In BVLOS
missions, given that the operator is remote, a number of tasks will need to be automated to
achieve the same degree of control and awareness as in VLOS missions. For instance, one
of the most common application of UAS is that of aerial photography/film-making. This
is a typical VLOS mission in which the pilot is in control of the aircraft at all times (low
HI), requiring low levels of autonomy. However, applications such as Search and Rescue
tend to require some degree of autonomy and some level of decision making (high HI) [18].
The categorisation of these tasks into VLOS or BVLOS is not arbitrary. If we look carefully
at some of the most widely used regulations in the world [19,20], they impose considerable
constraints on hobby and commercial uses of drones, one being VLOS operation. This
means that most uses of drones will fall under VLOS. The operations under BVLOS exist,
but are assessed/approved on a case-by-case basis.

Conducting UAS operations in either of these categories will have an impact on the
degree of onboard autonomy. For instance, once the UAS operator has no visual contact
with the aircraft (BVLOS), the human see-and-avoid function must be transferred to on-
board the aircraft, that is, the aircraft must now be able to sense traffic, make decisions and
avoid possible collisions [21]. High performance communication links between aircraft and
operator could allow a degree of remote sense-and-avoid (collision avoidance), however
ensuring fast reaction times will be extremely challenging making this mode of collision
avoidance highly risky. Assuming an increased demand for autonomy in BVLOS opera-
tions, the complexity of both mission and environment are crucial in order to ensure the
success of the task or application. That is, BVLOS operations in highly complex environ-
ments require high levels of autonomy to guarantee task success. However, the opposite
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is yet to be seen, i.e., high levels of autonomy can tackle highly complex environments
and missions, mostly because the extent in which an autonomous aircraft can tackle this
scenario depends on advances in robust perception and AI. For example, high precision
data acquisition is an example application in which the requirement of capturing data
with the highest accuracy possible imposes additional demands on onboard autonomy.
Complexity of environment and mission is generally low or medium in applications such
as precision agriculture, marine monitoring or linear infrastructure inspection. Capturing
data during these applications requires advanced precise guidance, path planning and
trajectory tracking in order to ensure accurate waypoint navigation, data synchronisa-
tion, data overlap and correct resolution, amongst others. It has been demonstrated that
automation can perform better than the human pilot in such cases [22,23]. Operations
within the VLOS category can take advantage of the UAS operator skills. We acknowledge
that the combination reasoning, decision making, visual feedback and reaction time of
humans can surpass the current state-of-the-art UAS navigation. Applications such as
drone racing can afford operations in highly complex environments and conduct highly
complex missions as long as the human remains in the loop. Currently, most racing drones
have very little onboard automation (other than visual augmentation systems or First
Person View). Similarly, aerial photography is an application in which the pilot is in control
of the aircraft at all times. A degree of automation generally exist on the camera gimbal
for object tracking and the autopilot for better manoeuvring. However, functions such
as collision avoidance, navigation and guidance are still the responsibility of the pilot.
Finally, applications such as parcel delivery (Section 5) conducted in either remote or urban
areas will have generally medium to high complexity of the mission and environment,
respectively. Therefore, the level of required autonomy will also be from medium to high,
depending on the complexity. From the operational and cost effective point of view, this
application it is unlikely to be performed in VLOS mode, therefore there is an evident
requirement for moderate levels of autonomy.

Hobby
Photography
Sport (Racing)

Search and Rescue
Parcel Delivery

Border Patrol

Agriculture
Mapping

Data Acquisition
Infrastructure inspection

VLOS BVLOS

Figure 2. Visual line-of-sight (VLOS) and beyond VLOS (BLOS) categorisation for several common
Unmanned Aircraft System (UAS) applications. Some of these application can be considered in the
intersection of the two categories, i.e., can be performed by either VLOS or BVLOS.

Example applications referenced above can be mapped into the ALFUS model based
on their requirements for EC, MC and HI. In Figure 3, we introduce four applications
with their respective requirements in terms of EC, MC and HI. Qualitatively, it can be
seen that Drone Racing and Photography can comfortably be placed in the MC, EC plane
(e.g., VLOS) meaning they are currently performed by highly trained pilots (very low HI),
whereas Data Acquisition and Parcel Delivery require moderately high levels of HI.
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MC

HI
EC

BVLOS

VLOS

Autonomy

Human in control

Drone racing: HI low, MC medium/high, EC medium/high
Parcel delivery: HI high, MC high, EC high
High precision data acquisition: HI high, MC low, EC low
Photography: HI low, MC low, EC low

Figure 3. Several UAS applications can be mapped into the ALFUS model. Quantitative values can be assigned to each axis
to convey an autonomy level.

As previously introduced, achieving high levels of onboard autonomy requires the
execution of a number of tasks concurrently [24]. The type and number of tasks are
related to the final application and user preferences. However, we believe a common
minimum number of tasks should be present in a highly autonomous and dependable UAS.
A list of these common tasks in most UAS is presented with communication management
being a high level task that has a decision making ability, whilst telemetry communication
is executed at a lower level, and provides information and metrics to high level tasks.
Similarly, fault detection and identification (FDI) and health management keep the same
hierarchical relationship. FDI executes at a lower level providing information to other
decision-making tasks executing at higher level such as health management. Refer to
Section 3 for detailed descriptions of each task.

3. Definition and Categorisation of Onboard Unmanned Aircraft Tasks

Common to most unmanned aircraft is the separation between high and low level
tasks. High level tasks are those not requiring direct access to actuators, stabilisation
control loops or mission critical sensors such as accelerometers, GPS or gyros. They can be
executed at high speed but do not have real-time time specifications. On the other hand,
low level tasks have some real-time requirement. Direct access to actuators, state estimation
filters and stabilisation control loops are common in this category. It is also common to
separate the hardware each task level (high or low) is running on. For instance, embedded
architectures either based on micro controllers or ARM processors such as a Cortex M7 in
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Pixhawk4 [25] are commonly used for low level tasks. In the case of high level tasks, it is
common to find pc104 [26], mini/nano-itx/Raspberry Pis or any other small form-factor
PC architecture.

A further categorisation of tasks can be made based on the function they perform
onboard. Some functions could fall either in the low or high level categories previously
mentioned. In this subsection, we propose a methodological classification of the most
common tasks or functions an unmanned aircraft is required to execute onboard when
performing a given mission. We acknowledge not all tasks are required at the same time.
The intention of this list is to provide a pool of tasks that can be considered by UAS
engineers when designing a UAS for a given application. We aim to provide researchers
and operators with new insights to evaluate unmanned aircraft in terms of autonomy and
onboard functions, and then assess the impact in the computational resources needed to
achieve a given level of autonomy.

First and with similar effect to ALFUS, we classify unmanned aircraft onboard func-
tions into five categories: (1) flight control, (2) navigation and guidance, (3) application,
(4) safety and (5) mission. Flight pertains to low level functions implemented by the au-
topilot [27]. It typically implements state estimators, sensor readings, fast control and
stabilisation loops, and actuator control. Navigation and guidance includes guidance laws
and trajectory planning routines that will define and keep the aircraft on the optimal route
(typically) with consideration of the application and mission priorities [23]. For instance,
in this category we can find routines to plan and execute a path to flight the best route that
optimises fuel, battery power consumption, data quality and time in the air. Application usu-
ally defines the reason the aircraft is flying. Applications such as precision agriculture [28],
infrastructure inspection [29], underground inspection [30] and parcel delivery [31] are
some of the uses industry is exploring with UAS. Mission deals with high-level tasks the
UAS is responsible for beyond flying operations. It includes autonomous tasks such as
mission planning [32], health monitoring [33], decision making [34] and resources man-
agement [35]. Finally, safety refers to the tasks a UAS must execute to ensure the safety
of people and assets. It also allows the UAS to comply with regulator’s requirements
to flight in civil airspace. Sense and avoid [36], airspace management [37], emergency
procedures [26], fault detection and isolation [38], are common examples in this category.

Tasks Definitions and Specifications

In this section, we propose and describe some of the tasks (Table 1) that can be
executed at different autonomy levels (Section 4, Figure 4). A similar list of functions for
rotorcraft have been proposed by Kendoul [11]. Due to the fast paced development of
UAS technology, our list represents an update to those previously proposed, categorising
functions and presenting, to the best of our knowledge, the most common functions found
in the literature up until now. The five categories previously introduced were flight control,
navigation and guidance, application, safety and mission. The most common tasks within
these categories are:

• Flight control level: actuator control, stabilisation and control loops, low level sensor
readings, state estimation and telemetry communication.

• Navigation and guidance level: Static or dynamic path planning, trajectory tracking,
waypoint navigation, obstacle avoidance, terrain following, vision-based navigation.

• Application level: Application specific sensor readings, aerial sampling, application
specific camera tasks.

• Safety level: Sense and avoid, fault detection and identification, emergency procedures
and airspace management

• Mission level: Energy and storage management, computational resource management,
health management, decision making and communication management.
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Table 1. Most common tasks executed in UAS.

Number Task-Nt

1 Sense and avoid
2 Emergency procedures
3 Fault detection and identification
4 Energy management
5 Path planning and trajectory tracking
6 Waypoint navigation
7 Decision making
8 Computational resources management
9 Storage management

10 Communication management
11 Airspace management
12 Vision-based navigation
13 State estimation and stabilisation control loops
14 Actuator control
15 Low level sensor readings
16 Application specific sensor readings
17 Telemetry communications
18 Application specific camera tasks
19 Aerial sampling
20 Obstacle avoidance and terrain following
21 Onboard health management

Flight control level

• Actuator control: This task could be considered as the lowest-level task on an un-
manned aircraft. It involves the translation of software parameters into electrical
signals for each actuator. It requires a few to tens of thousands of pulses per minute
and be independent of any task that might prevent its real-time execution. Its compu-
tational load is usually negligible due the use of dedicated hardware components for
each actuator.

• State estimation and stabilisation control loops: State estimation typically relies on a type
of Kalman filter. Depending on the number of states and parameters in the aircraft dy-
namic model, this task could require a significant amount of computational resources.
The amount of computation is mainly related to matrix operations. Floating-point
computations can be very meticulous to reach accuracy and stability requirements.
The control of attitude, position and speed mainly relies on close-loop control. Typical
implementations involve multichannel PID approaches [39]. Due to the nature of
this function (low-level), most of the computational demands are handled by using
dedicated embedded hardware. However, researchers have proposed architectures
where autonomy levels are linked to different layers of control [40], in which more
computational resources are necessary.

• Low level sensor readings: This low level function accesses various digital and analog
ports, such as I2C, analog to digital converters (ADCs), GPIO, RS232, PWM, USB, etc.,
reading and conditioning the signal before it is used by other tasks. In general terms,
this function samples the ports converting sensor information into numerical values
that are used by other onboard tasks. Different sample rates and scale factors are used
for every sensor. In most cases, dedicated hardware is used to implement this function
which minimises the requirement for computational resources. Dedicated chips
handle signal level conversion, packing and unpacking of bits, clock synchronisation,
device interfacing, etc.

• Telemetry communications: Traditionally, this task automates the process of sending
data to a remote receiving equipment for monitoring. The medium can be either
wired or wireless, although in UAS wireless is the most common medium using radio
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modems followed by 802.1xx (wifi). Nowadays, this task has evolved from simply
sending data through a medium. Functions such as byte marshalling (or serialization),
error checking, heart beat generation and monitoring and low level data compression
are now an integral part of this task. Telemetry communications in most cases provide
vital information to access whether the communication link is healthy or not, so the
appropriate failsafe action is triggered.

Navigation and guidance level

• Vision-based navigation: This type of navigation have gained significant importance in
recent years [41,42], primarily as a navigation method in GPS-denied environments
(indoor and outdoor). Techniques derived from space localization such as visual
odometry [43,44] or SLAM [45–47] have been tested with acceptable performances.
Other techniques used in this approach are stereo vision [48,49], structure-from-
motion [50,51], bio-inspired opticflow [52–54] and target relative navigation [55,56].
Vision-based navigation typically involves estimation of the UAS pose by computing
ego-motion (camera motion). Once the aircraft state vector has been computed, control
laws can be used to stabilise and guide the aircraft.

• Path planning and trajectory tracking: Path planning often involves finding the opti-
mal trajectory between two points with or without consideration of obstacles. These
techniques can be static (executed once) or dynamic (replanning in the event of obsta-
cles), and involve finding the shortest path under specific constraints: (a) geometrical
or kinematic constraints due to the design of the unmanned aircraft, (b) dynamics
constraints defined by the environment (wind, unexpected obstacles). The trajectory
tracking involves the definition of the control commands necessary to follow a set of
curves/trims that respect the aerodynamic of the aircraft [57]. These curves constitute
the guidance primitives for the autopilot so that it can steer the aircraft to follow a
specific trajectory. Typically, these approaches rely on probabilistic, deterministic or
heuristic numerical methods to compute the path while providing trajectory way-
points that already take into account the UAS constraints. Hardware implementations
for discrete methods have already been investigated for deterministic and heuris-
tic path-planning with FPGA implementation [58], but not many are investigating
hardware versions of probabilistic methods [59].

• Waypoint navigation: This task involves the following of preplanned or manually
provided waypoints (GPS coordinates). The task will generate the control commands
to steer the vehicle between two consecutive waypoints. Since there is an assumption
of straight line motion between two consecutive points and no strict consideration
for the aircraft dynamic and kinematics constrains, this task could be considered as a
simplistic version of a trajectory tracker.

• Obstacle avoidance and terrain following: Obstacle avoidance, as the name suggests,
implies the detection and following avoidance of obstacles present in the flight path.
Many passive and active sensors can be used for this purpose, and a number of
algorithms have proven effective in this domain [60,61]. Terrain following compares
measurements from onboard sensors with a database terrain map so the minimum
clearance is respected. It can also be used for drift-free localisation purposes in case of
GPS-denied environments.

Application level

• Application specific sensor readings: The distinction between low level and application
specific sensor readings lies in the criticality of enabling or disabling the task. For in-
stance, disabling accelerometers, GPS or compass readings will, in most cases, have
catastrophic consequences for the UAS. On the other hand, disabling (on demand)
a camera or a Lidar should not be critical for the overall navigation, unless they are
used as main navigation sensor. This ability to disable a task based on the information
provided by other tasks is essential in autonomous systems. For instance, stopping
the Lidar or high resolution camera when onboard storage is running low, before it
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slows down the computer or causes a software critical failure, should be an feature in
highly autonomous UAS.

• Application specific camera tasks: Applications that make use of cameras (video or
still) are on the rise. These applications involve the recording or transmission of
HD video or images that might or might not include onboard data (such as GPS,
UAS orientation or altitude). Within this category, it is worth to mention several
applications that have seen an increase in use such as, videography for the filming
industry or sport events [62], target recognition and tracking using machine vision
cameras [63], aerial photography for surveying [64], precision agriculture or real
estate [65]. Depending on the configuration, each application will have an impact on
the onboard processing requirements, data storage, communications and command
and control links. For instance, if onboard processing is required, then computational
and power resources onboard must meet the demand of applications such as target
tracking [66] or video encryption [67], amongst others.

• Aerial sampling: Assessment of air quality is an important area of research that studies
the link between poor air quality and adverse health outcomes [68]. Sampling the air
close to source of pollutants may not always be possible as it can be too dangerous or
risky for humans. The use of a small, lightweight unmanned aircraft can minimise
the risk for humans and provide more accurate information on aerosol distribution
throughout the atmospheric column. Similarly, the modality of collection and pro-
cessing the samples has an impact on the computational, communications and power
resources needed onboard the aircraft.

Safety level

• Sense and avoid: This task is fundamental for achieving high levels of autonomy
onboard unmanned aircraft. Many of the benefits provided by UAS will come from
applications that require operations beyond line-of-sight. Operating UAS in civilian
airspace, which is a complex environment, is not trivial [69]. In this task we can also
include a form of obstacle avoidance, either dynamic or static. Whether avoiding
other aircraft or obstacles on the path, there are common functional blocks in a sense-
and-avoid system that can be reused. A sense-and-avoid system can be cooperative or
uncooperative, and typically encompasses sensors, detection and tracking algorithms
and evasive control measures [21].

• Fault detection and diagnosis: This is mission critical if robust and safe UAS operations
are to be conducted, and a key consideration when demonstrating dependability,
safety and reliability of the UAS. Real-time techniques are preferred as they make
it possible to instantly analyse onboard faults and trigger the best strategy to deal
with the event. The multiple-model adaptive estimation (MMAE) approach has been
applied successfully to deal with fault detection and diagnosis (FDD) problems in
various flight scenarios [70–72]. Other approaches, have dealt with the high computa-
tional requirements of these techniques by using different estimators without loss of
performance [73]. Health-management and mitigation strategies for multiple UAS
have also been proposed [74].

• Emergency procedures: With the increased presence of unmanned aircraft flying over
people and infrastructure assets, a robust and trusted system that deal with onboard
emergencies is an essential capability. To intelligently and safely trigger a strategy to
deal with onboard failures is one of the main challenges in manned and unmanned
aviation safety. A system that can land an aircraft or adapt its flight control in response
to an engine failure, actuator faults, loss of sensor readings or any other onboard
failure is key in highly autonomous aircraft [26,75]. A system like this, will likely
require a number of processing stages, each demanding some computational capability
from onboard resources [76].

• Airspace management: The increasing number of unmanned aircraft flying in civil-
ian airspace means that future airspace will be characterised by a combination of
manned and unmanned aircraft. The mandatory nature of this system will be evi-
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dent, because the current system for UAS authorizations is not scalable for the vast
number of applications anticipated by government and industry [37,77,78]. New
technologies onboard aircraft as well as ground support systems will need to be
developed [13,79]. Onboard aircraft, this will mean new sensors and software tools
that allows interaction and safe separation between them. This function is closely
integrated with other subsystems such as guidance and navigation, decision making
and collision avoidance.

Mission level

• Health management: Is the ability of a system to prevent, detect, diagnose, respond to
and recover from conditions that may change the nominal operation of that system [80].
In that sense, we make the distinction between fault detection and identification (FDI)
and health management, as FDI is part of the overall health management system.
Health management systems are an integral part of most aircraft [81,82], however, this
is a relatively novel concept in UAS. Early attempts to develop health management
systems for UAS were focused on teams for persistent surveillance operations [83].
Approaches based on Bayesian networks for aircraft health-management have also
been proposed in the literature [34,84]. Current challenges include efficient algo-
rithms, embedded computing for real-time processing and simulation, validation and
verification [85].

• Communication management: This task deals with strategies to recover or maintain the
communication link between unmanned aircraft and the ground control station. It
provides the ability to adjust data compression based on available channel throughput,
enables data encryption when required and implements error checking for data
integrity. It computes metrics to estimate the quality of the communication link, that
then can be used by other subsystems for decision making.

• Energy and storage management: Managing energy consumption and distributing it
intelligently to different subsystems based on mission goals is an essential function
in any unmanned aircraft. Power consumption varies during different phases of
the flight (take-off, climb, cruise and descent). It is also impacted by path planning,
hence the optimisation strategies that seeks reduction in flight times and manoeuvring
in most path planners. An intelligent energy management system will enable and
disable subsystems based on peak power consumption, but will not manage energy
consumption within these subsystems [86]. It addition, another essential system is
data storage management. Nowadays, UAS can collect a considerable amount of
high quality data, which imposes demands and balance between onboard processing,
data transmission and data storage [87]. Managing these aspects efficiently is key in
modern UAS.

• Computational resource management: The computational capabilities of modern CPUs
and parallel processors (GPUs, FPGAs) have made possible the execution of a number
of tasks concurrently. Task allocation and scheduling methods become now essential
to optimally distribute computational tasks over single- or multi-core processing
architectures, in order to ensure the completion of each calculation within timing
requirements, without impacting the performance of other applications. Allocating
fixed resources (processor time, number of cores, etc.) to each task might not be the
best strategy to deal with the dynamic nature of the environment and mission goals.
This dynamic nature will require flexibility to allocate the number of available cores,
the amount of cache memory available and prioritise FPGA (or GPU) usage over
CPU. Many factors can impact the inner decision making that allows intelligent task
scheduling such as energy consumption, mission goals, aircraft internal state and
requirements to handle onboard data acquisition and processing. Therefore, there is
an implicit inter-task communication process between computational resource man-
agement, energy management, storage management and mission management [34].

• Decision making: This is arguably one of the most challenging tasks onboard unmanned
aircraft. The complexity of the task is evidenced by the multiple criteria and multiple
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objective nature of the context. Objectives can be conflicting, therefore compromises
must be made in order to achieve most critical objective(s). Each task previously
mentioned will have multiple attributes that will need to be optimised in order to
meet a single or multiple objectives. For instance, the path planning task will optimise
attributes such as fuel, energy and time to achieve a goal(s) of reaching the destination,
avoiding obstacles and/or flight under certain altitude [88,89].

4. Relationship between Applications and Autonomy Levels

In order to express the autonomy requirements of a given application, we map the
ALFUS metrics MC, HI and EC into nine brackets on the scale 1–10 [7] (Figure 4). This
scale allows us to assign quantitative values to each ALFUS metric, that can then be
weighted to convey an overall UAS autonomy level (UAS AL) as a numerical value
between 1–10 for a given application. This metric (UAS AL) can then be compared with
existing autonomy assessment models or definitions such as ALFUS [7], RALFUS [11],
Sheridan [5] or NASA [16] (Note: NASA model is scaled from 1 to 8).

UAV Applications and Challenges

1 2 3 4 5 6 7 8 9 10

Low Medium High

Low HI, highly dependent on humans
Low EC, simple environment
Low MC, simple mission

Medium HI, moderately dependent on humans
Medium EC, moderately complex environment
Medium MC, moderately complex mission

High HI, not dependent on humans
High EC, difficult environment 
High MC, difficult mission 

Figure 4. Human independence (HI), environment (EC) and mission (MC) complexities, mapped to
a scale 1–10. Autonomy increases with scale.

With the ability to assign numerical values to each metric of the ALFUS model, we
can now link applications within VLOS and BVLOS categories with the UAS AL (Figure 2).
Successful VLOS operations owe most of their accomplishment to the pilot. Autonomy,
when present, will help the pilot making his/her job effortless. For instance, automatically
tracking objects using a gimbal camera. On the other hand, successful BVLOS operations,
due to the lack of pilot direct control authority, owe most of the success to the degree
in which pilot functions are replaced by onboard tasks, e.g, sense-and-avoid, emergency
landing, obstacle avoidance, precise guidance, etc. These are functions that will increase
UAS autonomy to levels in which humans will become supervisory agents. Therefore,
in order to draw a relationship between a given application and the number of pilot
functions that needs to be automated onboard, we have compiled several common UAS
applications in Table 2.

Table 2. Relationship between type of application and number of suggested onboard tasks. In this table, Infrastructure
Inspection is divided into remote (R) and local (L). UAS autonomy level (AL) shown is the mode, median, mean (arithmetic),
respectively (see Figure 5).

Application VLOS BVLOS ALFUS Complexity UAS AL(Tasks in Table 1) (Tasks in Table 1)

Infrastructure Inspection (R) N1−11,N13−17,N20−21 HI = 8, MC = 9, EC = 9 9, 9, 9
Precision Agriculture N3−6, N9, N13−18 HI = 8, MC = 6, EC = 5 5, 6, 6

Infrastructure Inspection (L) N4, N9, N13−17, N20 HI = 2, MC = 3, EC = 6 2, 3, 4
Parcel Delivery N1−11, N13−18, N20−21 HI = 9, MC = 8, EC = 6 6, 8, 8

Aerial Photography N4, N9, N13−15, N17−18 HI = 2, MC = 2, EC = 2 2, 2, 2
Drone Racing N4, N13−18 HI = 2, MC = 2, EC = 5 2, 2, 3

Search and Rescue N1−11, N13−18, N20−21 HI = 8, MC = 7, EC = 8 8, 8, 8
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In this table, we show the link between the number of concurrent onboard tasks
that are required, in either VLOS or BVLOS operations, in order to ensure application
success. We also draw the relationship between applications, the ALFUS model and UAS
AL. For instance, the reasoning behind Table 2 is as follows:

• Infrastructure Inspection can be conducted in two modalities, local (VLOS) or remote
(BVLOS). Local inspections are intended to identify issues on the spot, in addition
to recording data for further analysis. These operations are mostly flown in manual
mode (pilot in control at all times, HI low ∈ [1, 3]) and some automation might
exist in the sensors used to acquire data or flight control. The environment and
mission carry a degree of complexity mainly due to the fact that the unmanned
aircraft will be flying close to a structure that might be functioning (power pole, tower,
bridge, factory chimney, etc.) leading to low-medium EC and MC ∈ [1, 6]. A remote
inspection involves mainly data acquisition in large and remote areas. (note: it is
unclear the benefits of UAS for inspection in urban areas over current methods, due
to the strict regulatory frameworks currently in place). EC and MC can be relatively
high (∈ [7, 10]) due to the lack of pilot visual contact with the unmanned aircraft and
the precision requirements on the guidance and navigation, path planning, sense-
and-avoid, emergency procedures, etc. Therefore, in a remote modality we propose
the following configuration: high level tasks such as 1–11, 18 and 21, low level tasks
common to most UAS such as 13–17 and mission safety tasks such as 20 (Table 1).
In a local modality, we propose the following configuration, energy management
(4), storage management (9), low level tasks such as 13–17 and safety tasks such as
obstacle avoidance (20) (Table 1).

• Precision agriculture applications typically have strict requirements on data accuracy,
timing, overlap and resolution, amongst others. Furthermore, these requirements
impose additional constraints on the flight pattern (navigation and guidance tasks)
performed by the UAS. If we assume a typical farm with an extended area and
relatively free airspace, then EC and MC can be both considered medium. However,
HI will be high, in most cases, due to the precise flight patterns needed to acquire
accurate data. There might be cases in which manual flight is permissible (from the
data requirements point of view) which leads to low HI. We assume this application
is conducted within VLOS and the main sensor for data collection is electro-optical,
leading to the following proposed task configuration for precise and safe navigation
such as 3–6, storage management (9), low level tasks such as 13–17 and camera specific
tasks (18) (See Table 1).

• Parcel delivery involves the transport of packages, food or other goods. There have been
trials demonstrating the feasibility of this application in rural and suburban areas (low-
medium MC and EC), and in close proximity to the base [31]. However, extending
this application to a wider area (wider population) using more UAS simultaneously
will likely require more onboard automation and support systems than currently
in place. Systems such as air traffic management, collision and obstacle avoidance,
decision making, etc. will now be required, which in turn will lead to more onboard
autonomy (HI high). In our case study (Section 5), we assume a more generalised
application in which HI is high, EC and MC are medium-high. Therefore, we propose
a similar configuration to the remote inspection task, except for the need to run a
specific task to land the unmanned aircraft at the delivery address (see proposed
approach [31]). Assuming an electro-optical sensor might be used to the detect the
landing site, we propose the following tasks 1–11, 13–17, 20–21 and camera used for
landing (18) (See Table 1).

• Aerial photography is a common VLOS application in which cameras (still or video) are
used to capture the scene. This application is typically conducted by highly skilled
pilots (low HI) flying the UAS close to the movie scene (filmmaking), landscapes or
man-made structures. Some automation might exist in the onboard cameras or gimbal
but not enough to require a highly autonomous UAS. EC and MC are also relatively
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low due to simplicity of the overall task. Some might argue that the right positioning
of the unmanned aircraft is critical to capture the best media possible, which in
most cases it is true, however currently this requirement is handled entirely by the
pilot and feedback through the video link. In this case, we propose the following
configuration energy (4) and storage management (9), assuming an autopilot is used
for UAS stabilisation, camera positioning and augmented flying then tasks 13–15 and
17 will be present, if a gimbal is used to track objects or fix the scene view independent
of aircraft pose, then task 18 will be present (See Table 1).

• Drone racing is a relatively novel application of UAS. It consists of small multi-rotors
equipped with controller boards for high speed precise and agile flight, and cameras
to enable first-person-view (FPV) piloting. Almost all multi-rotors used in drone races
are flown manually using FPV (low HI). The environment consist of several obstacles
designed for high difficulty leading to high EC. The mission is however to complete
the course through several checkpoints at high speed in a minimum time, therefore we
assume a relatively straight-forward mission (low MC). The proposed configuration
tasks will include energy management (4) and low level tasks such as 13–17 to enable
unassisted rate mode [90]. Additionally, we can assume FPV and video recording fall
under the category of application specific camera tasks (18) (See Table 1).

• Search and rescue using UAS is intended to aid and support search efforts in many
situations for a fraction of the cost in terms of risk and resources. This application is
considered very similar to remote infrastructure inspection (tasks 1–11, 13–17, 20–21),
except for the addition of a camera task (18) to identify and localise objects or humans
in the camera field of view. Environment and mission are considered high due to
the coordination required (high MC) with other rescue systems that might be flying
simultaneously (high EC). Human independence requirement is also high due to
BVLOS operation modality (See Table 1).

Based on the description provided for each application. We assign an integer value in
the range [1,10] to each of the three aspects of the ALFUS model, HI, MC and EC, for each
application (see Figure 4 and Table 2). Based on experience [26,34,76], we propose a number
of tasks required to ensure feasibility of each application. We then provide three ways to
estimate the UAS AL metric, mode, median and mean (arithmetic) of the three values for
HI, MC and EC. Since there are multiple ways to find the central tendency for these values,
we find the arithmetic mean (rounded to the nearest integer) provides the best balance
between under/over estimation of UAS AL. In Figure 5, we show the estimation of these
values using a scale 1 to 10. We can observe how the arithmetic mean can provide smoother
transitions between levels and it is less biased towards HI. The UAS AL allows us to relate
an application with a required autonomy level and the number of tasks Nt to achieve it.
We have observed a level of proportionality between the UAS AL and the number of tasks
(or functions) a UAS should implement. The UAS AL is not a prescribed metric but rather
a suggestion on how to map every aspect of the ALFUS model to a numerical scale that
can be readily used during the hardware and software design process. We acknowledge
this metric may be exposed to subjective bias due to the assumptions made by engineers
and technologist when designing the subsystems to address a particular task. In any case,
having a relationship between autonomy level and number of onboard concurrent tasks
(UAS AL ∝ Nt) allows us to draw a relationship between the autonomy level and the
onboard computational resources needed to achieve it.
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Figure 5. Estimation of the UAS AL using mode, median and mean (arithmetic). We note the arithmetic mean provides
good balance between over/under estimation.

Impact on Embedded Processing

Higher UAS AL means an increased demand for computational resources due to the
large number of functions required to achieve high autonomy. Computational resources
are provided by the onboard navigation processor (autopilot) and the mission board
(embedded PC). The performance required by high UAS AL will go beyond the capabilities
provided by current embedded PCs and cannot be addressed by simply adding more
onboard computers due to SWaP constraints. Dedicated computing architectures for a
single application are difficult to design, manufacture and are not cost effective. Some
alternatives have been proposed using standard computers architectures. For example,
Bonasso [91] pioneered the three tiered (3T) autonomous intelligent control architecture
that has been the point of reference for various robotics implementations. Although this
architecture has been designed and tested on ground robots only, the 3T paradigm can offer
benefits to UAS. However, the design philosophy must account for the complex dynamics
and kinematics of most unmanned aircraft and the environment in which they operates.
For instance, unmanned aircraft operate in a highly dynamic and shared environment with
greater velocity, unmanned aircraft have more degrees of freedom than ground robots and
small to medium unmanned aircraft are also highly constrained in terms of payload and
safety. Some dedicated solutions have been proposed recently to improve autonomy and
safety by means of more embedded computing capacities. These works mainly address the
implementation of a specific safety task, which is the first mandatory step on the path to
autonomy. For instance, in Barry and Tedrake [48] a collision avoidance system based on
stereo vision was demonstrated. Two implementations were tested using an Odroïd board
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based on a quad-core Cortex A9 Exynos SoC and a small lightweight FPGA. Both running
at 120 fps on 320 × 240 image resolutions and tested onboard at speeds over 13 m/s.
In Lai et al. [36] a highly accurate sense-and-avoid solution is detailed and demonstrated
and implemented on a GPU board. Finally, an obstacle detection task running in all
directions is described in Gohl et al. [92], the implementation is based on 4 Xilinx Zinq
(hybrid CPUs/FPGA) and can process at 80 fps. It can be seen from previous examples the
diversity of processing architectures ranging from CPUs, GPUs to FPGAs. It also highlights
the tendency to use parallel processing architectures such as GPUs and FPGAs. Similar to
the analysis made to define the UAS AL as a metric to convey a degree of autonomy for a
given tasks, we are now interested to link autonomy with computational and hardware
resources for applications that require a given autonomy level. In Section 5, we analyse the
resource requirements for a representative case study namely Parcel Delivery, to evaluate
the embedded processing requirements for this task. We expect to draw a relationship
between the type of computing requirements and architectural model we can anticipate in
future applications that need to achieve a level of autonomy.

5. Case Study: Parcel Delivery
5.1. Parcel Delivery

This application is one that has received considerable attention by society. We consider
parcel delivery as one of the key BVLOS application in industry. In this section, we present
a case study to highlight the requirements for a fully autonomous UAS for parcel delivery.
We consider autonomy a capability that goes beyond waypoint navigation. As a first
step, we consider a UAS with two onboard computers. The first, a type of embedded
computer (autopilot) which handles most of the flight-critical related tasks. We assume
the autopilot has an architecture similar to the one presented in Table 3, which are the
most common architectures used in recent years. The second, a mission board (sometimes
referred as companion/payload computer) that handles non-flight critical tasks (most high
level tasks). This computer has a small form factor typical of industrial embedded PCs
such as PC104, mini-itx, Atom®or Edison® boards [36,93,94]. In Table 4, we extend on our
analysis presented in Section 4 (Table 2) by describing the considerations and assumptions
for each of the onboard tasks suggested for a parcel deliver drone.

Table 3. Common off-the-shelf autopilot for unmanned aircraft under 20 kg.

Autopilot Embedded System

MicroPilot 1 150 mips RISC processor
Pixhawk® 2 32-bit ARM Cortex-M7 core with FPU and DSP, 216 MHz. 512 KB RAM. 2 MB Flash
APM 2.6 3 Atmel’s ATMEGA2560: 8-bit AVR RISC 256 KB ISP flash memory

OpenPilot CC3D 4 STM32 32-bit microcontroller/90 MIPs–128 KB Flash/20KB RAM
F3 Flight Controller 5 32-bit ARM Cortex-M4 core/72 MHz–256 KB/2 MB Flash

OcPoC 6 Xilinx Zynq (ARM dual-core Cortex A9/1 GHz–85 K S7 Xilinx FPGA)
1 http://www.micropilot.com/products-mp2028-autopilots.htm (accessed on 4 February 2021); 2 https://docs.px4.io/v1.9.0/en/
flight_controller/pixhawk4.html (accessed on 4 February 2021); 3 http://ardupilot.org (accessed on 4 February 2021); 4 http://
opwiki.readthedocs.io/en/latest/user_manual/cc3d/cc3d.html (accessed on 4 February 2021); 5 http://seriouslypro.com/spracingf3
(accessed on 4 February 2021); 6 https://aerotenna.com/ocpoc-xilinx-zynq-supports-px4-autopilot (accessed on 4 February 2021).

http://www.micropilot.com/products-mp2028-autopilots.htm
https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html
https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html
http://ardupilot.org
http://opwiki.readthedocs.io/en/latest/user_manual/cc3d/cc3d.html
http://opwiki.readthedocs.io/en/latest/user_manual/cc3d/cc3d.html
http://seriouslypro.com/spracingf3
https://aerotenna.com/ocpoc-xilinx-zynq-supports-px4-autopilot
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Table 4. Assumptions and considerations for each onboard task in parcel delivery UAS.

Task Assumptions and Considerations

Flight control

State Estimation and Stabilization Control Loops Executed on the autopilot. This task is based on a type of Kaman filter. Stabilization is usually
based on linear controllers such as PID.

Actuator Control Executed on the autopilot. Consists of dedicated hardware that translate commands
values into PWM (typically) signals and then sent them to the motors.

Low Level Sensor Readings Executed on the autopilot. Dedicated hardware executing analog to digital conversion,
signal conditioning, sensor sync for internal use.

Telemetry Communications
Executed on the autopilot. Low level routines that packet telemetry data and send it through

a serial interface. It also includes routines for error checking and heart-beat
monitoring. Used by higher level tasks for decision making.

Navigation and Guidance

Obstacle Avoidance + Terrain Following Typically executed in the mission board. Involves the use of sensors such as Lidar
and cameras to create a navigation capability for BVLOS operations [29].

Path Planning and Trajectory Tracking

Executed in the mission board. It is computationally expensive task, requiring dedicated hardware in
most cases [58]. Here, we assume this task deals with the dynamic and kinematic constraints of the

vehicle to generate optimal paths. In this context, this task will generate optimal
trajectories that minimise time and avoid no-fly zones,

Waypoint Navigation

Executed in the autopilot. Computes heading and distance between a list of waypoints.
It generates reference signals for the low level control, normally without dynamic

and/or kinematic considerations. In this context, waypoint navigation will process pairs of waypoints
to generate reference heading and velocity references that are proportional to the distance between waypoints.

Application

Application Specific Sensor Reading
Typically executed in the mission board. Handles the connect/disconnect and reconfiguration of the

sensor(s) being used. In this context, we assume an onboard camera is used for aided navigation
(e.g., perform object detection and QR code recognition to land at the delivery address [95])
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Table 4. Cont.

Task Assumptions and Considerations

Application Specific Camera Tasks

Executed in the mission board. In this context, we assume a type of computer
vision target detection and tracking is used by the UAS to land the drone at the

destination [66]. We assume HD camera with a resolution of
720 p = 1280 × 720 pixels is used in this task.

Mission

Onboard Health Management
Executed in the mission board. In this context, the system will monitor several
onboard subsystems to detect anomalies that can impose risk to the mission.

A type of probabilistic approach for decision making is common in this type of task.

Communication Management

Executed in the mission board. In this context, it will handle routines to re-establish the
communication link in case of comms breakdown, data encryption on-demand and data integrity

monitoring. Metrics computed by this task will define whether data
compression should be adjusted, onboard data storage should be favoured over data transmission, etc.

Decision Making

Executed on the mission board. In this context, it will monitor other subsystems and communicate with other
tasks to gather information that can be used to achieve a given mission goal(s). The overall goal here is to flight

from the warehouse to the delivery address, several decisions have to be considered such as optimal flight
path in consideration of battery level, no-fly zones and parcel weight. During flight, decisions need to be

made in the event of unexpected malfunctions, changes in weather patterns and degradation of comms link.

Computational Resources Management
Executed on the mission board. In this context, it will evaluate the mission priorities at any

given phase of the flight to allocate computational resources to tasks contributing to those priorities. e.g.,
allocate more CPU, GPU, FPGA resources to the detection and tracking task during the landing and delivery phase.

Energy and Storage Management
Executed on the mission board. In this context, this task will monitor the overall power consumption of the unmanned aircraft

to enable/disable subsystems (tasks) based on peak power usage. It will also generate metrics to inform other
tasks whether onboard storage could have priority over data transmission, compression or onboard processing.

Safety

Sense and Avoid (SAA) Executed in the mission board. In this context, this task will use a camera to detect other aircraft and generate
avoidance commands to the low level control [36,69,96]. We assume HD camera with a 1280 × 720 pixels resolution.
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Table 4. Cont.

Task Assumptions and Considerations

Emergency Procedures

Executed on the autopilot and the mission board. Modern autopilots can provide capabilities such as return-to-land
(RTL) or loiter that are configurable in case of telemetry loss, GPS signal loss or excessive wind.

Advanced procedures usually require dedicated hardware and access to additional sensors (cameras, Lidars) to
conduct more elaborated emergency routines [26]. In this context, this task will be executed

in the companion board and the aim is to identify possible landing areas when an emergency landing is required.
Additional, failsafe routines such RTL, Loiter, etc will be autopilot’s responsibility.

Fault Detection and Identification (FDI)

Executed on the autopilot and the mission board. Similar to emergency procedures, modern autopilots can
provide some failsafe routines in case of excessive vibrations, uncalibrated sensors, excessive bias, or failure to read a

given onboard navigation sensor such as accelerometers or gyros. A more elaborated approach could
make use of estimators to detect actuators’ failure [73]. In this context, we assume a type of FDI is

executed on the mission board to detect anomalies in actuators and sensors attached to
this board. This task communicates with the health management task.

Airspace Management

Executed on the mission board. Use of a type of transponder either UHF (VHF) or cellular to
communicate with a network in charge controlling UAS traffic [37].

Interaction with other traffic will have an impact in the path planning and waypoint navigation,
therefore this task will communicate with other subsystems to help in the decision making during flight.
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From Table 4, we can observe that a number of tasks that are executed on the autopilot
(7) and on the mission board (13), respectively. Intuitively, the autopilot deals with a smaller
number of tasks compared with the mission board. In practice, most autopilots listed in
Table 3 can handle this amount of computational requirements. However, the mission
board will be running a number of tasks ranging from image processing and path planning
to online estimators and decision making. We can already observe, although qualitatively,
that unmanned aircraft with high UAS AL will require significant computational capability
either in the form of customized hardware or commercial-off-the-shelf computers.

5.2. Assessing Task Computational Resources Requirements

Future UAS applications such as parcel delivery will require computing resources
with different processing capabilities as highlighted in Table 4. Using the set of metrics
we provide in Table 5, an indication of the complexity and resources required by some of
tasks on an unmanned aircraft conducting a mission such as parcel delivery can be gained.
Due to the number of possible implementations for a given task, it can quickly become
impractical to provide a comprehensive list, however the implementations presented in
Table 5 represent good indication of the computational loads expected for this application.

With regards to Table 5, we first consider the type of parallelism (Col. 2) using a couple
of metrics that have a strong impact on the efficiency of the target execution platform. The
type of parallelism focuses the usual difference between instruction and data streams [97].
In practice we consider control (C) (e.g., task) and data (D) parallelisms where we indicate
the granularity of processed data that can be scalars (S) or vectors (V). We also mention
the dominant hardware-independent parallelism model (Col. 4) by means of standard
skeletons [98] at data (map, fork) or task (sequential, farm, pipe) levels. The resolution
type (divide and conquer, branch and bound) is introduced as a type of “Dwarf” (Col. 5)
according to the Berkeley classification [99], which is based on 13 typical families (called
“Dwarves”) of benchmarks that aim at extracting processing and memory accesses patterns.
Another indicator (Col. 3) is the main performance limit in terms of memory bandwidth or
latency, number of processing elements, or the use of parallelism specified by designers.
Beyond the distinction between scalar and vector, another important metric for the selection
of the execution platform is the data format and so the type of computing that may or may
not take advantage of FPU units to get the required accuracy (Col. 6).

An exact study of computation load in terms of operations would require the complete
specification of the different tasks with a common high-level language to compute accurate
parallelism metrics as described in [100]. This is hardly possible in practice because, firstly
performances are strongly context-dependent, secondly most of application specifications
are implemented using different programming languages in most cases not freely available,
and finally new release versions with different implementation styles are regularly pub-
lished. Our objective was not to measure the exact computation load which is fluctuating
by definition but to provide an estimation within a range. We have considered and studied
a selection of influential papers and contexts for each task to extract best and worst cases
in terms of computing load. The context and system parameters (resolution, data rate,
speed) are based on the parcel delivery case study. Finally, we obtain a coarse estimation
of the computation load given as a range [min, max] OPS (Col. 7), which represents a
typical MAC-type or FPU operation. This metric can be used to compare the complexity
of functions required by mission, application, navigation, flight, safety, etc. Finally, based
on the previous criteria, a designer can evaluate the matching degree of computation load
with typical architecture models such as single or multi-CPU, FPGA or GPU. Multiple
choices are possible when different tasks compete in terms of requirements. We have
previously suggested a number of tasks that will increase onboard autonomy making the
parcel delivery application more robust and dependable. Some of these tasks and possible
extensions are now assessed in Table 5 using a number of metrics to attempt to provide an
indication of the computational load of the overall application. We provide insights on this
table and draw some perspectives about the target hardware architecture in Section 6.
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Table 5. UAS tasks for the case study: computation metrics are based on representative references and published metrics.

Parallelism Performance Parallelism DWARF FPU OPS HW Target

Type Limitation Skeleton Comput. Type Needed (Context) MCU FPGA GPU

Control Mem. BW (MB)/Lat. (ML) FARM/PIPE Berkeley Classif. Instr./s.
UAS Task Data (Scalar, Vect.) Paral. (PL)/Comput. (CL) SEQ/MAP Attempt [99]

Flight

Trajectory Control D(V) CL MAP Dense Linear Yes [100 M–2 G] × × ×
(GPS/INS Filters) [39] Algebra (DLA)

Navigation / Guidance

Egomotion Optical Flow [101] D(V), P(V) ML MAP, PIPE DLA No [1 G–10 G] × ×
ORB-SLAM D(V), P(V) MB, PL MAP/PIPE DLA ; Graph No [500 M–2 G] × ×

Monocular [102] FARM Traversal (GT)

Obstacle Avoidance C ML SEQ Structured Yes [100 K–1 M] ×
2D Lidar [29] Grid

Mission Plannning C, D(V) ML, CL MAP GT No [100–500 M] ×
Multi-Objective [103] FARM

Path Planning BFS [104] C, D(V) ML, CL MAP/FARM GT No [100 M–1 G] × ×
Safety

Vision-based D(V), P(V) ML, CL MAP DLA No/Yes [2 G–8 G] × ×
Collision detection [36] PIPE

Visual-Sense and Avoid [96] D(V), P(V) ML, CL MAP, PIPE DLA No [3 G–10 G] ×
Actuator Fault Detection [73] D(V) CL MAP DLA Yes [10 M–20 M] ×
Emergency Landing CTL [26] C PL FARM DLA Yes [100 M–1 G] ×
Landing Site Detection [105] D(V), P(V) CL FARM / PIPE DLA No [200 M–2 G] ×

Application

Object Tracking (DTL) [66] D(V), P(V) PL, MB, CL FARM, PIPE DLA No [5 G–10 G] × ×
QR Code [106] D(V), P(V) MB MAP Combin. Logic (CL) No [1 M–5 M] × ×

R-CNN People Tracking [107] D(V), P(V) MB, CL MAP/PIPE DLA (Yes) [2 G–10 G] × ×
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Table 5. Cont.

Parallelism Performance Parallelism DWARF FPU OPS HW Target

Type Limitation Skeleton Comput. Type Needed (Context) MCU FPGA GPU

Mission

Health Management [33] D(S), P(S) MB PIPE Graphical Model (Yes) [10 M–50 M] × × ×
Online POMDP Solver [108] D(S), P(S) CL PIPE Monte Carlo Yes [200 M–7 G] × ×

Discovery DL [109] D(V), P(V) MB, CL MAP / PIPE DLA (Yes) [5–40 G] × ×
RT Scheduling and D(V) PL SEQ, FARM Branch and Bound No [500 M–1 G] ×

Resource Allocation [110]

Video encryption [67] D(V), P(V) ML, MB PIPE CL No [0.75–10 G] ×
Online Energy Management [111] D(V) PL SEQ Global Optimization Yes [0.5 M–3 M] ×
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6. Addressing the Computational Gap for High Levels of Autonomy

Table 5 allows us to draw some conclusions about the type of computing resources that
would be necessary to execute a number of tasks in order to reach a given autonomy level.

6.1. Embedded Computing Requirements
6.1.1. Computation load

This parameter can exceed 110 giga floating-point operations per second (GFLOPs)
when several applications run simultaneously. Currently, this type of performance is not
accessible on embedded devices due to SWaP constraints. Recent peak performances
on state-of-the-art GPU, CPU and FPGA seems promising reaching TFLOPS for basic
operations [112]; however, these scores are far from those when real-world applications
are considered. One of the main reasons is the memory wall, which prevents the full
exploitation of the theoretical parallelism. Some dedicated architectures such as FPGA
can meet performance expectations for some specific applications. For instance, a generic
solution for deep-learning is proposed in [109] reaching 84 GFLOPs with the large and
costly Virtex 7 device. In [113], the authors report impressive peak performances of 636
GFLOPs using an implementation of the Caffeine Deep Learning with the same device.
They also show performance and energy gains over a 12-core Xeon server of 7.3× and
43.5×, respectively. Whilst performance is impressive, FPGAs in these cases run a single
application at the time. Enabling FPGAs for on-the-fly reconfiguration in order to run
several applications would be a highly desirable feature.

Meeting performance expectations with current multi-CPU, GPU or FPGA is difficult
mainly because application’s parameters such as the computation pattern (i.e., Dwarf),
floating-point computations, flexibility and other aspects described in [112], will vary
significantly among applications.

6.1.2. Heterogeneity

Based on the applications in Table 5, we can observe the different processing pat-
terns and parallelism skeletons. However, there is one dominant class which is related
to the “Dense Linear Algebra” Dwarf. It is indeed present in most computer vision ap-
plications that are based on MAP and PIPE parallelism skeletons. It is worth noting that
Deep Learning-based applications also belong to this class. This class requires memory
bandwidth and can benefit from data parallelism to achieve theoretical performances.
Optimization and Decision making applications constitute another significant class of
applications that rely on “Graph Traversal”, “Graphical Models” and “Monte-Carlo” types
of Dwarves. They can also take advantage of FARM skeletons when distinct parts of
the search space can be explored in parallel. Moreover, video processing and encryption
are typical applications that can require high-speed processing rates, they belong to the
“Combinatorial Logic” class and can take advantage of bit level operations and streaming
data flow.

In summary, the target model of architecture must be considerably efficient to han-
dle different types of processing schemes which means a hybrid model system on chip
might be required. We also note that a enough flexibility is required to enable/disable
the appropriate set of applications and configurations depending on mission phase and
requirements. Beyond processing capabilities, the target embedded system must be flexible
and optimized requiring advanced OS features and middleware to manage hardware and
software reconfiguration as well as health and QoS functions.

6.1.3. Memory Resources

Tasks such as computer vision, graph traversal and machine learning [114] are intrin-
sically memory-intensive. It results in highly critical on-chip storage as well as bandwidth
requirements to access off-chip memories. Moreover, real-time computer vision means
high bandwidth and low memory latency when reaction time matters (visual control,
sensor fusion, fast detection). Three challenges are currently being addressed in this area,
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the memory wall problem, the on-chip/on-board memory static power consumption and
overall memory capacity limits.

6.1.4. Power Consumption

Depending on the type of UAS, the available power for embedded systems, sensors
and communication links, may vary from few units (e.g., small hexacopter running on
battery) to hundreds of Watts in large UAS. As a representative upper bound case, Bo-
real [115] is a civilian 4.2 m fixed-wing UAS with gasoline propeller, a payload of 5 kg
and a power generator that can continuously deliver 100 W over 8 h. Based on the Top500
list [116], an efficiency value of 1 GFLOPS/W can be considered as a worst case scenario.
An efficiency of 10 GFLOPS/W should be the target. This target is not possible with current
CPU devices, but it can be achieved by FPGAs with dedicated architectures [117]. However,
this optimization is nevertheless possible at the cost of re-designing the architecture every
time the applications change.

6.2. Architecture Requirements and Proposal
6.2.1. Architecture Model

As mentioned earlier, none of the processing architecture models (CPU, GPU, FPGA,
dedicated HPC accelerators) can by themselves meet the expected performances required
when a set of applications are running simultaneously. For instance, FPGAs can perform
extremely well for applications that do not require floating point units (some types of com-
puter vision) or computational logic applications such as encryption, providing the best
power efficiency and I/O bandwidth. When floating point units are required, or efficiency
in fixed point application is needed, then GPUs are well suited [112]. This is a typical
case in the higher stages of computer vision processing after pixel level pre-processing,
in some estimation problems, dense linear algebra methods and some deep learning appli-
cations. The computing capabilities and efficiency of embedded GPUs are still advancing
and should be considered in any hybrid SoC. Finally, multi-core architectures are suit-
able when task/application management is required. Task activation/de-activation or
re-configuration depending on the mission context is a process generally well managed by
the operative system which traditionally uses the CPU for this purpose. Multi-core archi-
tectures are also the best for controlling sensors, managing communications, energy and
handle complex HPC FARM-type applications such as multi-objective mission planning.

Data access or bandwidth is another key parameter that can increase when multiple
cameras (multispectral and/or high definition) or additional sensors such as Lidars are
considered. This implies that a possible computing architecture should have numerous and
large on-chip memories requiring multiple controller ports to access memory. A Network-
on-a-Chip (NoC) is an attractive solution that offers the expected bandwidth and allows
multiple concurrent data transfers between distributed processing or storage resources.
NoCs can handle dataflows that use both packet and circuit communications protocols.
They are also well suited to handle mixed criticality flows [118] jointly with OS (criticality
of tasks), for example safety tasks cannot be superseded or slowed down by other tasks.
As previously suggested, multiple processing architecture models should co-exist within
an embedded HPC system in order to meet expected processing demands of multiple
applications running simultaneously. However, factors such as memory models (shared,
dataflow), energy consumption, synchronisation, race conditions and data dependencies
are difficult to trade-off in a multi-architecture processing system. Furthermore, the nature
of parallelism, e.g., whether a program can be parallelizable or not (Amdhal’s law), will
define the efficiency in a multi-processor model. As an alternative, we propose that a
CPU-FPGAs architecture would overcome some of these limitations by being able to
be dynamically reconfigured (FPGA dynamic reconfiguration). FPGA Dynamic Partial
Reconfiguration (DPR) allows to reduce the FPGA size (large FPGAs are costly) and to
maximize its use. DPR can be seen as a tile-based FPGA with multiple configuration ports
that work like many embedded FPGAs in a single chip. A tile-based FPGA architecture
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also allows power gating when a resource is unused. It is also worth noting that available
parallelism will be efficiently exploited is this approach if combined with a dedicated
NoC that provide performance and flexibility comparable to NoC designed for multicore
architectures [119] and not a light NoC [120] optimized but degraded to fit with FPGA
resource. In terms of applications, FPGA still remains complex to program. The application
complexity (design programming language) issue can be solved with an upgradeable
library of IP cores designed for a set of standard functions/routines that will be mapped to
the tiles on demand. To conclude, autonomy requires embedded intelligence. This means
that complexity will grow over time including more sensors, data and more processing.
In the UAS case, it means that SWaP will likely lead to FPGAs with DPR capabilities.
The objective is then to design an architecture and programming methodology that makes
this evolution possible and efficient.

6.2.2. Towards Hybrid Reconfigurable Systems

The common approach in unmanned aircraft is to separate autopilot and mission
boards. The autopilot is the reptilian brain of the aircraft, it is charge of critical basic
tasks such as engine control, flight control and low-level signal processing and sensor
fusion. The mission board is in charge of higher level and less critical tasks. Figure 6
visually depicts this approach. The autopilot can be one of the standard solutions given
in Table 3. A mission board is based on an embedded multicore device that also includes
a GPU co-processor (e.g., Odroid-based Exynos5 chip). These heterogeneous computers
by themselves unfortunately do not meet the performance requirements of embedded
computing for autonomy (Table 5). The solution will not be offered from this generation of
such devices because of the energy efficiency and memory walls. An alternative approach
will be to enhance this heterogeneous computers with reconfigurable hardware. This is the
case of our proposed design for the mission board (see Figure 7).
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Figure 6. Architecture model for a reconfigurable autopilot board. Interaction and overview of the mission board is detailed
in Figure 7.

A promising option would be to include an FPGA on the autopilot board as proposed
by OcPoC [121]. Here the objective is not HPC, but to mainly take advantage of the
FPGA flexibility to configure I/O connections according to a choice of sensors. Moreover,
the FPGA also offers a solution to efficiently and locally implement computations related
to basic and low data-rate sensors such as IMU, infrared, ultrasonic or optical flow. The
Mission board is in charge of high-level tasks and intensive embedded computing. Based on
our analysis we come to the conclusion that a hybrid and reconfigurable architecture with
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an efficient communication network is a promising architecture model. Considering the
dynamic context of UAS missions, such a model can offer expected energy efficiency and
performances to run many tasks (e.g., image processing, machine learning, graph traversal,
etc.) that can fully benefit from FPGAs. Thus, each task can be dynamically configured
in the reconfigurable hardware area of the FPGA according the mission requirements.
Figure 7 presents an overview of this architecture model.
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Figure 7. Model of reconfigurable hardware architecture for the mission board. Note the hybrid approach for the mission
board, CPU, GPU plus reconfigurable FPGA.

Heterogeneous SoC including GPU, multi-CPU and FPGA are already emerging.
For instance, the Xilinx Zynq UltraScale+ EV is an example of such architectures designed
for markets such as automotive (Advanced Driver Assistance Systems (ADAS)). However,
some work still needs to be done in order to include NoC, more on-chip memory and a
tile-based FPGA architecture that allows fast and concurrent reconfiguration as well as
power gating.

Going in that direction, Xilinx has released in 2020 the heterogeneous Versal archi-
tecture [122]. This architecture actually implements a tile-based approach with an NoC
to provide high-bandwidth and fast link to memories. This technology is dedicated to AI
and 5G applications and it is implemented alongside conventional sub-systems such as
CPU and configurable logic. A unified programming model is required for such complex
heterogeneous system, in that domain OpenCL [123] is a promising initiative that paves the
way to such a global approach. As an example of this proposed new architecture, we have
started the development and test of dynamically reconfigurable hardware. We use ROS and
interface it with the FPGA to take advantage of partially and dynamically reconfigurable
hardware [124]. Such a complex system can only be developed by combining efforts and
contributions from the research community. We believe the open-source community could
be key in future development of this technology for general robotics applications.

6.3. Impact on UAS Design Methodology and Opportunities

New embedded computing architectures will have an impact in the overall UAS
design. Traditionally, UAS design follows a Systems Engineering approach in which
requirements and constraints are mapped into the avionics design [125]. For instance,
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Sandraey [126] lists fifty steps in their UAS design process which performs a hierarchical
grouping of aircraft subsystems (wing, tail, engine, landing gear, structural configura-
tion, autopilot) which are themselves decomposed into sub-subsystems and subject to
optimization each. Interestingly, this approach rarely considers the payload and/or em-
bedded computing system configuration and design in the process, as if flying was the
only purpose of the mission. A similar approach was proposed by Schumann et al. [127] by
associating a scenario-based statistical simulation to a quantified hierarchical description
of the system to evaluate a global cost vs. interest of a UAS configuration.

More recently, Integrated Modular Avionics (IMA) design philosophy has been used
in unmanned aircraft. This approach has a broader view on the system and takes into
account not only aerodynamics and flight control but the embedded system and payload
configuration. This approach has a long history in aviation [128]. This design approach
favours the use of COTS hardware, follows software engineering practices such as code
reusability, portability and modularity, and integrates safety, security and partitioning
standards as well. All these design principles are now being adopted in a new generation
of UAS (large, mini or micro).

Based on the observed design trend, we expect that IMA design philosophy for
unmanned aircraft will continue to grow by using more COTS available systems. The emer-
gence of more readily available software binaries for CPUs/GPUs or bitstreams for FPGAs
will facilitate this process.

Towards Service Oriented Architectures (SOA) for Flexible and Adaptive Unmanned
Aircraft Embedded Systems

The heterogeneity of missions envisaged for the use of UAS, some which are men-
tioned in Section 2, means that system modularity and flexibility must be a major design
criteria. In this context, an SOA model for the onboard embedded system offers major
benefits as a design philosophy. The definition of SOA has its origins in web services and
applications. When extended to unmanned aircraft real-time onboard sub-systems, this
model, as discussed in [129], raises several critical questions relating strict compliance with
real-time and safety constraints.

The design philosophy depicted in Figures 6 and 7 is based on a layered architecture
model for interconnection of aircraft subsystems. This model aims at providing the same
level of modularity and flexibility of IMA systems [130]. It also relies on the separation
between the flight control system and the mission processor unit that controls a Mission-
Oriented Sensor Array (MOSA). The physical separation of boards in charge of flight
control and mission/application is motivated by safety and mission-flexibility requirements.
For instance, including all tasks/applications (excepts for those that are low level such
as flight control and stabilization) on a single but highly configurable SoC such as [122]
would meet design and performance requirements. However, our proposal, which shares
some features with [122], extends this philosophy to the unmanned aircraft autopilot and
mission boards.

Such an architecture will benefit from off-the-shelf SW libraries and HW IPs, as well
as from a single common high-level specification that can be compiled for three different
targets such as FPGA, GPU and multicores. OpenCL has recently emerged as a promising
unique specification which is already available on Xilinx and Altera-Intel tools. However,
currently it still requires a high level of hardware expertise to reach expected perfor-
mances [123]. Traditionally, the development of tools and libraries is driven by mass and
high-growth markets. Luckily, the UAS field is one of such markets. Significant progress
is for instance already visible for application domains related to UAS such as computer
vision and machine learning.

Flexibility, safety, robustness, power consumption are all attributes that will shape the
computing architecture design, however we believe energy efficiency and performance
will drive the design and adoption of reconfigurable hardware. Therefore, efforts should
be place in the safe control of the online HW/SW reconfiguration process (reconfigura-
tion controller). A promising solution is to rely on autonomic computing techniques and
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formal methods to warranty the safe behaviour of the reconfiguration controller. A prelimi-
nary work on the reconfiguration controller using generic FPGA hardware is presented
in [131,132]. In this paper, we use these concepts but focus a the hardware proposal that
could be used by such reconfiguration controller. In [131], we present Discrete Controller
Synthesis techniques to automatically generate a correct-by-construction automata that con-
trols the loading of FPGA bitstreams at runtime. It is extended to the case of UAS in [132].
This is an important advance that will benefit greatly the creation of highly autonomous
aircraft by making them more capable in terms of computing capabilities.

7. Conclusions

UAS are expected to provide a large set of valuable services in the near future, but the
emergence of such services is conditional on autonomy levels since many of these services
are likely to be beyond line-of-sight operations. These type of operations will require strict
adherence to safety and regulation standards (not discussed in this paper).

This work has presented an analysis of the type of tasks that will be required to reach
a desired level of autonomy, and the implications on the computing requirements to reach
that level. We have provided insights on how these autonomy levels could be quantitatively
mapped. This metric is not intended to be exhaustive, this is beyond the scope of this
paper. However, by assigning quantitative values to each axis in Figure 1, an autonomy
level required for a mission could be indicated. This autonomy level has implication on the
computing resources available onboard. Using a case study, our study has relied on the
analysis of state-of-the art typical applications that we consider as representative of tasks
of the five identified categories namely: flight control, navigation/guidance, application,
mission and safety. Based on our analysis and considering SWaP constraints, we come to
the conclusion that a heterogeneous architecture with reconfigurable hardware would be
highly applicable. This is even more the case for small-size vehicles.

We believe that UAS designers must now consider the embedded system as a core
piece of the system. Similar to the emergence of FPGA-based architecture in data centres,
the use of reconfigurable computing is a solution to the required performance with optimal
energy efficiency. Such application domains should strongly favour the development of
more efficient heterogeneous architectures and programming tools.
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