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Abstract: Piezoelectric ceramics are inexpensive functional materials which are widely used in sonar
detection, home appliances, meteorological detection, telemetry and environmental protection and
other applications. Sensors fabricated from these materials are compact and have fast response
characteristics. Their underlying functional methodology is based on the direct piezoelectric effect
whereby very small mechanical vibration signals are converted into electrical signals. Piezoelectric
resonators are based on the reverse piezoelectric effect and they are widely used for the control of
precision instruments and precision machinery, microelectronic components, bioengineering devices
and other in applications requiring components to provide precision control of the relevant functional
mechanism. In this paper, the structural evolution and design mechanism of sandwich resonators
based on piezoelectric materials are reviewed, and the advantages and disadvantages of different
structures are compared and analyzed. The goal is to provide a comprehensive reference for the
selection, application and promotion of piezoelectric resonators and for future structural innovation
and mechanism research relevant to sandwich resonators.

Keywords: piezoelectric resonators; piezoelectric ceramics; piezoelectric effect; sandwich structure;
structural evolution; energy conversion

1. Introduction

Piezoelectric ceramics are functional ceramic material exploiting the piezoelectric
effect. They enable conversion between mechanical and electrical energy. The difference
between piezoelectric functional ceramics and traditional piezoelectric quartz crystal mate-
rials [1–4] mainly lies in the crystal phase of the main components. The traditional typical
piezoelectric quartz crystal does not contain ferroelectric components while all piezoelectric
functional materials have ferroelectric grains. Ceramic materials are polycrystalline aggre-
gates with randomly oriented grains and, therefore, the spontaneous polarization vector of
each ferroelectric grain in piezoelectric ceramic materials is also disorderly oriented. Such
a state of disordered orientation cannot display macroscopic piezoelectric characteristics.
The modification of the microscopic intrinsic random orientation of piezoelectric functional
materials is an important issue affecting the overall macroscopic piezoelectric properties.
Once a piezoelectric functional ceramic has been produced, the end face of the material is
treated by a composite electrode and the external strong dc electric field is used for polar-
ization treatment. That is, under the action of an external electric field, the polarization
vectors of the original random orientation are preferentially aligned along the direction
of the electric field. After eliminating the external strong dc electric field, the polarized
piezoelectric ceramic material will retain part of the macro residual polarization strength,
so that the ceramic material has certain piezoelectric characteristics [5,6].

The piezoelectric effect was first discovered by Pierre Curie and Jacques Curie [7–9]
for tourmaline in 1880. Subsequently they experimentally verified the existence of the
reverse piezoelectric effect and determined the direct and reverse piezoelectric effect
constants. Voigt [10] found the piezoelectric effect of dielectric materials. Langevin [11–16]
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used quartz materials to develop underwater ultrasonic detectors for the detection of
enemy submarines. In 1920, Valasek [17–20] proposed the concept of “ferroelectrics” after
Rochelle salt was discovered. The first piezoelectric ceramic devices were Barium-titanate
pickups [21] and these were developed in 1947. Piezoelectric ceramics are classified into
four categories [22] according to their crystal structure: perovskite structure, tungsten-
bronze structure, bismuth layer structure and pyrochlore structure. However, there also
exists and alternative classification scheme [23] based on different basic components. They
are unit system ceramics, binary system ceramics [24–27], ternary system ceramics [28–32],
quaternary system ceramics [33–36] and other system ceramics.

At present, most tag names of the piezoelectric ceramics on the market are based
on different Barium titanate components and PZT4i-PZT8i (or P4i-P8i, i = 1, 2, 3 . . . ) are
recognized as the mainstream names due to their different applications. P4 is used to
launch or receive signals. P5 is mainly used for drive and detection. P6 represents high
stability. P7 stands for high frequency and Lead Zirconate Titanate. P8 is always used
for high-power applications. The existing different ceramic types, together with typical
applications and their characteristics [37] are summarized in Table 1.

Table 1. Types, applications and characteristics of different piezoelectric ceramics.

Ceramic Type Material Name Applications Characteristics

Soft PZT ceramic

PZT-51 low-power ultrasonic transducers

large piezoelectric constants; high
permittivity, large dielectric
constants, high dielectric losses,
large electromechanical coupling
factors, low mechanical quality
factors, a low coercive field, poor
linearity, easy to depolarize.

PZT-52 low-frequency sound transducers

PZT-53 applications with high coefficient

PZT-5H microphones, vibration pickups
with preamplifier

PLiS-51 low-frequency vibration
measurements

PMgN-51 Hydrophones, transducers in
medical diagnostics

PSnN-5 Actuators

Hard PZT ceramic

PZT-41 small piezoelectric constants, low
permittivity, small dielectric
constants, low dielectric losses,
small electromechanical coupling
factors, high mechanical quality
factors, high coercive field, good
linearity, hard to depolarize.

PZT-42 High-power acoustic applications

PZT-43 Hydroacoustics, sonar technology

PZT-82 piezomotor

PCrN-4

PBaS-4

Lead free
Piezo Ceramic BaTiO3

Ultrasonic transducers suitable
for low-temperature underwater,
for example Ultrasonic
Transducer in fishfinder

Low density, low curie temperature,
lead free.

In addition to the dielectric and elastic properties of common dielectric materials,
piezoelectric ceramics also have piezoelectric properties. After polarization treatment,
piezoelectric ceramics display anisotropy such that the values of each performance pa-
rameter differ in different directions. It makes the number of performance parameters
of piezoelectric ceramics much more than the general isotropic dielectric ceramics. The
performance parameters of piezoelectric ceramics are the important basis for its wide appli-
cation, such as elastic compliant constant, dielectric constant, dielectric loss, quality factor,
electromechanical coupling coefficient and piezoelectric constants, etc. These isotropic and
anisotropic performance parameters of different piezoelectric ceramics [37,38] are summa-
rized in Table 2. However, there may exist slight difference between the reference values of
Table 2 and the actual values encountered in practice due to different production formulas
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being used in different factories. Manufacturers provide data sheet of their particular
calibrated values.

Table 2. Performance parameters of piezoelectric materials.

Material P-41 P-51 P-81 PbaS-5 BaTiO3 PZT-5X

Elastic compliant constant
S11

(10−12 m2/N) 12 16.7 11.1 13.5 8.4 19

Dielectric constant ε 1050 2200 1000 1650 1550 4500

Dielectric loss tg(%) <0.3 2 0.5 0.5 0.5 2

Quality factor Qm 1000 80 800 1800 1300 65

Electromechanical coupling
coefficient

kp 0.58 0.62 0.52 0.59 0.34 0.7
k31 0.34 0.35 0.3 0.34 0.196 0.4
k33 0.66 0.69 0.6 0.6 0.43 0.77
kt 0.48 0.5 0.45 0.47 0.32 0.53

Piezoelectric constants

d31
(−10−12 C/N) 113 186 90 150 150 300

d33
(10−12 C/N) 260 600 220 330 330 750

g31
(10−3 Vm/N) 12 10 11.2 10 10 8

g33
(10−3 Vm/N) 28 34 24.8 22 22 17.5

2. Physical Mechanism and Application of Piezoelectric Effect

Piezoelectric properties give rise to the direct and the inverse piezoelectric effect. The
direct piezoelectric effect can change mechanical energy into electric energy, which can
be exploited for piezoelectric sensors, while the inverse piezoelectric effect is used for
piezoelectric actuators because electric energy is converted into mechanical energy.

The piezoelectric effect arises from the molecular structure of quartz [39] as illustrated
in Figure 1. In the figure red circles represent Si (positive charges) atoms and blue circles
represent oxygen atoms O (negative charges). The dotted line displays the original sym-
metric atom constellation existing when no mechanical forces act on the material and the
centres of mass for the positive and negative charges are at the original position. When
tensile or compressive stresses, Fy, act on the structure along its electrical axis Y structural
deformations occur. This gives rise to the charge distribution illustrated in in Figure 1a. The
centres of mass of the positive and negative charges split and a dipole moment is created.
Therefore, the charges can be measured on two opposing surfaces due to this redistribution.
That is the direct piezoelectric effect. The inverse piezoelectric effect arises as a reverse
process of the direct piezoelectric effect. When an external electric field is applied to a
piezoelectric material, the material itself will undergo mechanical deformation. Similarly,
the dipole moment and displacement direction Sy are oriented in an opposite direction
when different external electric fields are applied, as illustrated in Figure 1b.

The deformation of the piezoelectric material is minute, it usually does not exceed
one thousandth of its own size. Due to such small deformation, piezoelectric actuators can
be widely used in the control of precision instruments [40] and precision machinery [41],
microelectronics technology [42], bioengineering [43] and other precision fields [44] to
enable precise control of the relevant mechanism. Piezoelectric ceramics are used as
frequency control devices such as resonators and filters, they have been widely used in
communication systems [45] and they are gradually replacing traditional electromagnetic
equipment. Piezoelectric materials can improve the anti-interference of multi-channel
communication equipment and have the characteristics of high precision, good frequency
stability and wide-band application. For practical applications the required components
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are typically small and light, the materials are not easy to be damped and have a long
service life benefitting mass and cost reduction.
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Piezoelectric ceramics can be used to manufacture piezoelectric igniters [46,47]
(cf. Figure 2), mobile X-ray power supplies [48] or shell detonating devices [49]. A gas
electronic lighter with two thin piezoelectric ceramic columns, instead of an ordinary
flint, can continuously ignite a million times. Similarly, a buzzer made of piezoelectric
ceramics enables alarms or toys to emit different sounds [50–52]. Solvay [53], for example,
manufactures sensors that resemble capacitors in loudspeakers or buzzers, which on the
application of an external force result in the development of an electromagnetic field. Piezo-
electric ceramics transforming electric energy into ultrasonic vibration can be exploited
to explore the location of fish, enable ultrasonic cleaning, non-destructive testing of metal
and ultrasonic medical treatment. It can also be used in the context of various ultrasonic
cutters, welding devices and soldering irons to process plastic and metal.

Piezoelectric ceramics are sensitive to external forces and convert extremely weak
mechanical vibration into electrical signals. With this characteristic, piezoelectric ceramics
are widely used in sonar systems [54]. These can also detect fish groups or explore
seabed topography, etc. In the military field, all submarines are equipped with sonar
systems referred to as “underwater scouts”. These devices are indispensable equipment
for underwater navigation, communication, reconnaissance of enemy ships, cleaning up
enemy mines, and a powerful tool for the development of marine resources. Sonar systems
contain a core component that is the piezoelectric ceramic underwater acoustic transducer.
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When the acoustic signal emitted by the piezoelectric transducer arrives at an underwater
target, it produces a reflection which is received by another receiving underwater acoustic
transducer enabling target location. Currently piezoelectric ceramic remains to be one of
the best materials for manufacturing underwater acoustic transducer [55–58]. Another
application is the piezoelectric ceramic sensor [59]. This is used to measure the change of
chamber pressure and the pressure of the muzzle shock wave at the moment when a bullet
is fired. They can measure both high pressure and low pressure. AAC Technologies [60]
manufactures integrated micro-component solutions, which provide acoustic and non-
acoustic components. The two types of piezoelectric ceramics solutions, piezo actuators and
touch sensors, are used in cell phones for feedback through vibrations and are advantageous
due to their low power consumption and quick response ability.
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Figure 2. Structure of typical self-powered overload ignition device.

Doctors use piezoelectric ceramic probes [61], such as that shown in Figure 3, to
examine parts of the human body. To this end ultrasonic waves are emitted and sent to the
tissue of the human body to generate an echo. The echo is detected and displayed on a
fluorescent screen, so that doctors can understand the internal condition of the human body.
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Figure 3. Medical ultrasonic transducer.

Piezoelectric gyroscopes [62–65] fabricated from piezoelectric ceramics, illustrated
in Figure 4, are attached to the rudder of spacecraft and artificial satellites, and thereby
guarantee a stable fixed route. Traditional mechanical gyroscopes, with short life, poor
accuracy, and low sensitivity, cannot meet the requirements of modern spacecraft and
satellite system. However, piezoelectric gyroscopes are sufficiently small and have high
sensitivity and reliability. CEDRAT Technologies [66] produces such piezoelectric smart
materials under the brand name APA, SPEED SENSOR, PPA, APA400M-MD, CAu10,
CAu20, SPC45, APA60SM and others, which can be found in airplanes, helicopters, missiles,
military vehicles, Micro aerial vehicles (MAV), satellites and nano satellites, spacecraft,
Unmanned aerial vehicles (UAV).
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Geological detectors with piezoelectric ceramic elements [67,68] are used to judge the
geological conditions of the strata and explore underground mineral deposits. Piezoelectric
ceramic sensors play an important role in the measurement of detonations caused by
the mismatch of combustion pressure, vacuum, and ignition angle in automobile engine.
Another common application of piezoelectric ceramics is the type of ceramic transformers
illustrated in Figure 5 [69–71], which is smaller in volume and lighter in weight than
traditional instruments. Their efficiency can reach 60~80%. They can withstand high
voltages of 30,000 volts and keep the voltage stable. Arkema [72] developed a range of
ultra-high added value electroactive fluorinated polymers.
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In addition to the companies referred to above, there are many other famous com-
panies [73,74] producing piezoelectric ceramics and related products in the world. For
example, Kyocera [75] developed an innovative piezoelectric actuator audio “Smart Sonic
Sound”, which was utilized in a flat-screen television for the first time by LG. Vesper
Technologies [76], with origins at the University of Michigan, has a major leap over the ca-
pacitive MEMS microphones that have dominated the market for over a decade. Cambridge
Touch Technologies (CTT) [77], from the Centre for Advance Photonics and Electronics
(CAPE) of Cambridge University, has developed a next generation 3D touch technology
enabling mobile devices to sense both the location and force of multi-touch inputs. This
improves on the first generation of 3D technologies and is more scalable and cost-effective
without any decrease in battery life.

In summary, resonators made of piezoelectric ceramics are ubiquitous in a wide range
of applications across many different fields. It is no exaggeration to say that it is everywhere
and indispensable in our daily life. Therefore, it is crucial to be familiar with the underlying
principles of their operation and their mechanical structure, whether it is for high-end
equipment or devices of daily use.

3. Theoretical Mechanism of Numerical Simulation

The typical sandwich structure in a cymbal transducer usually includes two endcaps
and one piece of piezoelectric ceramic. The core component may be one of the three struc-
tures. That is a piezoelectric ceramic sheet, a piezoelectric ceramic sheet with a metal ring
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or a piezoelectric ceramic ring. In this section the theoretical mechanisms and electrome-
chanical equivalent principles of these common structures will be introduced separately.

3.1. Piezoelectric Ceramic Sheet

The polarization direction of the piezoelectric disk and the direction of the excitation
of the electric field are assumed to be orientated along the axis of the disk (z axis of the
coordinate system in Figure 6). In Figure 6, the nomenclature for the components of
piezoelectric ceramic disc is as follows: disc thickness h, disc diameter a and radial force F.
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Figure 6. Schematic diagram of piezoelectric ceramic disc.

For the design and analysis of a transducer, the equivalent circuit based on Kirchhoff’s
law [78] is a simple and intuitive effective analysis method. The expressions for radial
vibrations of the disk, equations of state of the piezoelectric medium and boundary con-
ditions can be found in the reference [79–81]. The combination of equations enables to
represent the oscillating resonator in the form of an equivalent circuit (Figure 7).
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The values of the quantities in Figure 7 were described in detail by the formulas in
References [80,81]. Then, the relationships in Figure 7 can be expressed as,

F = Zrva + nE, n =
2πad31

sE
11(1 − v12)

(1)

Zr = j·Za

[
1 − v12

ka
− J0(ka)

J1(ka)

]
, Za = ρESa (2)

I = jωCE − nva, C =
πa2ε

h

[
1 −

2d2
31

ε
(
sE

11 + sE
21
)] (3)

where, Zr is the mechanical impedance and Za is the specific mechanical impedance, Sa is
the area of outer surface, ρ is the density, va is the radial vibration velocity, E is the terminal
voltage of piezoelectric ceramic disk, k is the wave number of radial vibration, Ji represents
Bessel functions and d31 is the piezoelectric strain constant. The quantity n represents the
electromechanical conversion coefficient of radial vibration, v12 is the Poisson coefficient
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of piezoelectric material, I is the current, C is the capacitance, ε is the dielectric constant,
ω is the angular frequency, sE

ij is the elastic compliance constant under constant electric
field strength.

According to the admittance equation, the frequency expressions in Figure 7 can
be obtained. When the conductance is close to zero, the frequency equation in the anti-
resonance state can be expressed as

1 − k2
p +

k2
p(1 + v12)J1(ka)

kaJ0(ka)− (1 − v12)J1(ka)
= 0 (4)

where, kp is the electromechanical coupling coefficient.
When the conductance is close to infinity, the frequency equation in the resonance

state can be expressed as
kaJ0(ka)− (1 − v12)J1(ka) = 0 (5)

3.2. Piezoelectric Ceramic Disc with a Metal Ring

In order to improve the strength and pressure resistance of piezoelectric transduc-
ers, the piezoelectric ceramic sheet is embedded into a metal ring by means of thermal
expansion and cold contraction, as shown in Figure 8. The vibration characteristics and
electromechanical characteristics of piezoelectric ceramic sheets are the same as those in
the Section 3.1.
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The radial stress [80,81] is expressed as,

Fr2 = (Z1m + Z3m)vr2 + Z3mvr3 (6)

Fr3 = (Z2m + Z3m)vr3 + Z3mvr2 (7)

where, Fr2 and vr2 are the force and velocity on the piezoelectric disk, Fr3 and vr3 are the
force and velocity on the metal ring, Zim (i = 1, 2, 3) is equivalent mechanical impedance of
metal ring.

The combination of the metal ring and the piezoelectric ceramic is shown in Figure 8.
In practical application, the piezoelectric ceramic disc is rigidly connected with the metal
ring and the metal end cap. Due to the bending and tension of the end cap and the
complexity of the shape of the end cap itself, it is difficult to obtain the exact analytical
solution of the whole transducer. However, according to the rigid contact between the
inner side of the metal ring and the outer cylinder of the piezoelectric ceramic disk, it has
the continuous conditions of continuous vibration speed and continuous force. Assuming
that the impedance ZM of the metal end cap is known, the electromechanical equivalent
circuit diagram of the piezoelectric material transducer can be drawn, as shown in Figure 9.
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From the electromechanical equivalent circuit diagram in Figure 9, the electromechan-
ical equation of the piezoelectric transducer and the electric admittance relation can be
obtained successively [80,81].

Y =
I
E
= G + jB = jωC +

n2

Zr + Z1m + Z3m(Z2m+Zm)
Zm+Z2m+Z3m

(8)

where, C is direct capacitance, Zr and Zm are the impendence of PZT and metal ring.
The resonance frequency and anti-resonance frequency can be obtained from the

admittance equation.

3.3. Piezoelectric Ceramic Ring with a Metal Ring

The radial composite ultrasonic transducer is composed of a piezoelectric ceramic
ring and a metal ring [82–84]. In Figure 10, the inner and outer radius and thickness of
the metal ring are R1, R2 and h respectively. The inner and outer radius and thickness
of the piezoelectric ceramic ring, polarized in the thickness direction, are R2, R3 and h
respectively. Under the external electric field excitation, the transducer can produce two
vibration modes. When the radius of transducer is much larger than the thickness, the
resonance frequency of the radial vibration is much smaller than that of thickness vibration.
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In Figure 10, according to the same principle, the radial force can be obtained [79].

Fr1 = (Z1m + Z3m)vr1 + Z3mvr2 (9)

Fr2 = (Z2m + Z3m)vr1 + Z3mvr1 (10)

The input impedance Z is

Z =
E
I
=

Zm

N2
31 + jωCorZm

(11)

where, N31 is electromechanical conversion coefficient.
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The input impedance is pure reactance without considering internal loss and load
impedance. Then, the resonance frequency and anti-resonance frequency can be obtained
from Equation (11).

3.4. Cascaded Piezoelectric Transducer

Figure 11 illustrates a cascaded piezoelectric transducer in series with four metal columns
and three sets of piezoelectric ceramic plates [85,86]. Here Pi is the polarization direction, Li is
the length of metal column and pi, li are the number and length of piezoelectric ceramic.
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Figure 11. Cascaded piezoelectric transducer.

When mechanical and dielectric losses are ignored and when the longitudinal size
of the cascaded transducer is much larger than the transverse size, the electromechanical
equivalent circuit of Figure 10 is obtained based on one-dimensional theory.

In Figure 12, ZLi is the mechanical impedance, Vi is the input voltage, Ci is direct
capacitance, ni is the electromechanical conversion coefficient. Then [86],

Ci =
[

piε
T
33

(
1 − K2

33

)
S
]
/li (12)

ni = d33S/SE
33li (13)

Zj1 = Zj2 = jZjtan(k jLj/2) (14)

Zj3 = Zj/
[
jsin(k jLj)

]
(15)

Zpi1 = Zpi2 = jZ0tan(pik0Li/2) (16)

Zpi3 = Z0/[jsin(pik0li)] (17)

Ze = Ze1Ze2Ze3/(Ze1 + Ze2 + Ze3) (18)

where, Zei (i = 1, 2, 3) is the input impedance. εT
33, k33, d33 and SE

33 are the dielectric
constant, the piezoelectric constant, the electromechanical coupling coefficient, and the
elastic compliance constant of the piezoelectric material.
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According to the same method, when the total input impedance is zero or infinite, the
resonance frequency fr and anti-resonance frequency fa can be obtained from Equation (18).
The effective electromechanical coupling coefficient Keffc and mechanical quality factor Qm
can be expressed as

Ke f f c =
[
1 − ( fr/ fa)

2
]1/2

(19)

Qm = fa(Za/Zr)
1/2/[2( fa − fr)] (20)

4. Different Sandwich Structures of Piezoelectric Resonator

Recently a new breakthrough in the application of nanotechnology has led to benefits
for the manufacturing process of piezoelectric materials. Worldwide lead-free piezoelectric
ceramics are now being developed vigorously to protect the environment and pursue
health. Application of piezoelectric ceramic materials in intelligent structures began in
the late 1980s. Scientists from the Pennsylvania State University developed a V-shaped
bent and tensioned cymbal intelligent structure, which is referred to as “moonie” [87–89]
and “cymbal” [90–93] because its shape is similar to the crescent moon. The structures
are shown in Figure 13. The two intelligent structures are similar, both of which are a
piezoelectric ceramic sheet (PZT) sandwiched between two metal end caps. The structure
can effectively transform the small radial vibration of a piezoelectric ceramic sheet into
large axial movement of the metal end cap resulting in the output efficiency being greatly
improved. Patents for these innovations have been applied for.
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In early cymbal intelligent structures, piezoelectric ceramic sheets (PZT) are usually
connected with the metal end caps on both sides by a bonding layer. The adhesives, such
as ethyl α-cyanoacrylate, modified acrylate and epoxy resin, have strength problems and,
therefore, they cannot be used in deep water or in a high-pressure environment. However,
the thickness of the bond layer is bound to have an impact on the performance of the
cymbal. In most studies, the connection between PZT and the metal end cap is simplified
as a spring mass damping system (SMD) [94,95]. When the thickness of the bond layer
is not considered, it will lead to a large error of 12.4% [96]. Wu et al. [97] found that the
different bond strength of different binder materials results in a change of impedance after
bond between adhesive and PZT.

In order to realize the high sensitivity of low frequency acoustic waves, the double-
sided triad-curved hydrophone shown in Figure 14 is simulated and optimized by means of
the COMSOL finite element software [98]. The maximum size of the hydrophone prototype
is 45 mm, and the maximum receiving sensitivity level is −178 dB in the frequency range
of 0.5–2.5 kHz.
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A derivative cymbal transducer in Figure 15 has been designed from rectangular single
crystal material and the whole structure is a sandwich structure with rectangular metal
end caps [99]. This structure can make full use of the optimal crystal plane direction of
single crystal material. Results of a finite element analysis show that the cymbal transducer
has good displacement characteristics, and the hysteresis effect can be reduced by selecting
the appropriate crystal orientation.
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Due to the stress concentration at the inner cavity edge of the bonding layer, the
efficiency of the intelligent structure is relatively low [100,101]. In order to solve a series of
problems in the adhesion of the boundary layer, some scholars have slotted the metal end
cap with circular groove and radial groove, which are shown in Figure 16. Sugawara [102]
proposed that the circular groove structure of metal end cap cannot completely eliminate
the stress concentration, but a further stress concentration on the endcaps will result in
fatigue damage. In addition, the annular groove will also increase the complexity of the
manufacturing process and the manufacturing cost.
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A different type of end cap with radial grooves was proposed by Ke et al. [103,104],
which effectively solves the problem of circular stress concentrations and also improves the
energy conversion coefficient. Following the optimization of the number of slots, the end
cap meets the engineering needs of different fields. However, this type of radial groove
structure is not suitable to resist conditions of high pressure and it can therefore not be
used in applications involving underwater intelligent materials.

The cymbal transducer with pressure compensation [105] in Figure 17 is perforated
on the cymbal end cap to connect the cavity of the end cap with the external liquid. This
structure not only achieve the pressure balance of the cavity, but also improves the static
pressure resistance performance while the static pressure sensitivity is not affected. There
are three perforation schemes. The first involves three uniformly distributed circular holes
near the top of the cone of the conical rotating surface of the end cap. The second has
three uniformly distributed slot holes on the conical rotating surface of the end cap. The
third features three uniformly distributed circular holes near the bottom of the cone. The
experimental results show that the performance of the last two schemes is better than that
of the first scheme.
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Figure 17. The cymbal transducer with pressure compensation.

There is a further pressure compensation scheme in the hub cymbal transducer [106,107],
as shown in Figure 18. In the hub type design, the tangential stress in the end cap is further
reduced, which can improve the energy conversion efficiency and increases the displace-
ment response accordingly. Lin [81,84] proposed to replace the bonding layer by adding a
metal ring structure (as shown in Figure 19) to the piezoelectric ceramic sheet.
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Figure 18. Hub cymbal transducer.
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If cymbal intelligent structure is to be used in underwater applications, especially in
deep-water high-pressure areas, its pressure resistance must be studied. According to the
research of Erman Uzgur [108], the limit pressure of the intelligent structure is determined
by the effective piezoelectric coefficient. As the cavity depth changes, as shown in Figure 13,
the limit pressure of intelligent structure increases. And the material properties and the
device diameter will have an impact on the ultimate pressure.

In order to meet the pressure requirements in deep-water regimes and broaden the
application scope, a piezoelectric ceramic ring is introduced as the core component to
improve the pressure resistance of intelligent structures. Zhang [109,110] proposed a
cymbal intelligent structure with concave end cap. The pressure resistance of the structure
is three times that of cymbal intelligent structure, as shown in Figures 20 and 21. Since
the cavity is immersed in liquid, opening holes on the surface of the metal end cap will
make the pressure inside and outside the end cap balanced. Therefore, there is no pressure
difference to damage the structure.
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Figure 21. Structure with concave end cap.

The dual drive intelligent structure, shown in Figure 22, was first proposed by
Zhang [111] in the 21st century. By applying voltage of different size and phase to PZT, the
structure has directivity (heart or dipole). Subsequently, a piezoelectric ceramic ring was
introduced into it to create a hollow double drive intelligent structure, and patents for this
design have been applied for [112,113].
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Figure 22. Structure diagrams of dual drive cymbal. (a) Two piezoelectric discs (b) Two piezoelectric rings.

In order to broaden the resonance band of intelligent structures, the United States
Navy and China proposed an asymmetric intelligent design [114,115]. The asymmetrical
properties of two sides of PZT make their resonance bands different, resulting in larger
bandwidth. In Figure 23, three types of asymmetric structures developed by the U.S. Navy
are shown. The designs feature an asymmetric shape structure of the metal end cap (b),
different material of metal end cap (c) and different cavity depth on both sides (d). The
first structure (a) originates from China.

Choa [116] adds bolts on both sides of the metal end cap, in order to adjust the
resonance frequency of the intelligent structure, as shown in Figure 24. The studs can be
used as electrodes and increase the mass of metal end caps, so that the resonance frequency
of the intelligent structure is reduced. Tang [117,118] applied this structure to an underwater
launch device. Wang [119] designed a cymbal transducer with multilayer cavity, which
used insulated screws to replace the bond layer in order to increase its intensity. He also
used a piezoelectric transducer array in the underwater large target test [120].
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diameter of the spherical pressure hydrophone is 36 mm, the operating frequency is 50 
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Wu [121–125] also proposed the spherical crown intelligent structure shown in Figure 25.
Research involving this structure revealed that the spherical end cap can improve the
output efficiency and that the design can be applied at increased water depths. Compared
with the traditional cymbal transducer, the axial vibration displacement of the spherical
crown transducer is increased by 4.55% (in air) and 7.78% (in water) by using a spherical
crown metal end cap instead of the traditional cymbal transducer. Meanwhile, the acoustic
emission power is increased, and the fundamental resonance frequency is reduced by
about 4.41% (in air) and 7.86% (in water), which can be used for acoustic detection in lower
frequency bands. The static pressure limit load of the transducer is increased by 9.42%
compared with the traditional cymbal transducer.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 25 
 

 

used insulated screws to replace the bond layer in order to increase its intensity. He also 
used a piezoelectric transducer array in the underwater large target test [120]. 

 
Figure 24. Structure diagram of cymbal with bolt (left) and multilayer cavity (right). 

Wu [121–125] also proposed the spherical crown intelligent structure shown in Fig-
ure 25. Research involving this structure revealed that the spherical end cap can improve 
the output efficiency and that the design can be applied at increased water depths. Com-
pared with the traditional cymbal transducer, the axial vibration displacement of the 
spherical crown transducer is increased by 4.55% (in air) and 7.78% (in water) by using a 
spherical crown metal end cap instead of the traditional cymbal transducer. Meanwhile, 
the acoustic emission power is increased, and the fundamental resonance frequency is 
reduced by about 4.41% (in air) and 7.86% (in water), which can be used for acoustic de-
tection in lower frequency bands. The static pressure limit load of the transducer is in-
creased by 9.42% compared with the traditional cymbal transducer. 

 
Figure 25. Structure diagram of cymbal with spherical end cap. 

Another spherical pressure hydrophone [126], shown in Figure 26, is designed and 
fabricated by using a radial polarized air backed piezoelectric spherical shell transducer 
as the acoustic receiving sensitive element. The experimental results show that when the 
diameter of the spherical pressure hydrophone is 36 mm, the operating frequency is 50 
Hz–10 kHz, the low frequency receiving sensitivity is −198.4 dB (0 dB = 1 V/Pa) and the 
equivalent self-noise spectrum level is 46.5 dB@1 kHz. This designed structure can work 
at a depth of 3000 m. 

Figure 25. Structure diagram of cymbal with spherical end cap.

Another spherical pressure hydrophone [126], shown in Figure 26, is designed and
fabricated by using a radial polarized air backed piezoelectric spherical shell transducer
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as the acoustic receiving sensitive element. The experimental results show that when
the diameter of the spherical pressure hydrophone is 36 mm, the operating frequency is
50 Hz–10 kHz, the low frequency receiving sensitivity is −198.4 dB (0 dB = 1 V/Pa) and the
equivalent self-noise spectrum level is 46.5 dB@1 kHz. This designed structure can work at
a depth of 3000 m.
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Figure 26. Spherical pressure hydrophone.

Guan [127] proposes a spherical structure with square piezoelectric ceramic material
embedded in a spherical polymer surface as shown in Figure 27. This transducer has the
advantages of a unique mode in working frequency band and wide beam in high frequency
operation, which can be widely used in the development of underwater acoustic detection
and transmitted transducer array. This high frequency underwater acoustic transducer
based on spherical piezoelectric composite ceramic material has only a single resonant
peak in the frequency band of 200–400 kHz. The maximum emission voltage response is
165 dB and the bandwidth of −3 dB is nearly 70 kHz. It has the characteristics of single
mode, broadband and wide beam radiation in high frequency operation.
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Because of its unique characteristics of shear deformation and high-voltage electrical
constant, high electromechanical coupling coefficient and low dielectric constant, the shear
vibration mode of piezoelectric ceramics has a good performance in piezoelectric energy
harvesters and new structure composite transducers. Through the design of a transition
layer with a special structure, the shear vibration of piezoelectric ceramics can be explored.
The shear vibration generated by piezoelectric ceramics is transformed into the thickness
vibration of composite materials, so as to meet the requirements of underwater acoustic
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transducer and improve the piezoelectric properties of composite materials. In order to
explore the application of piezoelectric shear vibration mode in a flextensional transducer,
a new transducer structure [128,129] is proposed in Figure 28. Through the metal bending
shell and trapezoidal transition structure, the shear vibration generated by piezoelectric
ceramics is transformed into the bending and tensile vibration of metal shell, so as to realize
acoustic radiation and increase the acoustic radiation area. When the radiation area of the
transducer is 120 mm × 240 mm, the maximum emission voltage response reaches 158.3 dB at
the resonance frequency of 101 kHz, and the working bandwidth is 86–114 kHz. The receiving
sensitivity is −197 dB and the maximum received signal bandwidth is 48 kHz at −3 dB.
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ducer with a piezoelectric ceramic thin inner ring and a metal outer ring in Figure 30. The 
outer ring is composed of 180 equal parts of ceramic elements. The elements are connected 
by epoxy resin and the material of the inner ring is aluminium. It has a higher electrome-
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Figure 28. Piezoelectric transducer with transition bracket.

In addition to the axial transducer, there also exists a radial transducer type. In order to
satisfy the demands of small-size and low-frequency a transducer for low frequency active
detection of unmanned underwater vehicles has been proposed [130] which is composed
of double piezoelectric ceramic elliptical shells. The transducer is used to construct a small
low-frequency emission array, and it is mounted on an autonomous underwater vehicle.
In Figure 29, the long axis of the elliptical ring is 60 mm in length, the short axis is 40 mm,
the height is 70 mm and the thickness is 5 mm. The total weight of the virtual prototype is
less than 1.5 kg. The maximum emission voltage response of the transducer at 3 kHz is
130 dB. The maximum linear size of the 16-element array formed by the transducer is 5 m
and the maximum emission voltage response of 3.3 kHz is 155 dB. The double piezoelectric
ceramic elliptical shell transducer obviously has the characteristics of small size and light
weight, which can be applied to underwater vehicles.
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Chen [131] designed a new radial composite piezoelectric ceramic ultrasonic trans-
ducer with a piezoelectric ceramic thin inner ring and a metal outer ring in Figure 30. The
outer ring is composed of 180 equal parts of ceramic elements. The elements are connected
by epoxy resin and the material of the inner ring is aluminium. It has a higher electrome-
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chanical coupling coefficient, a wider working frequency band and higher sensitivity. The
precise transducer mode in the working frequency band can reduce the coupling vibration
in other directions as far as possible.
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Figure 30. Radial composite piezoelectric ceramic ultrasonic transducer.

Walter [132] developed the radial push-pull transducer, shown in Figure 31, which
can effectively improve the ultrasonic cleaning field. It constitutes a longitudinal vibration
composite piezoelectric transducer coupled at both ends (or one end) of a long metal tube
to produce an in-phase push-pull effect on the tube, thus generating sound radiation in
its radial direction. The power of the single transducer can reach more than 2 kW. The
length of the tube is usually an integer multiple of the half wavelength, that is, it works on
the integer multiple mode of the fundamental resonance frequency. In fact, the push-pull
transducer works in the coupling vibration state rather than a single radial vibration mode.
In fact, the circular tube is in a state of standing wave vibration, so the sound field radiated
along the tube length is a standing wave field, and the uniformity of the radiated sound
field needs to be further improved.
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The Hielscher company has launched a series of high-power bar ultrasonic
transducers [133], as shown in Figure 32. The maximum electric power of this type
of transducer can reach 16 kW and it can work under extremely harsh conditions, such
as under high temperature and high pressure. The principle is similar to the push-pull
transducer. A long metal rod with stepped disk is excited by one or more high-power
longitudinal composite piezoelectric ultrasonic transducers, and the length of the rod
satisfies the requirement of being an integer multiple of λ/2. The stepped disk is usually de-
signed according to the vibration displacement amplitude or node position of the rod. This
increases the effective acoustic radiation area of the rod to improve the acoustic radiation
efficiency while it also increases the strength of the round rod. This can prevent the metal
rod from fracture resulting from the stress concentration at the displacement amplitude
node under high power working condition. In practical application, it is found that, due to
the role of the stepped plate, the uniformity of the radiation sound field distribution of rod
type ultrasonic transducer in water is better than that of push-pull transducer.
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Figure 32. Rod ultrasonic transducer and its better cavitation in water.

The radial composite disk piezoelectric transducer [134] is composed of an inner
polarized piezoelectric disk and an outer metal ring, as shown in Figure 33a. In order
to improve the power density of the transducer, a metal outer ring is used to exert large
radial prestress on the piezoelectric disk. The transducer constitutes a thin disk structure,
which can be used as a one-dimensional radial vibration system. The radial vibration
frequency equation can be obtained by equivalent circuit theory. This kind of piezoelectric
transducer is usually assembled by thermal expansion and cold contraction. In order to
ensure uniformity of the transducer performance, high precision interference fit machining
and assembly process is required.
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Figure 33b displays a three-dimensional radial composite cylindrical piezoelectric
ultrasonic transducer [135,136]. The transducer consists of three parts: the outer part is a
metal tube, the inner part is a cylindrical metal elastic expansion inner core and the middle
layer is a group of the same arc-shaped piezoelectric ceramic pieces, which can be cut
equally from the radial polarized piezoelectric ceramic tube. The electric power limit of
the transducer can be increased by a certain amount of prestress [137]. The inner part of
the transducer constitutes an elastic expansion core with adjustable radial force, which can
exert enough radial prestress on the arc-shaped piezoelectric ceramic ring group together
with the external metal tube, so as to greatly improve the electric power limit and power
density of the transducer.

Another type of three-dimensional composite sandwich radial vibration piezoelectric
ultrasonic transducer is shown in Figure 33c [138]. It was developed in recent years,
and its structure is similar to that of other radial transducers. The middle layer of the
transducer is composed of a group of arc-shaped piezoelectric ceramic rings. Each arc-
shaped piezoelectric crystal stack is composed of a number of cylindrical piezoelectric rings
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along the radial direction. There is a decoupling, facilitated through an air gap, between
successive adjacent arc piezoelectric stacks. The two stacked arc-shaped piezoelectric rings
are polarized along the radial direction, and their directions of polarization are opposite.
The theoretical analysis of its radial vibration characteristics is given in reference.

5. Conclusions

We have presented a comprehensive literature review discussing the physical mecha-
nism and structure development of piezoelectric ceramic sandwich structure transducer.
Overall, piezoelectric transducers follow the trend of miniaturization, low frequency, high
efficiency, and diversification with the continuous optimization of structure and material.
Piezoelectric transducers are encountered in a wide range of civil and defence applications.
We also compared the advantages and disadvantages of different structures and their
scope of application. From the development of the structural evolution, it is not difficult to
establish that the structural evolution is manifested in the end cap. Additionally, the core
component has gradually developed from its original monolithic structure to composite
ring-type structures. In the context of underwater acoustics piezoelectric transducers have
been continuously optimized to satisfy the particular requirements of deep water, low
frequency and high power. Recent underwater piezoelectric transducers already achieved
three-dimensional signal detection instead of the traditional one-way detection. These new
transducers feature high electromechanical coupling coefficient, high electromechanical
conversion coefficient and high-quality characteristics. Moreover, piezoelectric ultrasonic
transducers with both circumferential and axial structures can work with high power in
extremely harsh environments such as in high temperature and under high pressure.

Future developments may focus on the three-dimensional or spatialized design of
piezoelectric resonators, especially in the field of underwater acoustics. Miniaturization,
intelligence and high efficiency will, naturally, always remain the focus of research. It is
believed that piezoelectric transducers will continue to innovate and make far reaching
contributions in the future life to improve human life and production.
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