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Abstract: Broadband adaptive beamformers have been widely used in many areas due to their ability
of filtering signals in space domain as well as in frequency domain. However, the space-time array
employed in broadband beamformers requires presteering delays to align the signals coming from
a specific direction. Because the presteering delays are direction dependent, it is difficult to make
precise delays in practice. A common way to eliminate the presteering delays is imposing constraints
on the weight vector of the space-time array. However, the structure of the constraint matrix is not
taken into account in the existing methods, leading to a computational complexity of O(N2) when
updating the weight vector. In this paper, we describe a new kind of constraint method in time
domain that preserves the block diagonal structure of the constraint matrix. Based on this structure,
we design an efficient weight vector update algorithm that has a computational complexity of O(N).
In addition, the proposed algorithm does not contain matrix operations (only scalar and vector
operations are involved), making it easy to be implemented in chips such as FPGA. Moreover, the
constraint accuracy of the proposed method is as high as the frequency constraint method when the
fractional bandwidth of the signal is smaller than 10%. Numerical experiments show that our method
achieves the same performance of the state-of-the-art methods while keeping a simpler algorithm
structure and a lower computational cost.

Keywords: sensor array; presteering delays; time domain constraint; NLMS adaptive algorithm

1. Introduction

Beamforming has become a fundamental technique for sensor arrays and received
considerable attention in recent decades [1–5]. Besides providing the ability of performing
spatial filtering, the broadband beamformers can also control the frequency response in a
given direction [6], which makes it a power tool in various areas such as radar, sonar, mo-
bile communications, satellite navigations, and radio astronomy. The space-time adaptive
processing is one of the widely used approaches to implement broadband beamforming.
An adaptive broadband beamformer based on space-time array was proposed in [7], which
uses the least mean square (LMS) algorithm to compute the weight vector of the array. This
method has been used in a wide range of applications due to its low computational com-
plexity and good numerical stability. Another commonly used technique for broadband
beamforming is the space-frequency adaptive processing [8,9], which splits the frequency
band of the incident signal into several narrow subbands and then uses narrowband beam-
formers to deal with the narrowband signals. The space-frequency processing has a faster
convergence rate than space-time processing when the number of taps is large (e.g., hun-
dreds or thousands). Nevertheless, space-frequency beamformer has a larger processing
delay than space-time beamformer [10,11]. Therefore, space-time adaptive processing is
still the first choice for delay sensitive applications such as satellite navigations [12,13].

To obtain a desired frequency response in the direction of the signal of interest (SOI),
constraints should be imposed on the weight vector of the beamformer. Most of these
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constraints require that the array has been presteered toward the direction of SOI. However,
it is difficult to implement precise delays in practice [14,15], especially for the situations
that sensor array has to form multiple beams [16,17]. In addition, the presteering errors
may cause signal cancellation in the direction of SOI, leading to performance degradation
of the beamformer [18,19]. Therefore, it is very important to eliminate the presteering
delays in broadband beamformers. A type of convolution constraint method was proposed
in [20] to remove the presteering delays. This method has a simple procedure to implement;
however, it is computationally expensive. The authors in [21] described another technique
to remove the presteering delays, which multiplies the received signal by a matrix whose
elements are the inverse Fourier transform of the steering vector. Thus, it is computationally
expensive too. By introducing a set of frequency domain constraints (FDC), the authors
in [22] developed a simple technique to eliminate the presteering delays, which requires
less tapped delay-lines (TDLs) than the convolution constraint method. Moreover, it can
incorporate the sensor patterns into the beamforming algorithm and thus can be applied
to conformal arrays [23]. The FDC method based on generalized sidelobe canceller (FDC-
GSC) was presented in [24], which is mathematically equivalent to FDC but with fewer
computations. To further reduce the number of TDLs, infinite impulse response filter can
be used [25,26]. However, all of these methods destroy the block diagonal structure of the
constraint matrix, making the computational complexity of weight vector update increased
from O(N) to O(N2).

To reduce the computational complexity of weight vector update, we design a new
kind of time domain approximate constraint (TDAC) method, which does not require the
presteering delays while preserving the block diagonal structure of the constraint matrix.
The constraint accuracy of TDAC is as high as the FDC method if the fractional bandwidth
is smaller than 10%. This is a reasonable assumption because the fractional bandwidth
of most radar and communication systems is smaller than 10%. Moreover, by exploiting
the block diagonal structure of the constraint matrix, a new efficient weight vector update
algorithm with a complexity of O(N) is also developed. In fact, the computations involved
in each iteration of the proposed algorithm is only half of that of the conventional Frost
algorithm (CFA). Both LMS and normalized LMS (NLMS) algorithms can be used to update
the weight vector of the space-time array. We shall study the NLMS-based algorithm in
this paper because the one based on LMS can be easily obtained from NLMS.

The rest of this paper is organized as follows. Section 2 reviews the signal model of
space-time array and the conventional Frost algorithm. Section 3 describes the details of the
proposed method, including algorithm design, geometrical interpretation, and complexity
analysis. Numerical simulations are presented in Section 4, followed by conclusions in
Section 5.

Notation: We use lowercase letters (a), lowercase boldface letters (a), uppercase
boldface letters (A), and uppercase calligraphy letters (A) to represent scalars, vectors,
matrices and sets, respectively. The superscripts ()∗, ()T , ()H , ()⊥ and ()−1 stand for
complex conjugate, transpose, conjugate transpose, orthogonal complement, and inverse,
respectively. The symbol ⊗ denotes the Kronecker product, ‖ · ‖ represents the Euclid
norm, E(·) stands for the mathematical expectation, and O(·) means “on the order of”.

2. Space-Time Adaptive Beamformer

This section reviews the signal model of space-time array and the conventional Frost
algorithm, including space-time steering vector, frequency-wavenumber response (FWR),
and weight vector update methods of Frost algorithm based on LMS and NLMS.

2.1. Signal Model of Space-Time Array

Figure 1 shows a space-time array with M sensors and each sensor is followed by a
time delay unit and a finite impulse response (FIR) filter of L taps (the radio frequency
chain and the analog-to-digital converter are omitted for simplicity). The aim of presteering
delays τm(θ, φ) is to align the signal coming from the direction of SOI so that there is no
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phase difference among the SOI received by different sensors. The total degrees of freedom
of the array, i.e., the number of free weights [6], is N = ML, and the N × 1 baseband signal
vector at the kth time instant is given by

x(k) =
[
xT

0 (k), xT
1 (k), · · · , xT

L−1(k)
]T

, (1)

where xl(k) = [x0(k − l), · · · , xM−1(k − l)]T is the M × 1 signal vector at the lth tap for
l = 0, 1, · · · , L− 1. Similarly, the N × 1 weight vector is given by

w =
[
wT

0 , wT
1 , · · · , wT

L−1

]T
, (2)

where wl = [w0,l , · · · , wM−1,l ]
T is the M× 1 weight vector at the lth tap.

...

τ0(θ, φ) Ts

×

Ts

×

Σ

×

Σ
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· · ·
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Figure 1. The structure of a space-time array (see also [7]).

If there are no presteering delays, the FWR of the array for the signal coming from
(θ, φ) at frequency ωc + ω can be expressed as [27]

Γ(ω, k) =
L−1

∑
l=0

M−1

∑
m=0

w∗m,le
−jkTpm e−jωlTs = wHv(ω, k) , (3)

where k = [(ωc + ω)/c]a is the wavevector of the impinging signal, ωc is the carrier fre-
quency, ω is the baseband frequency, c is the speed of light, a = −[sin(θ) cos(φ), sin(θ) sin(φ),
cos(θ)]T is the propagation direction, pm is the position vector of the mth sensor, and Ts is
the sampling period of the baseband signal. The steering vector v(ω, k) of the space-time
array can be expressed as [28]

v(ω, k) = vt(ω)⊗ vs(k) , (4)

where
vt(ω) =

[
1, e−jωTs , · · · , e−j(L−1)ωTs

]T
(5)
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is the temporal steering vector and

vs(k) =
[
e−jkTp0 , e−jkTp1 , · · · , e−jkTpM−1

]T
(6)

is the spatial steering vector.

2.2. The Conventional Frost Algorithm

The linearly constrained minimum variance beamformer is a widely used technique
to suppress the interferences while keeping the SOI, which minimizes the output power of
the array subject to J linear constraints as follows

w = arg min wHRxw , s.t. CHw = g , (7)

where Rx = E
[
x(k)xH(k)

]
is the N×N space-time covariance matrix of the received signal,

C is the N × J constraint matrix whose columns are linearly independent and g is the J × 1
gain vector. The solution of (7) is given by [27]

wo = R−1
x C

(
CHR−1

x C
)−1

g . (8)

It is not advisable to compute the weight vector by solving the above equation for
real-time processing applications, because one has to estimate the covariance matrix Rx and
compute the matrix inversion (or solve linear systems of equations). Frost developed an
adaptive approach to compute the weight vector based on the LMS algorithm as follows [7]:

w(k + 1) = wq + P[w(k)− µy∗(k)x(k)] , (9)

where µ is the step size parameter,

wq = C
(
CHC

)−1g (10)

is the quiescent weight vector in the column space of C, denoted byR(C), and

P = I− C
(
CHC

)−1CH (11)

is the projection matrix onto the orthogonal complement ofR(C), denoted byR⊥(C). The
normalized version of (9) is given by [29]

w(k + 1) = wq + P
[

w(k)− µy∗(k)
xH(k)Px(k)

x(k)
]

. (12)

3. The Proposed Method

Although the CFA (9) (or (12)) is simple, it requires the presteering delays. In this
section, we first introduce a new kind of constraint for the space-time array, which elimi-
nates the presteering delays and enables the weight vector to be updated efficiently. Then,
inspired by [7], we give a geometric interpretation of the proposed algorithm. Finally,
the comparison of computational complexity of our method and the existing methods
is provided.

3.1. The Approximate Constraints in Time Domain

Suppose that the number of constraints J in (7) is equal to the number of taps L of the
array, and let wH

l vs(k) = g∗l , then the FWR (3) of the space-time array can be expressed as

Γ(ω, k) =
L−1

∑
l=0

wH
l vs(k)e−jωlTs =

L−1

∑
l=0

g∗l e−jΩl , (13)
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where Ω = ωTs ∈ [−π, π] is the normalized frequency [30]. To keep the symbols consistent
with (7), we define wH

l vs(k) = g∗l , i.e., vH
s (k)wl = gl . If gl is independent of Ω, then

Γ(ω, k) is equal to the discrete Fourier transform (DFT) of an FIR filter whose lth coefficient
is equal to the inner product of wl and vs(k).

Equation (13) shows that the broadband beamformers can perform frequency filtering
as well as spatial filtering. If the frequency response in the direction of SOI is determined
by an FIR filter with coefficients g = [g0, · · · , gL−1]

T , we can impose constraints on wl
in the form of vH

s (k)wl = gl . However, because the wavevector k depends on baseband
frequency ω, the coefficients gl in (13) depend on ω too. Nevertheless, for systems that
operate with a small fractional bandwidth, the difference between k and k0 = (ωc/c)a
is small and k can be approximated by k0. Thus, we obtain the following approximate
constraints for the weight vector

wH
l vs(k0) = g∗l , l = 0, 1, · · · , L− 1 . (14)

The above approximation is reasonable for many practical broadband systems that
operate with a fractional bandwidth smaller than 10%, such as radar [28], satellite naviga-
tions [12], and wireless communications [31]. The benefit of this approximation is that it
allows an efficient implementation of the weight vector update.

The constraints given by (14) can be rewritten as CHw = g, which takes the same
form of the constraint given in (7). The constraint matrix C has a block diagonal structure
as follows

C =


vs(k0) 0 · · · 0

0 vs(k0) · · · 0
...

...
. . .

...
0 0 · · · vs(k0)

 = IL ⊗ vs(k0) , (15)

where IL is the L × L identity matrix. The main computations of (12) come from the
projection operation. Thus, we should derive a simple form for the projection matrix P.
By using the properties (A⊗ B)H = AH ⊗ BH and (A⊗ B)(C⊗D) = (AC)⊗ (BD) [32],
we have

wq = C
(

CHC
)−1

g =
1
M

g⊗ vs(k0) (16)

and
C
(

CHC
)−1

CH =
1
M

IL ⊗
[
vs(k0)vH

s (k0)
]

. (17)

Let
Q = IM −

1
M

vs(k0)vH
s (k0) = IM − s(k0)sH(k0) , (18)

where s(k0) = vs(k0)/
√

M is the normalized spatial steering vector. Then the projection
matrix P can be written as

P = IN − C
(

CHC
)−1

CH = IL ⊗ IM − IL ⊗
[
s(k0)sH(k0)

]
= IL ⊗Q . (19)

Expressing the N× N projection matrix P by an M×M projection matrix Q is the key
point of the efficient algorithm, which will be described in the next subsection.

3.2. An Efficient Weight Vector Update Algorithm

Because wq is independent of time instant k, only the second term on the right hand
side of (12) needs updating. Let

wa(k + 1) = P
[

w(k)− µy∗(k)
p(k)

x(k)
]
= Pw̃(k) , (20)
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where

p(k) = xH(k)Px(k) and w̃(k) = w(k)− µy∗(k)
p(k)

x(k) . (21)

Then w(k + 1) can be decomposed into two terms as follows

w(k + 1) = wq + wa(k + 1) . (22)

We call wa(k + 1) the adaptive weight vector because it is updated adaptively accord-
ing to the input signal vectors x(k).

Since P is the projection matrix ontoR⊥(C) and wq ∈ R(C), we have Pwq = 0. Thus,

wa(k + 1) = Pw(k)− [µy∗(k)/p(k)]Px(k)

= P[wq + wa(k)]− [µy∗(k)/p(k)]Px(k)

= Pwa(k)− [µy∗(k)/p(k)]Px(k) . (23)

By using the idempotent property P2 = P of the projection matrix [33], we have

Pwa(k) = P[Pw̃(k− 1)] = Pw̃(k− 1) = wa(k) . (24)

Hence,

wa(k + 1) = wa(k)−
µy∗(k)

p(k)
Px(k) . (25)

Next we show how to compute z(k) = Px(k) and p(k) = xH(k)Px(k) efficiently.
Because, as shown in Figure 1, xl(k) has a time delay structure xl(k) = x0(k− l),

zl(k) , Qxl(k) = Qx0(k− l) = z0(k− l) (26)

has a similar time delay structure. It follows from (1) and (19) that

z(k) = Px(k) =
[
zT

0 (k), zT
1 (k), · · · , zT

L−1(k)
]T

=
[
zT

0 (k), zT
0 (k− 1), · · · , zT

0 (k− L + 1)
]T

, (27)

where
z0(k) = Qx0(k) = x0(k)− s(k0)

[
sH(k0)x0(k)

]
. (28)

Therefore, only z0(k) needs to be computed at each iteration, which involves 2M− 1
complex additions and 2M complex multiplications. Although p(k) can be computed by
xH(k)z(k) with N − 1 complex additions and N complex multiplications. However, there
exists a more efficient method to compute p(k) as follows

p(k) = xH(k)Px(k) =
L−1

∑
l=0

xH
l (k)zl(k) = p(k− 1) + xH

0 (k)z0(k)− xH
L (k)zL(k) , (29)

where the time delay properties xl−1(k − 1) = xl(k) and zl−1(k − 1) = zl(k) are used.
Since z0(k) has already been calculated and each term on the right hand side of the above
equation is real, there are only M complex additions and M complex multiplications in
computing p(k) if we store the quantities xH

0 (k)z0(k).
A circular array [34] is employed in our method to store the latest L + 1 quantities

of xH
0 (i)z0(i) for i = k, k − 1, · · · , k − L. The circular array, denoted by q, is shown in

Figure 2, where the position front points at the current quantity q(k) and the position back
points at the Lth previous quantity q(k− L). When new data q(k) arrives, the circular array
overwrites q(k− L) with q(k).
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· · · · · · q(k − 1) q(k) q(k − L)

front back

q(k − L) · · · · · · q(k − 1) q(k)

frontback

Figure 2. The circular array that stores q(i) = xH
0 (i)z0(i) for i = k, k− 1, · · · , k− L.

The final description of our algorithm is summarized in Algorithm 1. Please note that
there are no matrix operations in our algorithm, which means that the algorithm can be
implemented at the level of scalar and vector operations. This feature is very important
when the algorithm is implemented in chips such as field programmable gate array (FPGA)
and digital signal processor (DSP).

Algorithm 1: The TDAC algorithm based on NLMS.

Input: x(k) ∈ CN , vs(k0) ∈ CM, g ∈ CL, µ ∈ R+.
Output: y(k) ∈ C, w(k) ∈ CN .
// Initialization
s(k0) = vs(k0)/

√
M , wq = g⊗ vs(k0)/M ∈ CN ,

wa(0) = 0 ∈ CN , p(0) = 0 , z(−1) = 0 ∈ CN , q = 0 ∈ RL+1 .
// Update sample by sample
for k = 0, 1, 2, · · · do

y(k) = [wq + wa(k)]Hx(k) ,
for l = L− 1, L− 2, · · · , 1 do

zl(k) = zl−1(k− 1) ,
end
z0(k) = x0(k)− [sH(k0)x0(k)]s(k0) ,
i = mod(k, L + 1) , j = mod(i + 1, L + 1) ,
q(i) = xH

0 (k)z0 , p(k) = p(k− 1) + q(i)− q(j) ,
wa(k + 1) = wa(k)− [µy∗(k)/p(k)]z(k) .

end

3.3. Geometrical Interpretation

The new weight vector update algorithm has a simple geometrical interpretation as
shown in Figure 3, where CHw = 0 and CHw = g define the constraint subspace and the
constraint plane, respectively. It follows from (16) that wq ∈ R(C). Thus, it is perpendicular
to the constraint subspaceR⊥(C). Meanwhile, because wq satisfies the constraint equation
CHwq = g, it terminates on the constraint plane. In addition, as defined by (20), wa(k) is
the projection of w̃(k) ontoR⊥(C). Thus, it lies in the constraint subspace.

From Algorithm 1 we know that only wa(k) is updated during the iterations. To mini-
mize the output power at the kth time instant, an increment −[µy∗(k)/p(k)]x(k), based on
the NLMS criterion, is added to the adaptive vector wa(k). However, this change may move
wa(k) off the constraint subspace. Thus, the projection of the increment−[µy∗(k)/p(k)]Px(k)
is used to update wa(k) to ensure that wa(k) lies in the constraint subspace.
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w1

w2

R⊥(C)

CHw = 0

wa(k)

wa(k + 1)

CHw = g

R(C)

wq

w(k)

w(k + 1)

−µy
∗(k)
p(k) x(k)

Figure 3. Geometrical interpretation of the proposed algorithm.

3.4. Computational Complexity Analysis

The computations involved in each iteration of CFA, FDC, FDC-GSC, and TDAC, in
terms of complex additions and complex multiplications, are shown in Table 1. We see from
the table that our method (TDAC) has the least computations, which is even more efficient
than CFA. In contrast, FDC and FDC-GSC increase the weight vector update complexity
from O(N) to O(N2).

In addition, computing the projection matrix P at the initial stage of FDC requires
a complexity of O(NJ2), where J is the number of constraint points in frequency band.
Similarly, computing the blocking matrix B at the initial stage of FDC-GSC requires a
complexity of O(NJ2). The convolution constraint method has the same update complexity
of FDC. However, it needs DFT operations to form the constraint matrix, leading to a
higher complexity than FDC. In contrast to FDC and FDC-GSC, the proposed method only
requires N additions and 2N multiplications at the initial stage.

Table 1. Computations in each iteration of CFA, DFC, DFC-GSC, and TDAC.

Algorithm Number of Complex Additions Number of Complex Multiplications

CFA [7] 5N + 3M− L− 1 4N + 3M + 1

FDC [22] N2 + 2N + 3M− 1 N2 + 2N + 3M + 1

FDC-GSC [24] N2 − (L− 3)N − 2L− 2 N2 − (L− 4)N − 3L + 1

TDAC (proposed) 3N + 3M− 2 2N + 3M + 1

4. Simulation Results

In this section, we present some numerical experiments to compare the performance
of the proposed algorithm with other methods. A 10× 10 space-time array is employed
in the first experiment. More specifically, a uniform linear array (ULA) located along the
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z-axis is considered. The array consists of 10 isotropic antennas whose interelement spacing
is 0.5λ where λ is the wavelength corresponding to the carrier frequency. In baseband,
each sensor is connected to an FIR filter with 10 TDLs. The distortionless gain vector is
set to g = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0]T . One desired signal and two uncorrelated interferences
impinge on the array from 60◦, 80◦ and 120◦, respectively. Noises are assumed to be
spatially and temporally uncorrelated zero-mean Gaussian random processes with equal
power. The signal-to-noise ratio (SNR) is 10 dB and the interference-to-noise ratios (INR)
are 40 dB and 30 dB respectively. Both the signal and interferences occupy a bandwidth
of 100 MHz around the carrier frequency of 1000 MHz, i.e., the fractional bandwidth
is 10%. We compare our method (TDAC) with the methods of CFA [7], FDC [22], and
FDC-GSC [24]. The NLMS-based update Equation (12) with µ = 0.02 is used for all of the
tested algorithms. For the FDC method, 10 constraint points are uniformly selected in the
frequency band.

The performance of broadband beamformer is measured in terms of array output
power and signal-to-interference-plus-noise ratio (SINR). The output SINR is defined as

SINR =
wHRsw

wHRi+nw
, (30)

where Rs is the correlation matrix of the desired signal and Ri+n is the correlation matrix
of interferences plus noise. We assume that the power spectral densities of the desired
signal and the interferences are flat in the bandwidth of considered. We also assume that
the signal, interferences, and noise are statistically independent. Under these assumptions,
the correlation between the lth tap after the mth sensor and the pth tap after the qth sensor
for the dth impinging wave can be expressed as [35]

Rd(lM + m, pM + q) = σ2
d exp

[
jωc

(
τ
(d)
q − τ

(d)
m

)]
sinc

[
Bd

(
τ
(d)
q − τ

(d)
m

)
+ Bd(p− l)Ts

]
, (31)

where σ2
d is the power of the dth signal, τ

(d)
m is the propagation delay of the dth signal at

the mth sensor with respect to the origin, and Bd is the bandwidth of the dth signal. For the
simulation scenario described above, Rs = R1, Ri+n = R2 + R3 + σ2

nIN , where σ2
n is the

noise power.
Figure 4 shows the FWRs of CFA, FDC and TDAC when the adaptive algorithms have

converged (for ULA located along the z-axis, FWR depends on frequency and polar angle).
Because the FWR of FDC-GSC is the same as FDC, it is not shown here. It can be seen
that all methods have constant magnitude responses at the constrained direction while
placing nulls at the interference directions in the whole frequency band. Because the array
is presteered toward the direction of SOI by CFA, the equivalent directions of interferences
are also changed. In this example, the equivalent directions of the desired signal and
interferences are 90◦, 109◦ and 180◦ respectively, which can be verified in Figure 4a. In
addition, we see from Figure 4b,c that the FWR of TDAC is smoother than that of FDC.
Hence TDAC may have better SINR performance than FDC in this experiment due to the
better sidelobe structure.

The magnitude and phase errors in the constrained direction of CFA, FDC, FDC-GSC
and TDAC are plotted in Figure 5. It can be seen that (i) the constrained response is equal
to the distortionless response when the array is precisely presteered by CFA; (ii) FDC and
FDC-GSC have the same frequency response since they are equivalent; (iii) there exist
ripples in the frequency response of FDC, this is because only 10 frequency points are
constrained by FDC and the responses between these constrained points are not guaranteed;
(iv) both FDC and TDAC provide good approximations to the desired frequency response;
and (v) TDAC has a smaller phase error than FDC.
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Figure 4. The FWRs of a 10× 10 space-time array with a fractional bandwidth of 10%: (a) CFA,
(b) FDC, and (c) the proposed method (TDAC).
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Figure 5. The magnitude and phase errors of the 10× 10 space-time array in the direction of SOI.

Figure 6 shows the learning curves of the output power and SINR of different methods
averaged over 100 independent trials. As shown in Figure 6, the four tested methods have
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the same convergence rate, but our method has the best steady-state SINR performance.
The reason CFA has a smaller SINR than other methods is that when the array is presteered
toward the direction of SOI, the directions of interferences are also changed. Thus, the
array faces a different interference environment, leading to different SINR performance.
Although FDC can impose accurate constraints in frequency domain, the frequency re-
sponses between the constrained points are not guaranteed, leading to ripples in frequency
band as shown in Figure 5. Therefore, similar to the proposed method that approximates
the FWR in time domain, FDC is also a type of approximate method that approximates the
FWR in frequency domain.

Figure 6. The output power and SINR of the 10× 10 space-time array averaged over 100 trials.

In the second experiment we change the bandwidth from 100 MHz to 200 MHz while
keeping the carrier frequency fixed at 1000 MHz, i.e., the fractional bandwidth is 20%. We
also change the length of FIR filter from 10 to 20, i.e., we use a 10× 20 space-time array. The
proposed algorithm is compared with the FDC methods with 20 constraint points (denoted
by FDC1) and 30 constraint points (denoted by FDC2) respectively. The simulation results
of FWRs, constraint errors, and learning curves are shown in Figures 7–9, respectively.
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Figure 7. The FWRs of a 10× 20 space-time array with a fractional bandwidth of 20%: (a) FDC with
20 constraint points (FDC1), (b) FDC with 30 constraint points (FDC2), and (c) the proposed method.
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Figure 8. The magnitude and phase errors of the 10× 20 space-time array in the direction of SOI.



Sensors 2021, 21, 1100 13 of 14

Iterations

O
u
tp

u
t 

p
o
w

er
 (

d
B

)

Output power of CFA

Output power of FDC1

Output power of FDC2

Output power of TDAC

Iterations

S
IN

R
 (

d
B

)

SINR of CFA

SINR of FDC1

SINR of FDC2

SINR of TDAC

Figure 9. The output power and SINR of the 10× 20 space-time array averaged over 100 trials.

5. Conclusions

An efficient implementation of the broadband adaptive beamformer without presteer-
ing delays was studied in this paper. A new kind of approximate constraint in time domain
has been proposed to eliminate the presteering delays of the space-time array. In addition, a
new weight vector update algorithm was developed by using the block diagonal structure
of the constraint matrix, leading to a computational complexity of O(N) in each iteration.
In contrast, the computational complexity of the frequency constraint methods is O(N2) in
each iteration. Moreover, the new algorithm does not contain matrix operations and can be
implemented at the level of scalar and vector operations. This feature is very important for
real-time applications, in which the algorithms should be implemented in chips such as
FPGA and DSP. Numerical experiments shown that the approximate accuracy of the pro-
posed method is as high as the frequency constraint method for systems with a fractional
bandwidth smaller than 10%, while our method has a simpler algorithm structure and a
lower computational cost than the existing methods.
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