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Abstract: This research proposes an inverted L-shaped patch antenna with a corner-truncated partial
ground plane diagonally adjoined to a square branch for L-band applications. The adjoining square
branch was used to perturb linear polarization for circular polarization, and the corner-truncated
partial ground plane was utilized to enhance the axial ratio bandwidth (ARBW). Simulations were
performed, an antenna prototype was fabricated, and experiments were carried out. The simulation
and measured results were in good agreement. The proposed antenna could achieve an ARBW of
77.87% (1.09–2.48 GHz). The novelty of this research lies in the concurrent use of a square branch
and a corner-truncated partial ground plane to realize wide ARBW in an L-band, rendering the
technology suitable for satellite communication and navigation applications.
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1. Introduction

With the exponential growth in smart wireless devices, compact and low-cost mi-
crostrip antennas, especially circularly polarized (CP) patch antennas, are increasingly
being deployed in a wide range of devices and applications, such as radio frequency iden-
tification (RFID), near-field communication (NFC), wireless local area network (WLAN),
and global navigation satellite system (GNSS).

Antenna polarization indicates the direction of electric field vectors in the time domain
at a fixed position in space. There are two types of polarization: linear polarization and
circular polarization [1]. Circular polarization consists of two linear components of electric
field that are perpendicular to each other and equal in magnitude, but have a 90◦ phase
difference. For circular polarization, the electric field rotates in a circle around the direction
of propagation [1].

Right-hand circular polarization (RHCP) antennas (clockwise rotation) are commonly
used in modern wireless devices. The extent of circular polarization is determined by the
axial ratio (AR), which is the proportion of the maximum and minimum semi-axes of the
orthogonal electric field components. A perfect CP has an AR of 0 dB; however, in reality
an AR ≤ 3 dB is technically acceptable.

Attempts have been made to realize circular polarization using patch antennas. The
dual-fed circularly polarized patch antenna (DCPA) with an external polarizer could
achieve near-perfect circular polarization [2]. In DCPA, there are dual feeding points with
equal magnitude and a 90◦ phase difference. In [3], a DCPA with a hybrid coupler achieved
a near-perfect CP with a reflection coefficient or return loss bandwidth (RLBW) of 21.76%
(1.31–1.63 GHz) and 7.45% ARBW (1.55–1.67 GHz), while a DCPA with a U-slot radiating
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patch and power divider achieved a 32.08% RLBW (1.091–1.508 GHz) and 21.28% ARBW
(1.150–1.424 GHz) [4]. In [5], the Wilkinson network-fed quasi-cross-shaped coupling slot
antenna realized a 21.2% RLBW (2.82–3.49 GHz) and 17.43% ARBW (2.88–3.43 GHz), while
a DCPA with multiple feeding probes could achieve a 31.6% RLBW (1.2–1.65 GHz) and
20.83% ARBW (1.29–1.59 GHz) [6].

Despite the near-perfect circular polarization, DCPA suffers from fabrication chal-
lenges and structural complexity. As a result, single-fed circularly polarized patch antennas
(SCPA) are alternatively adopted to realize circular polarization without an external po-
larizer. Unlike DCPA, the SCPA is straightforward and easy to fabricate by manipulating
the feed line, patch shape, ground slot, and/or partial ground plane. In the realization
of SCPA, a single-fed patch antenna is manipulated to perturb the LP field to generate a
CP field.

In [7], LP perturbation was realized by the truncation of the single-fed patch. In [8],
slits were cut into the circular patch to perturb LP for CP generation, and the proposed
method could achieve a 4.92% RLBW (1.011–1.062 GHz) and 2.40% ARBW (1.028–1.053 GHz).
In [9], a corner-truncated patch with an coaxial probe feed was used to generate CP
with a 11.2% RLBW (1.92–2.16 GHz) and 5.85% ARBW (1.99–2.11 GHz), while a patch
with a fractal boundary could realize a 12.7% RLBW (2.35–2.67 GHz) and a 2.12% ARBW
(2.376–2.427 GHz) [10]. These findings reveal that LP perturbation by manipulating the
radiating patch can achieve a very narrow ARBW.

To improve the ARBW, a circular patch with multiple vias between the radiator and
ground plane was proposed and the scheme could achieve a 19.82% RLBW (2.09–2.55 GHz)
and 25.2% ARBW (2.1–2.72 GHz) [11]. A coplanar waveguide (CPW) feed with a slot
ground could achieve a 72% RLBW (2.26–4.85 GHz) and 66.48% ARBW (2.44–4.87 GHz) [12].
An inverted L-shaped patch with a cross-slot ground plane for the L-band spectrum could
achieve a 34% RLBW (1.3–1.83 GHz) and 19.86% ARBW (1.36–1.66 GHz) [13].

An inverted L-shaped structure is commonly used in realizing CP antenna. In [14],
an inverted L-shaped microstrip with a via connecting to the ground plane achieved
a 58.06% RLBW (4.4–8 GHz) and 51.96% ARBW (4.7–8 GHz). An inverted L-shaped
microstrip radiator with two L-shaped branches adjoining the partial ground plane for
the L-band spectrum could achieve a 44.9% RLBW (1.14–1.8 GHz) and 36.87% ARBW
(1.15–1.67 GHz) [15]. In addition, an inverted L-shaped microstrip radiator with a hook-
shaped branch adjoining the partial ground plane realized a 56% RLBW (2.25–4.0 GHz)
and 63.61% ARBW (2.38–4.60 GHz) [16]. The findings showed that the concurrent use of
an inverted L-shaped microstrip and adjoining branch effectively enhanced the ARBW of
SCPA. Specifically, the adjoining branch perturbs the LP field to generate a CP field without
an external polarizer.

However, the existing inverted L-shaped strip antennas for L-band applications
achieved an unsatisfactory ARBW (19.86% and 36.87%) [13,15]. As a result, this research
proposes an inverted L-shaped patch antenna with a corner-truncated partial ground plane
diagonally adjoined with a square branch for L-band applications. The inverted L-shaped
radiating patch could achieve linear polarization (LP), while the adjoining square branch
was used to perturb the LP field to generate a CP field. The corner-truncated partial ground
plane was utilized to enhance the ARBW. Simulations were performed using CST Studio
Suite [17], an antenna prototype was fabricated, and experiments were carried out. The
proposed antenna scheme could achieve an ARBW of 77.87% (1.09–2.48 GHz), rendering
the technology suitable for satellite communication and navigation applications.

2. Antenna Design and Development

Figure 1 illustrates the proposed square-branch corner-truncated partial ground plane
patch antenna on an FR-4 substrate (TLM140, Thai Laminate Manufacturer, Bangkok,
Thailand). The TLM140 was selected because of its availability in the local market. To
design the proposed antenna for 1.5 GHz (center of L-band), the relative permittivity
(εr), loss tangent (tanδ), and thickness (h) of the substrate were 4.3, 0.015, and 1.6 mm,
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respectively. It is noted that the relative permittivity was not readily provided in the
TLM140 datasheet at the desired frequency [18]. The curve fitting from available data
with a power function was introduced to estimate the relative permittivity at 1.5 GHz.
The thickness of the substate was chosen to optimize the reflection coefficient and axial
ratio. The substrate was inserted between the inverted L-shaped radiating patch and the
corner-truncated partial ground plane with a diagonally adjoining square branch. The
radiating patch was connected to the 50 Ω SMA feeding point and the square branch
was diagonally adjoined with the corner-truncated ground plane. The proposed inverted
L-shape patch antenna was 92 × 96 × 1.6 mm (W × L × H) in dimension.
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Figure 1. The geometry of the square-branch corner-truncated partial ground plane patch antenna:
(a) front view, (b) side view.

The inverted L-shaped radiating patch generated linear polarization (LP) field and
adjoining square branch was used to perturb the LP field to generate a CP field. The
corner-truncated partial ground plane was utilized to realize a wide CP frequency band
(L-band frequency spectrum). Table 1 tabulates the optimal dimension of the inverted
L-shaped patch antenna with a corner-truncated partial ground plane diagonally adjoined
with a square branch.

Table 1. The optimal dimension of the inverted L-shaped patch antenna with corner-truncated partial
ground plane diagonally adjoined with a square branch (in mm).

Parameters S1 S2 P1 P2 L1 L2 L3 L4 b t d h

Optimal value (mm) 92 96 45 68 76 2 12 29 26 27 19 1.6

Prior to the antenna development, the lower resonant frequency (fL in GHz) of the
inverted L-shaped planar monopole antenna (radiating patch) on the partial ground plane
in vacuum (Figure 2a) was determined using Equation (1), where W and L are the width
and length (in unit of cm) of the rectangular patch of the monopole antenna and p is the
distance (in unit of cm) between the rectangular patch and the partial ground plane (i.e.,
probe length) [19].

fL = 7.2/(L + p + (W/2π)) GHz. (1)
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Figure 2. Inverted L-shaped planar monopole antenna on the partial ground plane: (a) in vacuum,
(b) with FR-4 substrate.

To realize the lower (first) resonant frequency (fL) close to the center frequency of the
L-band, W, L, and p were thus equal to 4, 3, and 1.15 cm, so the calculated fL was equal
to 1.504 GHz. In Figure 2b, an FR-4 substrate was inserted between the radiating patch
and the resized partial ground plane. The FR-4 substrate nevertheless shifted the center
frequency. As a result, the partial ground plane was resized (i.e., downsized) to restore the
center frequency of the L-band.

Figure 3 compares the CST simulated reflection coefficient or return loss bandwidth
(RLBW) of the inverted L-shaped planar monopole antenna on a partial ground plane in
vacuum with that on an FR-4 substrate. The resizing of the partial ground plane resulted
in two resonant frequencies within the L-band (1–2 GHz). However, the AR of the inverted
L-shaped antenna on the resized partial ground plane was greater than 3 dB (>3 dB) in
the L-band, as shown in Figure 4. To realize an AR below 3 dB (≤3 dB), a diagonally
adjoining branch was integrated into the proposed antenna scheme as part of the partial
ground plane.
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Figure 3. The reflection coefficient of the inverted L-shaped planar monopole antenna on a partial
ground plane in vacuum and with FR-4 substrate.
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Figure 4. The axial ratio of the inverted L-shaped planar monopole antenna on a partial ground
plane in vacuum and with FR-4 substrate.

A transmission-line model was introduced to analyze a microstrip patch antenna using
a series and parallel resonant circuit, where the bandwidth is given by Equations (2) and (3),
respectively, and the resonant frequency can be calculated using Equation (4) [20].

BW =
1
Q

=
R

ω0L
= 2

∆ω

ω0
, (2)

BW =
1
Q

=
1

ω0RC
= 2

∆ω

ω0
, (3)

ω0 = 1/
√

LC. (4)

Figure 5 shows the equivalent circuit model of the inverted L-shaped planar monopole
antenna on a partial ground plane in vacuum and with the FR-4 substrate. In the figure, the
microstrip patch can be considered as a parallel resonant circuit of inductor (Lp), capacitor
(Cp), and finite resistance (Rp) [1]. The corner feeding to the patch can be modeled as a
series inductor (Ls) with a capacitor (Cs) and resistance (Rs). In vacuum, the initial values
of R, L, and C can be calculated using Equations (2)–(4) for the operating frequency of
1.5 GHz. The equivalent circuit model was subsequently optimized using the Keysight
Advanced Design System (ADS) software for optimal component values.
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Figure 5. The equivalent circuit model of an inverted L-shaped planar monopole antenna on a partial
ground plane in vacuum and with FR-4 substrate.

The introduction of the FR-4 substrate (replacing vacuum with FR-4) and resizing of
the partial ground plane altered the optimal component values of the equivalent circuit, as
tabulated in Table 2; therefore, double resonance can be obtained. Meanwhile, the wider
bandwidth could be achieved by increasing Rs and decreasing Rp. Figure 6 compares the
simulated reflection coefficient of an equivalent circuit using ADS in vacuum and with an
FR-4 substrate.
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Table 2. Optimal component values of an equivalent circuit model of inverted an L-shaped planar
monopole antenna on a partial ground plane in vacuum and with FR-4 substrate.

Parameters Rs Cs Ls Rp Cp Lp

In vacuum (initial value) 4 5.9 1.9 46 5.9 1.9
With FR-4 substrate 42 5.9 3 23 15.5 1.1

Unit Ω pF nH Ω pF nH
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Figure 6. Simulated reflection coefficient of equivalent circuit of inverted L-shaped planar monopole
antenna on a partial ground plane in vacuum and with FR-4 substrate.

Figure 7 shows the evolutionary stages of the inverted L-shaped patch antenna with a
branch structure diagonally adjoining the partial ground plane: Antennas I, II, III, and IV.
Each of Antenna I–IV was simulated with CST for investigating mainly the CP. In Antenna
I, the diagonally adjoining branch is of symmetrical L-shaped type and located at the
farthest corner of the ground plane [15,16], as shown in Figure 7a. The adjoining branch
was used to perturb the LP field (from the inverted L-shaped patch antenna) to generate
a CP field. In Antenna II, the diagonally adjoining branch of the square ring shape was
used to excite CP in the upper L-band frequency (Figure 7b). In Antenna III, the adjoining
branch of the solid square shape was used to mitigate the coupling effect between the
inverted L-shaped radiating patch and the adjoining branch (Figure 7c). In Antenna IV,
the corner-truncated partial ground plane was introduced to enhance ARBW, as shown in
Figure 7d.
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Figure 7. The evolutionary stages of the branch inverted L-shaped partial ground plane patch antenna: (a) Antenna I, (b)
Antenna II, (c) Antenna III, (d) Antenna IV.
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Figure 8 compares the simulated reflection coefficients of Antennas I, II, III and IV and
Figure 9 shows the corresponding simulated axial ratio. In Antenna I, the simulated RLBW
(|S11| ≤ −10 dB) was 50.84% (1.1–1.85 GHz), achieving circular polarization (AR ≤ 3 dB)
with a 29.45% ARBW (1.1–1.48 GHz). The simulated RLBW and ARBW of Antenna II were
53.69% (1.09–1.89 GHz) and 64.53% (1.06–2.07 GHz). The square ring branch in Antenna II
significantly enhanced the axial ratio bandwidth (64.53% vs. 29.45% for Antenna I).

Sensors 2021, 21, x FOR PEER REVIEW 7 of 16 
 

 

Figure 8 compares the simulated reflection coefficients of Antennas I, II, III and IV 

and Figure 9 shows the corresponding simulated axial ratio. In Antenna I, the simulated 

RLBW (|S11| ≤ −10 dB) was 50.84% (1.1–1.85 GHz), achieving circular polarization (AR ≤ 

3 dB) with a 29.45% ARBW (1.1–1.48 GHz). The simulated RLBW and ARBW of Antenna 

II were 53.69% (1.09–1.89 GHz) and 64.53% (1.06–2.07 GHz). The square ring branch in 

Antenna II significantly enhanced the axial ratio bandwidth (64.53% vs. 29.45% for An-

tenna I). 

The simulated RLBW and ARBW of Antenna III were 54.66% (1.09–1.91 GHz) and 

64.55% (1.07–2.09 GHz). In Figure 9, the solid square branch of Antenna III rendered AR 

close to 1 dB in the upper L-band (1.5–2.0 GHz). The low AR (≤1 dB) was attributable to 

the larger surface area of the solid square branch, vis-à-vis the square ring branch (An-

tenna II). The larger surface area mitigated the coupling effect between the inverted L-

shaped radiating patch and the adjoining branch (Figure 10). In Antenna IV, the simulated 

RLBW and ARBW were 53.12% (1.106–1.906 GHz) and 70.88% (1.02–2.14 GHz). The trian-

gular corner truncation of the partial ground plane enhanced the ARBW from originally 

64.55% (Antenna III) to 70.88%. The enhanced ARBW rendered Antenna IV suitable for a 

wide range of L-band applications.  

Figure 10a,b illustrate the coupling effect between the inverted L-shaped radiating 

patch and the adjoining branch at the center frequency of 1.5 GHz and the 0° phase of 

Antennas II and III. The coupling effect was mitigated as the surface area of the square 

branch increased (Antenna III). 

 

Figure 8. The simulated reflection coefficient of Antennas I, II, III and IV. 

 

Figure 9. The simulated axial ratio of Antennas I, II, III and IV. 

1.0 1.5 2.0 2.5
-20

-15

-10

-5

0

 

 

R
ef

le
ct

io
n
 C

o
ef

fi
ci

en
t 

(d
B

)

Frequency (GHz)

 Antenna I

 Antenna II

 Antenna III

 Antenna IV

1.0 1.5 2.0 2.5
0

3

6

9

 

 

A
x
ia

l 
R

at
io

 (
d
B

)

Frequency (GHz)

 Antenna I

 Antenna II

 Antenna III

 Antenna IV

Figure 8. The simulated reflection coefficient of Antennas I, II, III and IV.
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Figure 9. The simulated axial ratio of Antennas I, II, III and IV.

The simulated RLBW and ARBW of Antenna III were 54.66% (1.09–1.91 GHz) and
64.55% (1.07–2.09 GHz). In Figure 9, the solid square branch of Antenna III rendered AR
close to 1 dB in the upper L-band (1.5–2.0 GHz). The low AR (≤1 dB) was attributable to the
larger surface area of the solid square branch, vis-à-vis the square ring branch (Antenna II).
The larger surface area mitigated the coupling effect between the inverted L-shaped ra-
diating patch and the adjoining branch (Figure 10). In Antenna IV, the simulated RLBW
and ARBW were 53.12% (1.106–1.906 GHz) and 70.88% (1.02–2.14 GHz). The triangular
corner truncation of the partial ground plane enhanced the ARBW from originally 64.55%
(Antenna III) to 70.88%. The enhanced ARBW rendered Antenna IV suitable for a wide
range of L-band applications.
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Figure 10. The coupling effect between the inverted L-shaped radiating patch and the adjoining branch at the center
frequency of 1.5 GHz and 0◦ phase: (a) Antenna II (square ring branch), (b) Antenna III (solid square branch).

Figure 10a,b illustrate the coupling effect between the inverted L-shaped radiating
patch and the adjoining branch at the center frequency of 1.5 GHz and the 0◦ phase of
Antennas II and III. The coupling effect was mitigated as the surface area of the square
branch increased (Antenna III).

Figure 11a–d illustrate the surface current distribution of the inverted L-shaped patch
antenna with a corner-truncated partial ground plane diagonally adjoined with a square
branch (Antenna IV) at the center frequency (1.5 GHz) at 0◦, 90◦, 180◦, and 270◦ phase. The
surface current density was very high around the feed line and relatively high near the
adjoining area between the square branch and the corner-truncated partial ground plane.
The perturbation induced by the diagonally adjoining square branch generated right-hand
circular polarization (RHCP). At 0◦ phase, the surface current vectors traveled in the +X
direction and rotated to the -Y direction at 90◦ phase. At 180◦ phase, the surface current
vectors moved in the -X direction and turned to the +Y direction at 270◦ phase. The surface
current rotated clockwise, achieving RHCP in the -Z direction.
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Figure 11. The surface current distribution on the proposed antenna (Antenna IV) at different phases: (a) 0◦, (b) 90◦, (c)
180◦, (d) 270◦.

3. Parametric Study

This section investigates the effects of key antenna parameters on the RLBW and
ARBW of the inverted L-shaped patch antenna with a corner-truncated partial ground
plane diagonally adjoined with a square branch. The key antenna parameters included
branch dimension (b), corner-truncated size (t), vertical length (L1) and horizontal length
(L4) of the inverted L-shaped radiating patch, and the distance between the radiating patch
and the edge of the substrate (d). The parametric studies were designed to investigate the
possible effects of varying the antenna structures. Therefore, it can provide only proper
trends for initiation and tuning the design but cannot be used to visualize the full range of
antenna behavior.

3.1. The Effect of Branch Dimension (b)

Figure 12 illustrates the simulated RLBW and ARBW under variable branch dimen-
sions (b): 23, 26, and 29 mm. As b increased, the RLBW shifted to the left toward lower
frequency while the ARBW increased. However, with excessively large b (29 mm), the AR
became larger than 3 dB (>3 dB), resulting in non-circular polarization. As a result, the
optimal b was 26 mm.
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Figure 12. The simulated reflection coefficient and axial ratio under variable branch dimensions (b).
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3.2. The Effect of Corner-Truncated Size (t)

Figure 13 illustrates the simulated RLBW and ARBW under variable corner-truncated
size (t): 17, 27, and 37 mm. The variation in t had minimal effect on the RLBW, while the
ARBW increased with the increase in t. However, with t = 37 mm, AR was mostly greater
than 3 dB (>3 dB), resulting in non-circular polarization. As a result, the optimal t was
27 mm.
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Figure 13. The simulated reflection coefficient and axial ratio under variable corner-truncated size (t).

3.3. The Effect of Vertical Length of Inverted L-Shaped Radiating Patch (L1)

Figure 14 illustrates the simulated RLBW and ARBW under a variable vertical length
of inverted L-shaped radiating patch (L1): 74, 76, and 78 mm. The length of L1 was
approximately equal to the quarter wave length of the lowest operating frequency (1 GHz).
As L1 increased, RLBW shifted to the left toward a lower frequency, while ARBW remained
relatively unchanged with the increase in L1, except in the upper L-band spectrum. In the
upper L-band spectrum, AR approached 1 dB as the L1 increased, resulting in near-perfect
circular polarization. The optimal L1 was thus 76 mm.
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Figure 14. The simulated reflection coefficient and axial ratio under variable vertical length (L1) of
the radiating patch.
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3.4. The Effect of Horizontal Length of Inverted L-Shaped Radiating Patch (L4)

Figure 15 illustrates the simulated RLBW and ARBW under the variable horizontal
length of the inverted L-shaped radiating patch (L4): 24, 29, and 34 mm. As L4 became
excessively large (34 mm), the reflection coefficient (|S11|) was greater than −10 dB
(|S11| > −10 dB), resulting in an impedance mismatch. As L4 increased (from 29 to 34 mm),
AR became smaller but ARBW became narrower. The optimal L4 was 29 mm.
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Figure 15. The simulated reflection coefficient and axial ratio under variable horizontal length (L4) of
radiating patch.

3.5. The Effect of Distance between the Radiating Patch and the Edge of the Substrate (d)

Figure 16 illustrates the simulated RLBW and ARBW under variable distance between
the radiating patch and the edge of the substrate (d): 14, 19, and 24 mm. As d increased,
the reflection coefficient (|S11|) deteriorated while AR became smaller. The optimal d was
thus 19 mm.
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Figure 16. The simulated reflection coefficient and axial ratio under variable distance between the
radiating patch and the edge of the substrate (d).

4. Results and Discussion

A prototype antenna of the inverted L-shaped patch antenna with a corner-truncated
partial ground plane diagonally adjoined with a square branch (Antenna IV) was fabricated
and experiments were carried out (Figure 17a,b). During the fabrication, the relative
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permittivity of the actual substrate was characterized using a near-field transmission-line
measurement technique implemented by a modified complementary square ring resonator
(CSRR) [21]. A 50 Ω transmission line acted as a sensor with the Minkowski fractal pattern
of CSRR. The extraction result of FR-4 (TLM140) was the relative permittivity of 4.308 at
1.5 GHz (average of 5 measurements, as shown in Table 3). The accuracy of the method used
for characterization was limited by the air gap effect between the material under test (MUT)
and CSRR, therefore the extracted values of relative permittivity could be obtained by a
number of measurements. In addition, the resonant frequency and magnitude response of
CSRR were dependent on the thickness of the substrate. Therefore, substrate thickness must
be reasonably chosen to yield the sufficient accuracy of the measured relative permittivity
and loss tangent of the material under test (MUT). In the experiment in an anechoic
chamber, the antenna prototype on a rotating table was used as the receiving antenna, and
a standard CP reference antenna (ETS-Lindgren’s Model 3102 Conical Log Spiral series)
was used as the transmitting antenna (Figure 17c). The results were measured by a vector
network analyzer (model E5061B, Agilent, Santa Clara, CA, USA). The performance metrics
included the reflection coefficient, AR, gain, and radiation pattern.
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Figure 17. The prototype of the inverted L-shaped patch antenna with a corner-truncated partial
ground plane diagonally adjoined with square branch: (a) front, (b) rear, (c) in anechoic chamber.

Table 3. The extracted values for the relative permittivity of FR-4 (TLM140) at 1.5 GHz.

Measurements 1st 2nd 3rd 4th 5th Average

Extracted Values 4.32 4.27 4.35 4.31 4.29 4.308

Figure 18 compares the simulated and measured reflection coefficients of the pro-
posed antenna. The simulated and measured RLBWs (|S11| ≤ −10 dB) were 53.12%
(1.106–1.906 GHz) and 62.37% (1.07–2.04 GHz), with the center frequency of 1.55 GHz.
Figure 19 compares the simulated and measured AR of the proposed antenna. The sim-
ulated and measured ARBWs (AR ≤ 3 dB) were 70.88% (1.02–2.14 GHz) and 77.87%
(1.09–2.48 GHz). The simulation and measured results were agreeable. However, there
are some discrepancies between the simulated and measured reflection coefficients and
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axial ratios. The degradation of the measured reflection coefficient in the upper L-band
frequency (1.8–2.0 GHz) and the improved measured reflection coefficient in the lower
L-band frequency (1.0–1.5 GHz) could be attributed to the soldering of the SMA in the
antenna fabrication. The same rationale also affected the simulated and measured axial
ratios of the proposed antenna. On the other hand, the simulation was carried out under
ideal conditions in the absence of soldering.
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Figure 18. The simulated and measured reflection coefficient of the proposed antenna.
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Figure 19. The simulated and measured axial ratio of the proposed antenna.

Figure 20 compares the simulated and measured gains of the proposed antenna. The
simulated and measured maximum gains were 3.0 dBi at 1.7 GHz and 2.76 dBi at 1.6 GHz,
respectively. The simulation and measured results were in good agreement. The simulation
and measured radiation patterns of the proposed antenna at the center frequency (1.5 GHz)
are illustrated in Figure 21a,b. RHCP radiates in the -Z direction (clockwise) and LHCP in
the +Z direction (counterclockwise), resulting in bi-directional radiation. The simulation
and measured results were in good agreement. Table 4 summarizes the antenna parameters,
RLBW, and ARBW of previous studies and this current research. Given the target L-band
frequency (1–2 GHz), the ARBW of the proposed antenna scheme (77.87%) was significantly
wider than that of [13,15] (19.86% and 36.87%, respectively). In comparison with [16,22–24],
for C- and S-band applications (30.8–72.9%), the proposed antenna scheme could achieve a
wider ARBW (77.87%).



Sensors 2021, 21, 1085 14 of 16Sensors 2021, 21, x FOR PEER REVIEW 14 of 16 
 

 

 

Figure 20. The simulated and measured gain of the proposed antenna. 

  

(a) (b) 

Figure 21. The simulated and measured radiation patterns: (a) LHCP, (b) right-hand circular polarization (RHCP). 

Table 4. The antenna parameters, return loss bandwidth (RLBW), and axial ratio bandwidth (ARBW) of existing studies 

and the current research. 

Ref. 
fc (RL) 

(GHz) 

fc (AR) 

(GHz) 

CP 

Band 

RLBW 

(%) 

ARBW 

(%) 
Proposed Antenna/Technology 

2017 

[13] 
1.565 1.51 

L-

band 
34 19.86 An L-shaped tapered-feed radiator with a cross-slot ground plane. 

2017 

[15] 
1.47 1.41 

L-

band 
44.9 36.87 

Inverted L-shaped microstrip radiator with two L-shaped branches 

adjoining a partial ground plane. 

2018 

[16] 
3.12 3.48 S-band 56 63.61 

Inverted L-shaped microstrip radiator with a hook-shaped branch 

adjoining a partial ground plane. 

2018 

[22] 
2.82 2.92 S-band 81.06 70.55 

An S-shaped microstrip loading a multiple-circular-sector patch 

with a slot ground plane. 

2018 

[23] 
4.2 4.25 

C-

band 
76.2 72.9 

Inverted L-shaped microstrip radiator with a slit ground plane and 

spiral stubs. 

1.0 1.5 2.0 2.5
-5

-4

-3

-2

-1

0

1

2

3

4

5

 

 

G
ai

n
 (

d
B

i)

Frequency (GHz)

 Simulation

 Measurement

-40

-30

-20

-10

0
0

30

60

90

120

150

180

210

240

270

300

330

-40

-30

-20

-10

0

 Simulated LHCP

 Measuerd LHCP
-40

-30

-20

-10

0
0

30

60

90

120

150

180

210

240

270

300

330

-40

-30

-20

-10

0

 Simulated RHCP

 Measuerd RHCP

Figure 20. The simulated and measured gain of the proposed antenna.
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Figure 21. The simulated and measured radiation patterns: (a) LHCP, (b) right-hand circular polarization (RHCP).

Table 4. The antenna parameters, return loss bandwidth (RLBW), and axial ratio bandwidth (ARBW) of existing studies
and the current research.

Ref. fc (RL)
(GHz)

fc (AR)
(GHz) CP Band RLBW

(%)
ARBW

(%) Proposed Antenna/Technology

2017 [13] 1.565 1.51 L-band 34 19.86 An L-shaped tapered-feed radiator with a cross-slot
ground plane.

2017 [15] 1.47 1.41 L-band 44.9 36.87 Inverted L-shaped microstrip radiator with two
L-shaped branches adjoining a partial ground plane.

2018 [16] 3.12 3.48 S-band 56 63.61 Inverted L-shaped microstrip radiator with a
hook-shaped branch adjoining a partial ground plane.

2018 [22] 2.82 2.92 S-band 81.06 70.55 An S-shaped microstrip loading a
multiple-circular-sector patch with a slot ground plane.

2018 [23] 4.2 4.25 C-band 76.2 72.9 Inverted L-shaped microstrip radiator with a slit
ground plane and spiral stubs.

2019 [24] 2.29 2.55 S-band 45.41 30.8
A simple microstrip feedline with a circular ring slot
using a pair of asymmetrical rectangular slots for the
ground plane.

This work 1.55 1.78 L-band 62.37 77.87
An inverted L-shaped patch antenna with a
corner-truncated partial ground plane diagonally
adjoined with a square branch.
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Essentially, the proposed inverted L-shaped patch antenna with a corner-truncated
partial ground plane diagonally adjoined with a square branch for L-band spectrum could
achieve an ARBW of 77.87% (1.09–2.48 GHz), rendering the technology suitable for satellite
communication and navigation applications.

5. Conclusions

This research proposed an inverted L-shaped patch antenna with a corner-truncated
partial ground plane diagonally adjoined to a square branch for the L-band spectrum
(1–2 GHz). The inverted L-shaped radiating patch generated an LP field, and the adjoining
square branch was used to perturb the LP field to generate a CP field. The corner-truncated
partial ground plane was utilized to enhance the ARBW. Simulations were performed,
an antenna prototype was fabricated, and experiments were carried out. The simulated
and measured RLBWs (|S11| ≤ −10 dB) were 53.12% (1.106–1.906 GHz) and 62.37%
(1.07–2.04 GHz), and the corresponding ARBWs were 70.88% (1.02–2.14 GHz) and 77.87%
(1.09–2.48 GHz). The simulated and measured maximum gains were 3.0 dBi at 1.7 GHz
and 2.76 dBi at 1.6 GHz, and the proposed antenna achieved RHCP in a clockwise direc-
tion. Overall, the simulation and measured results were in good agreement. In essence,
the proposed inverted L-shaped patch antenna with a corner-truncated partial ground
plane diagonally adjoined with a square branch for the L-band spectrum could achieve
an ARBW of 77.87% (1.09–2.48 GHz), rendering the technology suitable for satellite com-
munication and navigation applications. Subsequent research will experiment with a
stacked patch antenna by incorporating a metasurface structure into the antenna scheme to
enhance the maximum gain and utilize the principle of equivalent circuit to investigate
the proposed antenna in different evolutionary stages. In addition, the miniaturization
of the proposed antenna could be achieved by using a higher-permittivity substrate or a
magneto-dielectric metamaterial.
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