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Abstract: Due to its huge impact on the overall quality of service (QoS) of wireless networks, both aca-
demic and industrial research have actively focused on analyzing the received signal strength in
areas of particular interest. In this paper, we propose the improvement of signal-strength aggregation
with a special focus on Mobile Crowdsourcing scenarios by avoiding common issues related to
the mishandling of log-scaled signal values, and by the proposal of a novel aggregation method
based on interpolation. Our paper presents two clear contributions. First, we discuss the misuse
of log-scaled signal-strength values, which is a persistent problem within the mobile computing
community. We present the physical and mathematical formalities on how signal-strength values
must be handled in a scientific environment. Second, we present a solution to the difficulties of
aggregating signal strength in Mobile Crowdsourcing scenarios, as a low number of measurements
and nonuniformity in spatial distribution. Our proposed method obtained consistently lower Root
Mean Squared Error (RMSE) values than other commonly used methods at estimating the expected
value of signal strength over an area. Both contributions of this paper are important for several recent
pieces of research that characterize signal strength for an area of interest.

Keywords: signal strength; mobile crowdsourcing; network measurements

1. Introduction

During the last decade, many research studies have made use of Mobile Crowd-
sourcing methods to analyze the performance and quality of service (QoS) in mobile
environments. These studies usually obtain different QoS indicators together with some
environmental data such as timestamps, location coordinates and cell identifiers, to de-
scribe wireless network behavior for a given geographical area. Among all the collected
network information, the received signal-strength indicator is included in most Mobile
Crowdsourcing analyses. This recurrent consideration of signal strength is in part because
it is very easy to obtain from end-user mobile devices [1], but mostly because of its influence
on the overall QoS in wireless networks, which is reflected on the impact produced by
signal-strength variations in network performance measurements [1–4]. Moreover, analy-
ses over signal-strength data are not only interesting for academic research, but also for
mobile analytics companies as OpenSignal and Tutela, and for mobile network operators for
radio network planning [5,6] and for performing coverage analysis in cellular networks [7].

A common methodology to summarize the received signal strength inside a specific
area is to aggregate all the individual measurements into one representative value that
characterizes the signal strength inside the location area [1,8–18].

The first question about getting a representative signal-strength value from the ag-
gregation of several individual measurements is to identify what real value we actually
want to represent and estimate. In this paper, we consider the formal definition of the
expected value of signal strength as the target value to be estimated. The expected value is
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a measure of central tendency, i.e., a value for which the results will tend to. Intuitively,
it is the theoretical mean value of a random variable over a large number of experiments,
and it is commonly used to summarize all the information about a random variable in a
single numerical value.

In Mobile Crowdsourcing scenarios, signal-strength samples are taken by real end-
user devices with custom measurement apps. This leads to important sources of error to
take into account when aggregating values inside an area:

1. Measurements are not uniformly distributed in the area, as they are defined by human
mobility patterns [19].

2. The number of measurements in small areas (e.g., coverage area of a single cell) could
not be high enough to be considered representative enough [1].

3. The measurements present accuracy errors in both signal-strength values and geo-
graphic coordinates [1].

Hence, some commonly used methods to characterize signal strength could not
necessarily return a good estimation of expected value of signal strength, since they do
not take into consideration the sources of error aforementioned, which are present in most
Mobile Crowdsourcing signal-strength data.

Our paper presents two clear contributions. First, we present a formal analysis about
how signal-strength values must be handled to avoid some common pitfalls in using
log-scaled signal-strength. Second, we present a novel aggregation method based on inter-
polation of signal strength (ABOI method). Our proposed method obtained consistently
lower RMSE values than other commonly used methods at estimating the expected value of
signal strength over an area, in both simulated and real scenarios. Consequently, the ABOI
method is demonstrated to be more robust against the existing difficulties of real-world
measurements.

The rest of this paper is structured as follows. In Section 2, we discuss the literature
on aggregating signal strength for a variety of different purposes. Section 3 presents
the physical and mathematical formalities regarding how signal-strength values must be
handled when applying mathematical operations. In Section 4, we discuss the most used
methods to aggregate signal-strength measurements in Mobile Crowdsourcing scenarios,
and their unsuitability when dealing with low number of measurements and nonuniformity
in spatial distribution. We also present a novel aggregation method based on interpolation
of signal strength, to face these real-world difficulties. Section 5 provides the mathematical
foundation for using our proposed method to estimate the expected value of signal strength
inside an area of interest. Section 6 indicates that our proposed method obtains better results
than other commonly used methods for aggregating signal strength, in both simulated and
real scenarios. We conclude in Section 7 that for most Mobile Crowdsourcing scenarios, our
proposed model based on interpolation should be preferred over the other methodologies,
since it has a better performance even when the number of measurements is low and the
spatial distribution of the samples is nonuniform, which is a typical case for real Mobile
Crowdsourcing data.

2. Related Work

Due to its large impact on the overall QoS of wireless networks, many research works
have focused on characterizing the received signal strength for an area of particular interest.
These analyses frequently used all the individual signal-strength samples taken by each
mobile device sensing the network.

In this way, some works aggregated several signal-strength samples inside the same
area into a unique representative signal-strength value to predict user availability [9], mea-
sure the effect of weather conditions in the received signal strength [10,11], analyze network
performance [12], measure the impact on signal strength of indoor-outdoor context [13]
and find correlations between signal strength and other QoS indicators for mobile networks
as network congestion [15], throughput [8] and TCP goodput and latency inside the same
geographic area [1]. In this paper, we propose an aggregation method that better estimates
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the expected value of signal strength than the methods used in the papers mentioned above,
especially when using measurements taken in Mobile Crowdsourcing contexts. Thus, the
results and conclusions of these works can be refined by using our proposed model.

It is important to notice that there are other research works that also aggregated
several signal-strength samples, although not to find a representative signal-strength
value. Some of these works used signal aggregation to perform base transceiver station
(BTS) localization [20] or to estimate user location [14,21], mostly based on the RADAR
system [22]. These studies are not that related to the problem we are referring to in this
paper, which is to aggregate signal strength into a representative value to estimate the
mathematical expectation of the signal strength.

There are some works that developed high-resolution coverage maps from Mobile
Crowdsourcing signal-strength measurements. These maps were created by plotting each
empirical sample on the map [23,24] or by interpolating the signal strength in several
uniformly distributed points inside the area of interest using linear interpolation [25],
using variations of Kriging method [26,27] or by using Gaussian processes that consider
a prior knowledge about theoretical path loss models [28]. These coverage maps are
useful for tasks that require highly detailed maps, but when analyzing signal coverage
in greater areas, the effectiveness of their fine-grained visualizations will decrease as the
resolution of the maps decreases. Positioning all individual samples will greatly increase
the clutter in the visualizations, defeating the purpose of providing useful information for
the measured areas. Therefore, for these cases, it is also important to take into account the
aggregation of signal-strength samples, to be able to generalize their results to maps with
lower resolution, where it will be convenient to represent the signal strength in areas by
only one representative value. Consequently, the method for signal-strength aggregation
proposed in this paper could also be useful for these works.

Some works that employed Mobile Crowdsourcing data discussed the problem of not
having uniformly distributed samples in the measured area [26,28] and how the spatial
distribution of the samples matches population patterns [29]. This is important, since some
researchers that used simulated Mobile Crowdsourcing data to evaluate their methods,
implicitly assumed uniform spatial distribution of the samples (as shown in Section 4.1).
Uniform distribution is not a realistic measurement scenario, especially when samples
are taken by real end-user mobile devices. For a better reliability of this paper’s results,
we consider in our experiments both uniform distribution of signal-strength samples and
distribution based on social network theory [19], which is closer to the spatial distribution
present in real Mobile Crowdsourcing measurements.

3. Common Pitfalls in Using Log-Scaled Signal Strength

The use of log-scaled signal-strength values is a widespread methodology for analyz-
ing radio frequency measurements. Signal amplitude could vary very widely, and therefore,
it could be difficult to analyze and understand the relationships among different values
in the linear watt scale. Hence, using log-scale enhances signal-strength visualizations by
improving the display range of axes. The use of log-scaled signal-strength values is also
attractive since it can lead to a compression of data, requiring fewer bits of information [30].

Log-scaled signal-strength values could be used in dBm units (decibels with reference
to one milliwatt) or in Arbitrary Strength Units (ASU), since ASU values are linearly
proportional to the received signal strength in dBm, and consequently, they are also
logarithmic values.

Before using and manipulating dBm values, it is important to analyze the origin of
dBm from a physical point of view, regarding dimensional analysis. Power is a derived
quantity that can be expressed in terms of fundamental units (time, length, and mass). In
fact, power values must have dimension ML2T−3. The International System of Units (SI)
describes the watt (symbol: W) as a unit of power, defined as a derived unit in terms of
base units, where 1 W = 1 kg ·m2 · s−3. In addition, the prefix Milli- (symbol m) has been
part of the SI since 1960, and it only denotes a factor of 10−3. This prefix never changes the
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units, and therefore, values expressed in milliwatt (mW) are actually being expressed in
watt (W) units.

If we consider a power value PmW expressed in milliwatts, its corresponding value in
dBm is formulated as

PdBm = 10 log10

(
PmW

1 mW

)
(1)

It is clear to see that the right side in Equation (1) is dimensionless, since mW dimen-
sion is canceled in PmW

1 mW . Then, the parameter inside the logarithm function in Equation (1)
is a dimensionless number, and therefore, PdBm is also dimensionless. This fact is essential
because, even when PmW has dimensions, there is no physical sense for PdBm to have it.
Thus, it is a mistake to consider dBm as a power unit, since it does not meet the dimension
of power quantities (ML2T−3).

The above is documented by Sonin [31]: “Products, ratios, powers, and exponential and
other functions such as trigonometric functions and logarithms are defined for numbers, but have
no physical correspondence in operations involving actual physical quantities”.

Furthermore, the mere fact that PdBm is defined as a logarithmic function implies that
dBm is a dimensionless quantity. In fact, we consider the formal definition of 10 log10(x):

10 log10(x) =
10

ln(10)

∫ t=x

t=1

dt
t

The integral
∫ t=x

t=1
dt
t corresponds to the sum of an infinite number of terms dt

t . All these
terms are dimensionless, and therefore, the whole expression 10 log10(x) will always be
dimensionless. Then, further interpretations of the dimensionality of dBm are not accepted:
dBm values are intrinsically dimensionless.

This non-coherency in dimensionality between dBm values and power quantities
(ML2T−3) can be demonstrated with the knowledge of the use of dimensional formulas
in changing units [32], where there is no possible transformation to consistently change
from W to dBm. The consequence of the aforementioned is that dBm values do not meet
Bridgman’s principle of absolute significance of relative magnitude (Lemma 1), which is essential
to all the systems of measurement in scientific use [33].

Lemma 1. dBm values do not meet Bridgman’s principle of absolute significance of relative
magnitude.

Proof. Let SQ be a secondary quantity described by

SQ = f (α, β, γ, ...),

where α, β, γ, ... are primary quantities and f is the function that combines them.
SQ satisfies Bridgman’s principle of absolute significance of relative magnitude if

f (α1, β1, γ1, ...)
f (α2, β2, γ2, ...)

=
f (xα1, yβ1, zγ1, ...)
f (xα2, yβ2, zγ2, ...)

(2)

holds for all values of α1, β1, γ1, ..., α2, β2, γ2, ... and for all coefficients x, y, z, ... [33].
As stated in Equation (1), dBm can be described as a function of primary quantities:

fdBm(α, β, γ) = 10 log10

(
α[kg] · β[m2] · γ[s−3]

10−3 · 1[kg] · 1[m2] · 1[s−3]

)
(3)

Proceeding by contradiction, assume that dBm values do meet Bridgman’s principle
of absolute significance of relative magnitude. Then, Equation (2) should hold for fdBm

in Equation (3) and for all values of (α1, β1, γ1), (α2, β2, γ2) and (x, y, z). In particular, it
should hold for the following values:
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α1 = 10−9 β1 = 1 γ1 = 1
α2 = 10−8 β2 = 1 γ2 = 1

x = 10 y = 1 z = 1

By replacing these values in the left side of Equation (2):

fdBm(α1, β1, γ1)

fdBm(α2, β2, γ2)
=
−60
−50

= 1.2

And by replacing these values in the right side of Equation (2):

fdBm(xα1, yβ1, zγ1)

fdBm(xα2, yβ2, zγ2)
=
−50
−40

= 1.25

Both sides of the equation are not equal, which is a contradiction. Then, since the
relationship is not fulfilled for all values, we conclude that dBm values (represented as fdBm)
do not satisfy Bridgman’s principle of absolute significance of relative magnitude.

As a direct consequence of Lemma 1, equations involving dBm units are considered
to be not physically relevant [31].

Meeting Bridgman’s principle is, according to Percy Bridgman [33], essential to all
the systems of measurement in scientific use. This principle is fundamental to guarantee
that the selection of a different unit of measurement will not affect the outcomes of any
experiment. Therefore, as dBm values do not meet Bridgman’s principle, some numerical
relationships among power values in W do not remain true when using dBm, i.e., the
outcomes of scientific experiments can be affected if using dBm values instead of watt
values. This should not be allowed in scientific research, as nature is indifferent to the
arbitrary choices we make when we pick base units. Indeed, as Sonin [31] precisely
stated: “Nature is indifferent to the arbitrary choices we make when we pick base units. We
are interested, therefore, only in numerical relationships that remain true independent of base
unit size. ”. However, dBm values do not respect this, as demonstrated in the following
straightforward example:

1 mW + 1 mW = 2 mW

If we transform all values from mW to dBm using Equation (1), we have

0 dBm + 0 dBm = 3.0102999566 dBm

This is, of course, wrong and contradictory, and it exemplifies that if we wrongly
attempt to perform addition of dBm values, we will reach erroneous conclusions such as
1 mW = 2 mW. Accordingly, to be coherent with the dimensional analysis and with the
mathematical basis, all mathematical operations involving signal strength must use linear
watt values.

Some research from before the 1980s purposely included these wrong methodologies
in their analyses. However, when applying mathematical operations to log-scaled signal
values, they had a clear understanding of the definition and implications of using loga-
rithmic power values. As they stated, they performed these methodologies to compare
how different their results would be if using log-scaled signal values [34,35], or to explore
the “attractiveness of the logarithm of power” such as its contribution to a compression of data
requiring fewer bits of information [30] (what may have been a real concern at that time).
Nevertheless, we did not find any discussion or argument on why to use log-scaled signal
values in more recent papers. Indeed, many of these papers manipulated dBm values with-
out mentioning the correspondence between dBm and watt values [13,15,20,21,27,36–41],
and moreover, some of them manipulated signal-strength values without reporting the
unit of measurement employed [12,14,29,42,43]. Many of the papers that followed these
wrong methodologies got log-scaled signal-strength measurements directly from mobile
operating systems (Android or iOS) [1,8,11–13,15,20,23,26,27,36–38,40]. Therefore, it is
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plausible that they just used and manipulated the data returned by the systems without a
thorough analysis about the unit of the collected signal-strength values.

It is important to understand that applying mathematical operations with log-scaled
signal-strength values involves wrong models and interpretations of reality, and therefore,
leads to wrong conclusions. Nevertheless, related research works have frequently made
these mistakes. Many of these papers have been published during the last few years,
demonstrating that the misuse of log-scaled signal-strength values is a real problem within
the mobile computing community presently. These methodologies must be avoided, even
when they have been constantly used in the past, since their habitual use is not a valid
argument against their contradiction with some basic principles of scientific analysis.

The following subsections describe some of the common, but misinterpreted practices.

3.1. Averaging Signal Strength

The average of signal-strength measurements taken in similar temporal space con-
ditions has been widely employed. For instance, the arithmetic mean of measurements
taken in a single point can be used to reduce measurement variance, since every signal-
strength sample is assumed to be contaminated with unrelated additive noise. Moreover,
the arithmetic mean of measurements inside the same geographic area can be used to
obtain a representative value of signal strength, getting an estimation of the mathematical
expectation of signal strength in the area (As shown in Section 4.1).

The arithmetic mean involves taking the sum of samples; however, we already stated
the lack of physical sense and relevance of the addition (and any other equation) involving
log-scaled signal values. Consequently, the arithmetic mean of log-scaled signal values
cannot either be considered to be physically relevant. This bad practice implies in most
cases a distortion of real signal-strength behavior [30,35], as shown in the following simple
but explanatory example. Let a be a vector of signal-strength values in dBm units:

a =
[
−45 dBm −55 dBm

]
(4)

The arithmetic mean of samples in a (in linear scale) is 1.74e−5 mW, which is equal
to −47.6 dBm. Instead, the arithmetic mean of log-scaled samples in a is −50 dBm,
with an error of 2.4 dB from the real value introduced by this misleading methodology.
Although these errors may seem small in some cases, they should not be underestimated
due to the impact of signal-strength fluctuations on other important network performance
metrics [1–4]. Differences around 5 dB in signal strength could imply in some cases an
increase of 100% in packet loss rate and round-trip time of a connection over the mobile
network [3].

Despite the aforementioned, there are works in which several signal-strength samples
were aggregated by performing a log averaging process, taking the arithmetic mean of
dBm or ASU measurements, misunderstanding signal-strength real behavior. Some works
that used this incorrect methodology are listed below:

• (2017) Sabu et al. [11] conducted a correlation study between signal strength and
rainfall intensity in an area of interest, where logarithmic ASU values were aggregated
by taking the arithmetic mean. As result, the authors concluded that the drop of
signal strength during rainfall was not as significant as expected by the theoretical
hypothesis.

• (2018) In the data exploration section provided by Sung et al. [8], an area of interest was
divided in smaller square areas. For each square area, signal strength was reported
by taking the mean of several logarithmic ASU measurements. As result, a weak
geographical correlation between signal strength and throughput was found.

• (2015) In the research work of Marina et al. [13], signal-strength samples in dBm units
were divided according to their context (indoor or outdoor), and then aggregated
by taking the arithmetic mean. Then, the authors analyzed the great impact of user
context (indoor or outdoor) on the received signal strength.
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• (2013) Sonntag et al. [1] created signal-strength coverage maps by taking the arithmetic
mean of values represented as percentages. The percentage values are calculated
linearly from logarithmic signal strength, so they are also logarithmic values. The
authors concluded that coverage maps created from crowdsourced signal strength
were not very good at presenting the actual transport quality.

In addition to the above, there are other research papers that also followed the in-
correct methodology of calculating the arithmetic mean of logarithmic signal-strength
values [12,17,20,21,36–38,40].

The only recorded case in radio frequency analysis where directly average log-scaled
measurements using the arithmetic mean is admitted, is when dealing with samples of a
repetitive or continuous wave signal. For this case, averaging log-scaled values is equal to
log-scaling the average of linear values [44]. However, this is not the case of the signals we
are referring to in this paper. Therefore, the introduced error by averaging log-scaled values
depends on the statistics of the power estimates being averaged [30,34]. Consequently,
considering that log-scaling the linear average will be equal to the average of the log-scaled
values, and that the introduced error can be ignored, are incorrect assumptions.

3.2. Comparing Signal Strength

When comparing two signal-strength values, e.g., to calculate a prediction error, it
is essential to properly measure the difference between the values. For example, if the
signal strengths we want to compare are −50 dBm and −45 dBm, then it is correct to
say that the values differ in 5 dB, which represents the relation between both signal
strengths. It is also correct to say that the difference between these values is 2.162e−5 mW
(the difference in linear scale) or, equivalently, −46.65 dBm, although this latter form in
dBm units can be quite confusing. However, it is a big mistake to say that the difference
between −50 dBm and −45 dBm is 5 dBm, since this is equal to 3.162 mW, which
is several orders of magnitude greater than the real difference shown before. Despite
the above, some works performed signal-strength comparisons using this last incorrect
methodology [13,36,40]. This misunderstanding is demonstrated in sentences as “median
error is 6 dBm” [40], “differing by more than 15 dBm” [13], “the real signal strength is 2.5 dBm
stronger” [38] or “the errors are 10 dBm, 7 dBm, and 6 dBm, respectively” [36]. These error
levels are not coherent with the data used, where there are practically no values greater
than −50 dBm.

In addition, when comparing different signal-strength prediction errors to decide
which error is lower, it is very important to compare them using absolute errors (in watt or
dBm scale) rather than relative errors (in dB). The comparison of prediction errors using
relative values, could lead to misunderstandings illustrated in the following simple but
explanatory example. An error of +4 dB at predicting −70 dBm could be considered lower
than an error of +5 dB at predicting −110 dBm, holding that 4 dB < 5 dB. However, if
we analyze these errors as linear absolute errors, we find that the first error is actually
more than 10, 000 times greater than the second one, giving an absolutely opposite view
than the obtained by analyzing relative dB values. An example of the use of this incorrect
methodology is described in the following:

• (2019) Recently, Alimpertis et al. [45] proposed a new method based on machine
learning to perform signal-strength prediction, i.e., given a set of signal-strength
measurements in an area, estimate signal-strength values in other singular points.
They claimed that their method consistently obtains lower prediction errors than
related state-of-art algorithms. Nevertheless, it can be shown that the comparison
of errors used by them leads to inconclusive results. Using the values shown in
Table 4 of [45], for cell ID x204, their method obtains an average error of 2.3 dB,
outperforming Ordinary Kriging (OK) and Ordinary Kriging Detrending method
(OKD) which obtains average errors of 3.85 dB and 2.99 dB respectively. However, if
we consider the case in which their method’s error is +2.3 dB, OK’s error is −3.85 dB,
and OKD’s error is −2.99 dB, all in relation to the expectation of the signal strength
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of cellID x204 (−96 dBm), we have that OK method has an error 26% lower than
their method’s error, and OKD method has an error 30% lower than their method’s
error (using linear watt scale). In that case (a possible case given the prediction errors
stated in the paper), their method actually gets worse results than related state-of-art
algorithms.

Another common task is to summarize several prediction errors for (real f orecast)
pairs of signal-strength values. This is performed by calculating different measures of
prediction accuracy as MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage
Error), or MASE (Mean Absolute Scaled Error). Nevertheless, many of these works failed
at estimating their prediction accuracy by using a logarithmic scale for prediction errors,
and summarizing them by applying mean-based aggregation as MAPE [26,27], MSE (Mean
Squared Error) [28], or RMSE (Root Mean Squared Error) [45]. Then, they added a source
of error at applying mean functions to log-scaled values, as mentioned in Section 3.1. In
fact, since it is well known that the average of the logs will always be less than or equal to
the log of the average [35], applying mean-based error measures to log-scaled errors, will
imply an underestimation of real errors.

Signal-strength samples in linear scale should be preferred for estimating the error
between two signal-strength values and for summarize several errors in an accuracy
measure. However, this does not prevent these results from being used latter in log-scale if
desired (for example, for visualization).

4. Signal-Strength Aggregation

As mentioned in Section 1, we consider each aggregated value as an estimation of the
mathematical expectation of signal strength:

For an area A, we consider the function P(~p), which represents the signal strength
in function of the position ~p. Thus, a representative signal-strength value for A, obtained
from the aggregation of individual measurements, will try to be as close as possible to the
mathematical expectation E(P(X)), where X is a uniformly distributed random variable of
position in A.

We define PA as the division of the integral of the function P in A, and the total area
A, which is equal to E(P(X)) as shown below:

E(P(X)) =
∫

Ω
P(ω) fX(ω)dω =

∫∫
A

P(~p)dA∫∫
A

dA
=: PA (5)

where Ω denotes the set of all positions ω in A, fX is the probability density function of X,
which is a constant equal to 1∫∫

A dA , and ~p denotes the position in A.

Considering a discretization of the space, the mathematical expectation in Equation (5)
can be approximated by Riemann sums:

PA ≈

m

∑
i=1

P(xi)∆Ai

m

∑
i=1

∆Ai

(6)

and, when the discretization is such that all the points are equispaced, it follows that
∆Ai = ∆A is constant for all i = 1, ..., m. The approximation becomes better as ∆A
gets smaller, and consequently, the number of points (denoted by m(∆A)) gets larger.
Accordingly, the approximation by Riemann sums corresponds to the arithmetic mean and
fulfills that:

lim
∆A→0

1
m(∆A)

m(∆A)

∑
i=1

P(xi) = PA (7)
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Thus, as the equispaced discretization becomes finer, the better the approximation of
PA. The main drawback for this approximation method is the need to know the value of P
in several equispaced positions over A to obtain an accurate estimation.

Another strategy to approximate the expected value relies in considering that the
positions of the measurements xi, i = 1, ..., m, are given by independent uniform random
variables over the area A. Then, we can use the Monte Carlo method to approximate PA
and, by the law of large numbers, we have that

lim
m→∞

1
m

m

∑
i=1

P(xi) = PA (8)

The expression in Equation (8) is equivalent to Equation (7), and corresponds to
the arithmetic mean. This is the value that past works referred to as the “local mean
signal strength”, used to summarize signal strength in areas of a few meters (up to 40
wavelengths) [16–18]. In fact, local mean signal strength “is obtained by averaging a large
number of individual RF measurements taken in a local neighborhood” [16]. Thus, related
studies that estimate local mean signal strength are actually estimating the mathematical
expectation of signal strength.

In the following, we discuss algorithms for estimating PA, using data from Mobile
Crowdsourcing apps. In the first place, we consider as aggregation methods two commonly
used performance metrics: arithmetic mean and median value. In addition, we propose a
novel method based on the interpolation of signal-strength values.

4.1. Arithmetic Mean

A simple method to summarize signal-strength measurements is to take the arith-
metic mean xA of all the samples in area A, as commonly used in Mobile Crowdsourcing
contexts [1,8,11,13,16,29]:

xA =
1
n

n

∑
i=1

xi (9)

This is a good first approach to estimate PA, based on the fact that if the samples are
independent uniformly distributed in area A, then xA is an example of Monte Carlo method,
which assures that xA converges to PA when n → ∞, as shown in Equation (8). Indeed,
the law of large numbers and the Monte Carlo method could apparently justify the use of
the arithmetic mean as an estimator of the mathematical expectation of signal strength in
area A. Nevertheless, research studies that used the arithmetic mean over signal-strength
samples did not look over the fulfillment of the hypothesis required by the Monte Carlo
method. First, in a realistic Mobile Crowdsourcing scenario, the number of signal-strength
samples could be low for small areas. Second, crowdsourced signal-strength measurements
would not be sampled uniformly on area A, as their positions are determined by human
mobility patterns. Accordingly, there is no real mathematical foundation for using the
arithmetic mean as estimator of the expected value of signal strength in these measurement
contexts.

Estimating PA by taking the arithmetic mean of Mobile Crowdsourcing data, is based
on a convenience sampling process that only considers measurements from locations that
are readily available or easy to reach. Readily available locations are directly defined by
the mobility of test users. The use of this sampling method is well known to be likely to
have biased results, because selecting cases based on their availability does not allow a
generalization to the total population [46]. In our case, this means that the estimation of
PA will be biased by the locations in area A where test users took measurements.

As mentioned in Section 3.1, the arithmetic mean of signal samples should be taken
over linear values to avoid induced bias due to incorrect methodologies. In addition to
these physical and mathematical formalities, the importance of using linear values to better
estimate the expected value of signal strength has also been stated in the past: “In terms of
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accuracy, the preferred method for estimating the local mean signal strength at a specific point is to
average (in watts) a large number of individual RF measurements” [16]. Nevertheless, some
works use the wrong methodology by explicitly applying the arithmetic mean over signal
strength in logarithmic scale [1,8,11,13] as stated in Section 3.1.

Due to the above, in this paper we consider only the correct mean of samples in
linear scale.

4.2. Median Value

Another method to summarize several signal-strength samples is by choosing the
median value that separates the higher half from the lower half of all the measure-
ments [10,47–49]. The idea behind using median value to aggregate signal-strength samples
is that it is not skewed so much by a small proportion of extremely large or small values,
which is a common situation in this case study, because, as shown in Section 3, signal
amplitude could vary very widely among measurements.

Furthermore, since the logarithm is a strictly increasing function, the median value
has the advantage that it will be the same value if selected from signal-strength values in
linear (watt) or logarithmic (dBm) scale.

In cases as the Gaussian distribution, the median value is a good estimator for the
mathematical expectation, since the latter naturally separates the higher from the lower half
of possible values. Nevertheless, this assumption is not very likely to be true for Mobile
Crowdsourcing contexts, where the signal-strength distribution depends on the positions
of base transceiver stations with respect to the area of interest.

In addition to the above, the median value method also induces a bias due to the
convenience sampling of measurements. Therefore, the median value is not expected to
perform well at estimating the mathematical expectation of signal strength in Mobile
Crowdsourcing scenarios, as there is no mathematical foundation for its use. However, due
to its wide use in the literature, it is important to consider the median value as a baseline of
our study to quantify the error it can reach at estimating PA.

4.3. Our Proposal: Average Based on Interpolation (ABOI Method)

As shown in Section 3.1, most Mobile Crowdsourcing scenarios do not fulfill the
required hypotheses to employ the arithmetic mean as an estimator of the mathematical
expectation of signal strength (hypotheses for Monte Carlo integration). Therefore, we
wanted to design a more robust method to estimate the expected value from signal-strength
measurements, without requiring the samples to be independent and uniformly distributed.

For our proposed method, we return to the idea of estimating the mathematical expec-
tation of signal strength using Riemann sums, according to Equation (6). As mentioned in
Section 1, to obtain better approximations to the real PA by using Riemann sums, we need
an equispaced grid of signal-strength values as fine-grained as possible. However, as stated
in Section 2, it is not possible to ensure high number of measurements and uniform spatial
distribution in most Mobile Crowdsourcing scenarios. To solve these problems, we use the
available measurements to interpolate the signal strength in a fine-grained grid, obtaining
equispaced data and increasing the number of available samples. Thus, to estimate PA
we take the arithmetic mean of all values in the fine-grained grid G (in watt) as shown in
Equation (7), avoiding the difficulties of nonuniform spatial distribution and low number of
measurements. Consequently, to obtain a good estimation of the mathematical expectation,
we need to establish the conditions on the signal-strength measurements that guarantee a
proper interpolation. As our proposed method is an average based on interpolation, we
will refer to it as ABOI.

Although there are many interpolation methods, it is out of the scope of this paper
discussing the advantages and disadvantages of each one. For the interpolation step in the
ABOI method, we use one of the simplest and commonly employed interpolations methods
in signal-strength analysis: the Ordinary Kriging (OK) algorithm. Nevertheless, the ABOI
method could be improved by using a more complex and accurate interpolation algorithm.
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To estimate the value of signal strength at a position x0 on the grid, the OK algorithm
takes a linear combination of its neighbors:

P∗(x0) =
n

∑
i=1

ωiP(xi) (10)

where xi represents all the neighbors of x0, and ωi is the corresponding weight of each
neighbor. In general, ωi is proportional to the distance between x0 and xi.

It is important to notice that many authors wrongly used this method with dBm values
or simply do not make explicit the scale used [36,41,43,45]. As mentioned in Section 3, we
emphasize that this algorithm should be used on the linear power scale, since it involves
algebraic operations, such as addition and weighting.

5. Mathematical Foundation for the Use of the ABOI Method

In this Section, we present the mathematical foundation for using the ABOI method to
estimate the expected value PA of signal-strength measurements inside an area A of interest.
First, we announce Theorem 2, establishing the conditions under which the error of the
estimation of PA provided by the ABOI method can be smaller than ε. The hypotheses
required for this result are shown to be consistent with realistic Mobile Crowdsourcing
scenarios, contrarily to the case of arithmetic mean, as stated in Section 4.1. Lastly, we
demonstrate that the ABOI method is an improvement on arithmetic mean at estimating PA,
i.e., signal-strength measurements that are favorable for the arithmetic mean (that do fulfill
Monte Carlo integration hypotheses) are still favorable for the ABOI method. However,
favorable cases for the ABOI method can be very disadvantageous for the arithmetic mean.

5.1. ABOI Theorem

ABOI Theorem (Theorem 2) specifies the conditions under which the error of ABOI’s
estimation can be smaller than ε, providing a proper approximation of the expected value
of signal strength. For that purpose, some important definitions need to be stated first.

Let N = {x1, x2, ..., xn} be the set of positions of the initial n signal-strength measure-
ments taken inside a rectangle area A = [a1, b1]× [a2, b2]. Analogously, let M be the set of
positions of the m points equispaced over A on which the ABOI method interpolates signal
strength. Sets N and M are exemplified in Figure 1.

Let us consider the following definition of the fill-distance:

hN := sup
x∈A

min
xi∈N
||x− xi|| (11)

The value hN indicates the largest distance between each position in A and its nearest
neighbor in N (original measurements).

Let us call ABOI(N,M) the return value of the ABOI method after using the n original
measurements to interpolate signal strength (using OK) on grid M, and computing the
arithmetic mean of the m interpolated watt values.
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Figure 1. Example of set N with n = 30 positions of initial measurements (left), and set M with
m = 3481 equispaced positions over A where to interpolate signal strength (right).

Theorem 2. Given that power measurements P(·) can be modeled by Gaussian Processes (?). Let
ε > 0 be the desired error level for the estimation of the expected value provided by ABOI(N)(M).
Let A be a rectangle area where to estimate the mathematical expectation of signal strength. If the
n initial measurements are such that hN is small enough (??), and selecting M as a fine-grained
enough grid over A (???), then

E
[∣∣EA(P(X))−ABOI(N,M)

∣∣] ≤ ε

that is, the expected value of the error between the mathematical expectation of signal strength over
A and the estimation provided by the ABOI method is smaller than the given ε.

Proof. Let PM be the arithmetic mean of real signal-strength values on each position in M.
These m values are not known when applying the ABOI method. Nonetheless, PM will
be helpful to bound the expected value of the estimation error. Indeed, we can bound the
estimation error of the ABOI method as follows:∣∣EA(P(X))−ABOI(N,M)

∣∣ = ∣∣EA(P(X))− PM + PM −ABOI(N,M)
∣∣

≤
∣∣EA(P(X))− PM

∣∣︸ ︷︷ ︸
(I)

+
∣∣PM −ABOI(N,M)

∣∣︸ ︷︷ ︸
(I I)

(12)

We will bound (I) and (I I) separately.

(I) :
∣∣EA(P(X))− PM

∣∣
As stated in Equation (7), we can define EA(P(X)) as follows:

EA(P(X)) = lim
∆A→0

1
m(∆A)

m(∆A)

∑
i=1

P(xi) (13)

or equivalently, for all ε > 0, there exists a δ > 0 such that

∆A ≤ δ =⇒
∣∣∣∣∣EA(P(X))− 1

m(∆A)

m(∆A)

∑
i=1

P(xi)

∣∣∣∣∣ < ε/2 (14)

where
1

m(∆A)

m(∆A)

∑
i=1

P(xi) is analogous to what we previously defined as PM.

Therefore, hypothesis (???) allows us to select a fine-grained enough grid M that
gives us the desired error bound ε/2.
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Selecting M as aforementioned, we have that∣∣EA(P(X))− PM
∣∣ ≤ ε/2 (15)

(I I) :
∣∣PM −ABOI(N,M)

∣∣
As previously mentioned, PM is the arithmetic mean of real signal strength over M (m

unknown values), whereas ABOI(N,M) is the arithmetic mean of the m interpolated values
on grid M obtained by OK interpolation of the original n measurements in N. Therefore,
PM and ABOI(N,M) are defined as follows:

PM =

(
m

∑
i=1

P(xi)

)
/m

ABOI(N,M) =

(
m

∑
i=1

IN(xi)

)
/m

where P(·) corresponds to the real signal strength, and IN(·) corresponds to the OK
interpolation of the original n signal-strength measurements in N. Accordingly,

∣∣PM −ABOI(N,M)
∣∣ = ∣∣∣∣∣

(
m

∑
i=1

P(xi)

)
/m−

(
m

∑
i=1

IN(xi)

)
/m

∣∣∣∣∣
=

∣∣∣∣∣
(

m

∑
i=1

P(xi)− IN(xi)

)
/m

∣∣∣∣∣
≤
(

m

∑
i=1

∣∣P(xi)− IN(xi)
∣∣)/m

≤ max
i∈[1:m]

∣∣P(xi)− IN(xi)
∣∣

Thus, the difference between PM and ABOI(N,M) is bounded by the maximum in-
terpolation error among all the m positions of grid M. Wang et al. [50] provided an
exhaustive analysis regarding this maximum interpolation error of OK. Indeed, hypothesis
(?) allows the use of Corollary 1 of Wang et al. [50] along with Theorem 11.22 of Wend-
land [51] to obtain the following result (a detailed description of this outcome is provided
in Appendix A):

lim
hN→0

E
[

max
i∈[1:m]

∣∣P(xi)− IN(xi)
∣∣] = 0 (16)

or equivalently, for all ε > 0, there exists a h̄ such that

hN ≤ h̄ =⇒ E
[

max
i∈[1:m]

∣∣P(xi)− IN(xi)
∣∣] ≤ ε/2

Therefore, hypothesis (??) gives us the conditions such that hN is small enough to
guarantee the desired error bound ε/2:

E
[∣∣PM −ABOI(N,M)

∣∣] ≤ ε/2 (17)

Finally, by joining the bounds for (I) and (I I), i.e., by plugging (15) and (17) into (12),
we obtain the desired inequality

E
[∣∣EA(P(X))−ABOI(N,M)

∣∣] ≤ ε
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which completes the proof.

5.2. Improvement on Arithmetic Mean

In this Section, we show that the ABOI method is an improvement on arithmetic mean
at estimating PA. Both methods require specific conditions about the number and position
of the initial signal-strength measurements. On the one hand, ABOI requires hN to be
small enough (hypothesis (??) of Theorem 2). On the other hand, the arithmetic mean
requires the initial measurements to fulfill Monte Carlo integration hypotheses. Only if
satisfying these conditions, the methods can be considered to be appropriate for estimating
the mathematical expectation of signal strength. In the following, we will show that:

Preposition 2.1. If the initial measurements allow the arithmetic mean to be considered to be an
appropriate estimator of PA, this implies that the ABOI method will also be considered to be an
appropriate estimator of PA.

Preposition 2.2. If the initial measurements allow the ABOI method to be considered to be an
appropriate estimator of PA, this does not imply that the arithmetic mean will be considered to be an
appropriate estimator of PA.

Proof of Preposition 2.1. If the initial conditions allow the arithmetic mean to be consid-
ered to be an appropriate estimator of PA, then the set of n signal-strength measurements
fulfill Monte Carlo integration hypotheses (Section 4.1), i.e., the number n of measurements
is high enough, and they are independent and uniformly distributed over the area. Theo-
rem 6.6 of Niederreiter [52] suggests a bound for hN derived from its (extreme) discrepancy
Dn(N),

hN ≤
√

2D1/2
n (N)

where N is the set of positions of the n initial measurements. Given that the positions in
N are independent random variables uniformly distributed over the area, Pronzato [53]
states that

Dn(N) = O[(log n)2/n]

This result indicates that after a given number of measurements, hypothesis (??) will
be satisfied. Therefore, the ABOI method will also be considered to be an appropriate
estimator of PA.

The intuition behind Preposition 2.1 is that in case of measurements uniformly dis-
tributed over the area, both methods can be considered to be appropriate to estimate
PA. However, as discussed in Section 1, uniform spatial distribution is an unrealistically
optimistic case for crowdsourced measurements.

Proof of Preposition 2.2. If the conditions allow the ABOI method to be considered to
be an appropriate estimator of PA, then hypothesis (??) is fulfilled. This hypothesis
only requires hN to be small enough and does not require any specific distribution of
measurements over the area. In particular, it does not require the measurements to be
independent nor uniformly distributed over the area, which are necessary conditions for
fulfilling Monte Carlo integration hypotheses. Therefore, the arithmetic mean may not be
considered to be an appropriate estimator of PA.

The intuition behind Preposition 2.2 is that the requirements of ABOI are less restrictive
and more likely to be true in Mobile Crowdsourcing scenarios. As mentioned before,
uniform spatial distribution is not a realistic case for measurements taken by real users, and
therefore, there is no mathematical foundation for using the arithmetic mean (Section 4.1).
However, real crowdsourced data is still able to fulfill hypothesis (??), so far as the
number of measurements allows it. Indeed, it is certainly expected that if the number
of measurements is very low, then ABOI’s estimation will not be accurate, since hN will
hardly be small enough. Likewise, if the number of signal-strength measurements is high,
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then ABOI’s estimation will be inclined to be closer to PA. This is a recurrent condition
when estimating values of random effect models from measurements, and therefore, it
cannot be avoided due to the stochastic behavior of the observations.

6. Experimental Results

Given that Section 5 provided the mathematical foundations for using the ABOI
method to estimate the expected value of signal strength, we wanted to analyze experi-
mentally its suitableness for this task. Additionally, we wanted to compare ABOI against
the other aggregation methods commonly employed to estimate the mathematical ex-
pectation of signal strength (Section 4). In particular, we were interested in comparing
ABOI with the arithmetic mean, as Section 5.2 gives us the intuition that the estimations
provided by the ABOI method should be at least as good as the estimations provided by
the arithmetic mean.

To evaluate and compare the aggregation methods described in Section 4, we per-
formed experiments in both simulated and real scenarios. As this paper is the first attempt
to challenge existing assumptions about signal-strength aggregation, we performed the
following simplifications to the problem of estimating the mathematical expectation of
signal strength in an area:

1. We considered areas with signal strength coming from only one base transceiver
station (BTS).

2. Even when there may be a time variability of signal strength in the area [10,28],
we considered that the mathematical expectation is estimated for a static power
configuration of the BTS.

6.1. Simulated Scenario

We considered an area A of 500 m× 500 m where a 30-meters tall BTS is placed at
the center. We simulated the real signal strength on a fine-grained grid G over A with 5 m
spacing, considering long-term attenuation due to path loss equation and medium-term
variation due to shadowing modeled by a full covariance matrix [28,54–57]. Indeed, the
real signal strength in G is given by

~1P− 10α log10(
~d) +~v (18)

where~1P = [P, P, ..., P]T is a vector with n repeated values of P, the power transmitted by
the simulated BTS; α corresponds to the path loss exponent; and 10α log10(

~d) is the path
loss attenuation, where ~d = [d1, d2, ..., dn]T is the vector of distances between the position
of each measurement and the position of the BTS. In addition, ~v is an attenuation factor
due to shadowing effects, where

~v ∼ N (0, Σv)

and the covariance matrix Σv is composed of elements given by Cov
(

xi, xj
)
= σ2

v
(
−dij/Dcorr

)
,

where dij is the distance between the positions xi and xj in G, and Dcorr is a parameter that
models the correlation among the measurements.

Next, we simulated signal-strength measurements as if they were taken by real mobile
devices, i.e., measurements included long-term attenuation due to path loss equation and
medium-term variation due to shadowing, but they also included accuracy errors in both
signal-strength values and geographic coordinates (due to hardware inaccuracy). The
simulated measurements are given by

~X =~1P− 10α log10(
~d) + ~u +~v + ~w (19)

where ~X = [x1, x2, ..., xn]T is an n× 1 vector that contains the measurements. As in Equa-
tion (18), ~v is the attenuation factor due to shadowing effects. Additionally, as geolocation
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sensors are not perfectly accurate, position errors are considered when estimating the
position of each measurement. This component is simulated by

~u ∼ N (0, ρ2
uD),

which corresponds to a Gaussian distribution with a mean vector~0 and covariance ma-
trix ρ2

uD, where D = diag{1/d1, 1/d2, ..., 1/dn} [28]. Finally, ~w in Equation (19) is some
unrelated additive noise, where

~w ∼ N (0, σ2
w In).

For this simulation, the following values were used: P = −10 dBm, α = 3.5, σw =√
7 dB, σv =

√
10 dB, ρu = 0.2 dB and Dcorr = 50 m. This setting is the same used by

Santos et al. [28].
Thus, signal-strength values simulated over grid G using Equation (19) generate the

spatial field shown in Figure 2.
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Figure 2. Simulated spatial field of signal strength over a fine-grained grid G.

We calculated the ground truth PA (expected value of signal strength over A) as a
Riemann sum considering all values in G.

It is important to clarify that although the simulation model and its parameters were
defined using dBm values, we always carefully manipulated signal-strength values using
the linear watt scale. Thus, we avoided the mishandling of log-scaled signal-strength
values, as discussed in Section 3.

For this experiment, we took different signal-strength measurement sets of sizes 50,
100, 200, 400, 700, and 1000. We distributed the samples on the grid by using two different
methods:

1. Completely uniform distribution on the grid, which is commonly used, but not
realistic for Mobile Crowdsourcing scenarios, as discussed in Section 1.

2. Considering the mobility model based on social network theory proposed by Musolesi
et al. [19]. This model is closer to the spatial distribution of Mobile Crowdsourcing
measurements, as they are defined by human mobility.

Figure 3 shows the difference in spatial distribution of 100 samples at using the two
methods explained above.
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Figure 3. Example of spatial distribution for 100 samples using uniform distribution (left) and distribution based on social
network theory (right).

For every sample size and type of spatial distribution, we estimated PA by applying
the three methods presented in Section 4. We repeated each experiment 40 times, i.e., we
took 40 different sample sets in every case.

The results for experiments using uniform distribution are shown in Figure 4, where
for each aggregation method and sample size we have the boxplot that depict the estima-
tions of PA. It is important to clarify that all figures were calculated in linear scale, avoiding
the errors mentioned in Section 3. All signal-strength values are shown in pW units, where
1 pW = 1× 10−12 W.

As expected, arithmetic mean estimations tended to be close to PA, since uniform
distribution is its best case, as explained in Section 4.1. Median value performed poorly,
predicting nearly constant values far from the real one. Our proposed ABOI method
showed satisfactory results and a similar behavior to the arithmetic mean.

In addition, Figure 5 shows the RMSE measure obtained by the aggregation methods,
properly calculated using the linear values of the estimations of PA, as discussed in Section 3.2.
RMSE values for our proposed ABOI rapidly decreased to low values, obtaining very similar
results than the arithmetic mean.

These results agree with the intuition of Preposition 2.1, as in the case of uniform
spatial distribution, both ABOI and the arithmetic mean performed well at estimating PA.

The results for experiments using spatial distribution based on social network theory
are shown in Figure 6. The arithmetic mean showed a more erratic performance than
before, without a clear convergence to real PA as the sample size increases. The median
value showed similar behavior to the uniform distribution case, predicting nearly constant
values. The ABOI method showed again a tendency to be close to real PA, but with a higher
variability than for uniform distribution.

Figure 7 shows that our proposed ABOI method obtained consistently lower RMSE
values than the other methods, with a remarkable improvement over arithmetic mean.
Therefore, these experiments in a simulated scenario showed that the ABOI method is
more reliable and more independent of the spatial distribution of samples at estimating the
mathematical expectation of signal strength.

These results are also consistent with the mathematical foundations presented in
Section 5, as ABOI performed well at estimating PA in a nonuniform distribution scenario,
which was close to the spatial distribution of crowdsourced measurements. In addition, as
expected due to Proposition 2.2, spatial distribution based on social network theory did
not satisfy the conditions required by the arithmetic mean to properly estimate PA.
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Figure 4. Simulated scenario. Boxplots for PA prediction using the three aggregation methods and different sample sizes,
selected by uniform distribution. Real PA value in red line.
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Figure 5. Simulated scenario. RMSE for PA prediction for different sample sizes with uniform distribution.
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(b) Median Value
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(c) ABOI Method

Figure 6. Simulated scenario. Boxplots for PA prediction using the three aggregation methods and different sample sizes,
selected by distribution based on social network theory. Real PA value in red line.
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Figure 7. Simulated scenario. RMSE for PA prediction for different sample sizes with distribution
based on social network theory.

6.2. Real Data

To test the aggregation methods using real data, we developed a very minimalist
Android application to take signal-strength measurements with a densely time interval.
The application was designed to run every 0.5 s. During each execution, the application
used Android’s Telephony Manager to access information about the current cell being used
by the device for network signaling. Thus, the Telephony Manager provided a CellIdentity
object to obtain cell identifiers and a CellSignalStrength object to obtain the technology-
specific signal strength in dBm. Along with this cell-related information, the application
also stored the current location (latitude and longitude) with the highest accuracy possible.

During a period of 2 consecutive hours, we took nearly 24,000 signal-strength mea-
surements around the vicinity of a single LTE BTS (eNodeB) located in a residential area,
using two different mobile devices. The received signal-strength measurements densely
covered an area of 140 m× 170 m near the BTS, as shown in Figure 8a. To calculate PA
value, we aligned the real measurements into a fine-grained grid G with 1 m spacing,
obtaining the spatial field shown in Figure 8b. Then, we calculated the ground truth PA as
a Riemann sum of all values in G.
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(a) Position of real measurements
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(b) Interpolated spatial field
Figure 8. Real signal strength around the vicinity of a single LTE BTS. Color represents the dBm value of samples.
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As with the simulation case, we performed experiments for different sample sets of
sizes 25, 50, 100, 200, 350 and 500. We also considered both spatial distribution method-
ologies: uniform distribution and based on social network theory. As for the simulation
experiments, we repeated each experiment 40 times.

The results for experiments using uniform distribution are shown in Figure 9. We
found that the behavior of the three methods was similar to the behavior shown by
themselves in the simulation case with uniform distribution (Figure 4). The arithmetic
mean and the ABOI method presented low and similar variability and a fast convergence
to the calculated value of PA, where the ABOI method obtained slightly closer estimations
to PA. The median value also showed coincident behavior with simulation case, predicting
nearly constant and low values far from PA.

Figure 10 confirms our analysis, as both arithmetic mean and our proposed ABOI
method obtained similar RMSE values, outperforming the median value. It is important to
remember that as stated in Section 4.1, uniform spatial distribution is the best case for the
arithmetic mean, and therefore, its good performance was expected.
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Figure 9. Real scenario. Boxplots for PA prediction using the three aggregation methods and different sample sizes, selected
by uniform distribution. Calculated PA value in red line.
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Figure 10. Real scenario. RMSE for PA prediction for different sample sizes with uniform distribution.

As for the simulated scenario, these results are coherent with the intuition of Preposition 2.1,
as in the case of uniform spatial distribution, both ABOI and the arithmetic mean performed
well at estimating PA.
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The results for experiments with spatial distribution based on social network theory
are shown in Figure 11. The arithmetic mean showed higher variability and worse esti-
mations of PA in relation to the previous case. The median value tended to predict low
values. Our proposed ABOI method showed a similar behavior to the uniform distribution
case, showing a clear convergence to PA. It also presented lower variability than the
arithmetic mean.
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Figure 11. Real scenario. Boxplots for PA prediction using the three aggregation methods and different sample sizes, selected by
distribution based on social network theory. Calculated PA value in red line.

Figure 12 shows that the ABOI method obtained consistently lower RMSE values than
the other methods, with a clear improvement over arithmetic mean. Unlike the arithmetic
mean, our proposed method obtained more stable RMSE values at using both spatial
distribution scenarios.
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Figure 12. Real scenario. RMSE for PA prediction for different sample sizes with distribution based
on social network theory.

These results also agree with the mathematical foundations presented in Section 5
and with the obtained results in the simulated scenario, i.e., the spatial distribution based
on social network theory allowed ABOI to perform well at estimating PA. In contrast,
this spatial distribution did not satisfy the conditions required by the arithmetic mean to
properly estimate PA.
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Therefore, these experiments in a real scenario showed that our proposed method is
more reliable and more independent of the spatial distribution of samples at estimating the
mathematical expectation of signal strength.

Regarding the algorithms’ runtime performance, we measured their execution time
using a 3.4 GHz quad-core processor (Intel® CoreTM i5-3570) with 12 GB RAM. For all
methods, the execution time increased along with the number of measurements. On the
one hand, the execution of the median value and the arithmetic mean never exceeded
0.01 s (both in the simulated case and in the real case). On the other hand, the execution
of the ABOI method never exceeded 2 s. These results are an example of a well-known
trade-off between estimation goodness and complexity. However, in our particular case,
reducing the error at estimating PA is much more relevant than reducing the time needed
to compute the estimation, considering that the ABOI method’s runtime is still very low.
Therefore, we do not consider the execution time as a drawback of our method.

File S1 contains all data and materials necessary for the reproducibility of experimental
results. In addition, File S2 includes all the RMSE figures, but taking into account higher
numbers of measurements, to visually clarify that the ABOI method will further reduce the
error in our experiments.

7. Conclusions

In this paper, we first presented the physical and mathematical formalities about how
signal-strength values must be handled at applying mathematical operations in a scientific
and academic environment to avoid some common sources of error. We formally showed
why some simple tasks as averaging and comparing signal-strength values are usually
performed in contradiction with some scientific principles due to indiscriminate use of
log-scaled values, which leads to errors in the analysis of experimental data, and therefore,
to making wrong conclusions.

In addition, we presented a novel method based on interpolation to aggregate signal-
strength samples into one representative value to estimate the mathematical expectation of
signal strength in an area. This method is shown to present solid mathematical foundations
to be employed on real Mobile Crowdsourcing scenarios.

Our proposed ABOI method outperformed other commonly used aggregation meth-
ods as arithmetic mean and median value, mainly because it was shown to be more
independent of some Mobile Crowdsourcing data difficulties such as nonuniform spatial
distribution of the samples, the potentially low number of measurements and the inaccu-
racy of end-user devices. By using this method, we computed more reliable estimations of
the mathematical expectation of signal strength, in both simulated and real scenarios.

We conclude that for most Mobile Crowdsourcing scenarios, our proposed ABOI
method should be preferred over the other methodologies.

As this paper was our first attempt to challenge existing assumptions about signal-
strength aggregation, and to propose a novel method that performs better than other
used algorithms, we performed some simplifications to the problem of estimating the
mathematical expectation of signal strength in our experimental scenarios. However, we
did consider some important challenges found in the wild, as long-term attenuation due
to path loss, medium-term variation caused by obstacles in the area, and inaccuracy of
end-users hardware, reflected on GPS locations and measured signal-strength levels. All
these Mobile Crowdsourcing data difficulties were present in both simulated and real
experimental scenarios.

As future work several related studies that followed some of the wrong methodologies
presented in this paper can be repeated by properly handling signal-strength values.
Therefore, we could investigate and quantify the induced impact on the results of an
incorrect mathematical treatment. In addition, the ABOI method could be improved by
considering more complex simulated scenarios, as areas with multiple antennas, and
taking into account small scale fading caused by multipath propagation, and short-term
attenuation fluctuations due to time variance in the channel. Additionally, as mentioned
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in Section 4.3, our proposed method could be improved by using a more complex and
accurate interpolation algorithm.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-822
0/21/4/1084/s1, File S1: Materials for reproducibility of experimental results, File S2: RMSE figures
with higher number of measurements.
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Appendix A. Proof of Mathematical Expression (16)

It is clear that

E
[

max
i∈[1:m]

∣∣P(xi)− IN(xi)
∣∣] ≤ E

[
sup
x∈A

∣∣P(x)− IN(x)
∣∣] (A1)

Then, Corollary 1 of Wang et al. [50] holds that selecting p = 1,

E
[

sup
x∈A

∣∣P(x)− IN(x)
∣∣] = O(PΦ,X log1/2(1/PΦ,X)), as PΦ,X → 0

It can be noticed that function f (x) = x log1/2(1/x) satisfies the following limit:

lim
x→0+

f (x) = 0

Therefore,

lim
PΦ,X→0+

E
[

sup
x∈A

∣∣P(x)− IN(x)
∣∣] = 0 (A2)
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Considering that power measurements P(·) over a rectangle area A can be modeled
by Gaussian Processes (hypothesis (?) of Theorem 2), then Theorem 11.22 of Wendland
[51] states that exist positive constants c and h0 depending only on A such that PΦ,X ≤ hc/hN

N
provided that hN ≤ h0.

It can be seen that function f (x) = xc/x satisfies the following limit:

lim
x→0+

f (x) = 0

Consequently, it can be verified that

lim
hN→0+

hc/hN
N = 0

and taking into account that Theorem 11.22 of Wendland [51] states that PΦ,X ≤ hc/hN
N ,

we have

hN → 0+ =⇒ PΦ,X → 0+

Then, Equation (A2) can be rewritten in terms of hN as

lim
hN→0+

E
[

sup
x∈A

∣∣P(x)− IN(x)
∣∣] = 0 (A3)

Finally, by plugging (A3) into (A1) we obtain the desired expression in Equation (16):

lim
hN→0

E
[

max
i∈[1:m]

∣∣P(xi)− IN(xi)
∣∣] = 0
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