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Abstract: Unmanned aerial vehicles (UAVs) have been widely used in search and rescue (SAR)
missions due to their high flexibility. A key problem in SAR missions is to search and track moving
targets in an area of interest. In this paper, we focus on the problem of Cooperative Multi-UAV Obser-
vation of Multiple Moving Targets (CMUOMMT). In contrast to the existing literature, we not only
optimize the average observation rate of the discovered targets, but we also emphasize the fairness of
the observation of the discovered targets and the continuous exploration of the undiscovered targets,
under the assumption that the total number of targets is unknown. To achieve this objective, a deep
reinforcement learning (DRL)-based method is proposed under the Partially Observable Markov
Decision Process (POMDP) framework, where each UAV maintains four observation history maps,
and maps from different UAVs within a communication range can be merged to enhance UAVs’
awareness of the environment. A deep convolutional neural network (CNN) is used to process the
merged maps and generate the control commands to UAVs. The simulation results show that our
policy can enable UAVs to balance between giving the discovered targets a fair observation and
exploring the search region compared with other methods.

Keywords: unmanned aerial vehicle (UAV); search and track; deep reinforcement learning (DRL);
maps merging; convolutional neural network (CNN)

1. Introduction

In the past decade, unmanned aerial vehicles (UAVs) have been widely used in military
and civilian applications due to their low cost and high flexibility. Especially in search
and rescue (SAR) missions, multiple UAVs working together can reduce mission execution
time and provide timely relief to targets [1–3]. In a SAR mission, UAVs need to search
out targets in an unknown region and continuously track them to monitor their status.
However, in general, the number of targets is unknown and available UAVs are limited,
which requires multiple UAVs to work together to keep track of the discovered targets
while finding more unknown targets [4]. The problem of using robot teams to cooperatively
observe multiple moving targets has been formalized first by Parker and Emmons [5], who
termed this problem as Cooperative Multi-Robot Observation of Multiple Moving Targets
(CMOMMT) and showed it is NP-hard.

Since the CMOMMT problem was raised, there has been a great deal of work to ad-
dress it. A classical approach is the local force vector proposed by Parker and Emmons [5],
in which a robot is subject to the attractive forces of nearby targets and the repulsive forces
of nearby robots, and the direction of the robot’s motion is determined by the combined
force of the two. However, this method will cause overlapping observations on the same
target. Thus, Parker [6] proposed an improved method called A-CMOMMT to solve
this phenomenon, where the robots are controlled by the weighted local force vectors for
tracking targets. Additionally, in [7], the authors proposed B-CMOMMT, in which a help
behavior is added to reduce the risk of losing a target. In [8], the authors proposed an
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algorithm called P-CMOMMT, considering the uniformity of the observation of the targets
through the information entropy of targets’ observations. The methods based on local force
vector lack the prediction of the targets’ behaviors and do not make full use of the targets’
historical position information, resulting in a low efficiency for searching and tracking
the targets.

A large number of optimization-based methods have been proposed to solve CMOMMT-
like problems [9–12]. In [13], the authors used group of vision-based UAVs to search for
multiple ground targets. The objective is to optimize the collective coverage area and the
detection performance based on a distributed probability map updating model, in which
the probability of target existence is calculated through the measurement information and
information sharing among neighboring agents. In [14], the authors proposed a multi-objective
optimization approach based on genetic algorithm (GA) to minimize the mission completion
time for a team of UAVs finding a target in a bounded area. In [15], the UAVs’ task sequence
for a reconnaissance task assignment problem is considered, where the problem is formulated
as a multi-objective, multi-constraint, nonlinear optimization problem solved with a modified
Multi-Objective Symbiotic Organisms Search algorithm (MOSOS). In [16], searching and
tracking an unknown ground moving target by multiple UAVs in an urban environment
was modeled as a multi-objective optimization problem with preemptive priority constraints.
The authors proposed a fuzzy multi-objective path planning method to solve this problem
with target behavior predicted by extended Kalman filter (EKF) and probability estimation.
In [17], the authors proposed a real-time path-planning solution enabling multiple UAVs to
cooperatively search a given area. The problem is modeled as a Model Predictive Control
(MPC) problem solved with Particle Swarm Optimization (PSO) algorithm. In [18], the
authors emphasize the fairness of observations among different targets compared with the
initial CMOMMT problem. They proposed an integer linear programming model to solve
this problem where the motion of the targets is estimated in a Bayesian framework.

The above-mentioned approaches fail to balance between target searching and target
tracking, which will make it difficult for UAVs to keep searching for undiscovered targets
when the number of UAVs is less than the number of targets. To solve this problem,
Li et al. [19] proposed a profit-driven adaptive moving targets search algorithm, which
considers the impact of moving targets and collaborating UAVs in a unified framework
through a concept called observation profit of cells. However, this approach assumes that
the total number of targets is known, which is impractical in some complex environments.
In [20], Dames proposed a method to enable multiple robots to search for and track an
unknown number of targets. The robots use the Probability Hypothesis Density (PHD)
filter to estimate the number of targets and the positions of the targets, and a Voronoi-based
control strategy to search and track targets. This method assumes that each robot has a
unique ID for creating a globally consistent estimate, which will limit the scalability of the
robot team.

Recently, the development of deep reinforcement learning (DRL) [21] provides an
alternative way to deal with the CMOMMT problem. DRL learns control policies through
interacting with the environment, and it has reached or exceeded human levels in some
game tasks [22,23]. There have been some studies using DRL to solve the targets search
and tracking problem. In [24], the authors proposed a framework for searching for multiple
static targets through a group of UAVs. The framework consists of a global planner based
on a modern online Partially Observable Markov Decision Process (POMDP) solver and a
local continuous-environment exploration controller based on a DRL method. In [25], the
authors proposed a target following method based on deep Q-networks, considering visi-
bility obstruction from obstacles and uncertain target motion. In [26], the authors proposed
a DRL-based method to enable a robot to explore unknown cluttered urban environments,
in which a deep network with convolutional neural network (CNN) [27] was trained by
asynchronous advantage actor-critic (A3C) approach to generate appropriate frontier loca-
tions. In [28], the authors constructed a framework for automatically exploring unknown
environments. The exploration process is decomposed into the decision, planning, and
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mapping modules, in which the decision module is implemented by a deep Q-network for
learning exploration policy from the partial map.

In this paper, we focus on the problem of Cooperative Multi-UAV Observation of
Multiple Moving Targets (CMUOMMT), where a UAV team needs to search and track an
unknown number of targets in a search region. Our objective is to enable UAVs to give
the discovered targets a fair observation and meanwhile maximize the exploration rate
of the environment to discover more targets. To achieve this objective, the problem is
formulated as a POMDP and solved with a DRL method. During the mission, each UAV
maintains four observation history maps, which can reduce the partial observability of the
environment. Furthermore, maps merging among UAVs can further improve awareness
of the environment. To extract environmental features, a deep network with CNN is
used to process each UAV observation map. A modern DRL method is used to train the
shared policy with a centralized training, decentralized execution paradigm. The main
contributions of this work are as follows:

• The average observation rate of the targets, the standard deviation of the observation
rates of the targets, and the exploration rate of the search region are simultaneously
optimized to enable multiple UAVs to cooperatively achieve fair observation of dis-
covered targets and continuous search for undiscovered targets.

• Each UAV maintains four observation maps recording observation histories, and
a map merging method among UAVs is proposed, which can reduce the partial
observability of the environment and improve awareness of the environment.

• A DRL-based multi-UAV control policy is proposed, which allows UAVs to learn
to balance tracking targets and exploring the environment by interacting with the
environment.

The remainder of this paper is organized as follows. In Section 2, the problem is
formulated and the optimization objectives are introduced. In Section 3, the details of our
method are proposed, including the maps merging method and the key ingredients of
the DRL method. In Section 4, simulation experiments are conducted and the results are
discussed. Finally, we conclude this paper in Section 5.

2. Problem Formulation

In this paper, we consider the problem of CMUOMMT described in [6,19], which is
shown in Figure 1 and defined as follows:

• A bounded two-dimensional rectangular search region S discretized into CL × CW
equally sized cells, where CL and CW represent the number of cells in the length and
width directions of the search region, respectively.

• The time step is discretized and denoted by t within a mission time duration T.
• A set of N moving targets V in S. For target νj(νj ∈ V , j = 1, 2, · · ·N), the cell that lies

at time step t is denoted by ct(νj) ∈ S. The mission is to observe these targets using
multiple UAVs. To simplify this mission, we assume that the maximal speed of the
targets is smaller than that of the UAVs.

• A team of M homogeneous UAVs U deployed in S to observe the targets. For UAV
ui(ui ∈ U , i = 1, 2, · · ·M), the cell that lies at time step t is denoted by ct(ui) ∈ S.
Each UAV can observe the targets through its onboard sensor. The sensing range of
each UAV is denoted by ds. We assume that the UAVs are flying at a fixed altitude,
and the size of the field of view (FOV) of each UAV is the same and remains constant.
The term FOVt(ui) denotes the FOV of the UAV ui at time step t. In addition, each
UAV is equipped with a communication device to share information to coordinate
with other UAVs. The communication range is denoted by dc, which is assumed to be
larger than the sensing range ds. The UAVs can only share information with UAVs
within a communication range. We further assume that all UAVs share a known global
coordinate system.
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Figure 1. The environment considered in this paper. Unmanned aerial vehicles (UAVs) and targets are moving in a bounded
two-dimensional rectangular search region S. ct(νj) and ct(ui) denote the cells in which target νj and UAV ui lie at time step
t, respectively. The blue grids represent the FOV (field of view) of each UAV. The dashed ellipse indicates the communication
range of the UAV ui.

The target νj is monitored when it is within the FOV of at least one UAV, which can be
defined as

Ot(νj) =

{
1, if ∃ui, ct(νj) ∈ FOVt(ui)
0, else

(1)

where Ot(νj) indicates the observation state of target νj.
During the mission, the observation rate of the target νj can be defined as

η(νj) =
1
T

T

∑
t=1

Ot(νj) (2)

where η(νj) represents the observation rate of the target νj, which represents the proportion
of time elapsed under the observation of at least one UAV during the mission.

The first objective for the UAV team is to maximize the average observation rate of N
targets, which can be characterized by the metric η̄:

η̄=
1
N

N

∑
j=1

η(νj) (3)

Maximizing η̄ alone is unfair, especially when the number of UAVs is less than the
number of targets, which may result in some targets not being observed during the mission.
To solve this problem, the second objective for the UAV team is to minimize the standard
deviation ση of the observation rates of N targets:

ση =

√√√√ 1
N

N

∑
j=1

(
η(νj)− η̄

)
(4)

A low value of ση means that all targets are observed relatively uniformly during the
mission. In addition, since the UAV team does not know the total number of targets, it



Sensors 2021, 21, 1076 5 of 18

needs to continuously explore the search region to discover new targets. Thus, the third
objective for the UAV team is to maximize the exploration rate β of the search region, which
is defined as

β =
1
T

1
CLCW

CL

∑
k=1

CW

∑
l=1

tstamp(ckl) (5)

where tstamp(ckl) represents the latest observed time for cell ckl . k and l represent the
indexes of the cell ckl in the length and width directions of the search region, respectively.
The maximum value of β is 1, which means that all cells in the search region are being
observed by the UAV team at time step T. However, this is unrealistic since the maximum
region observed by the UAV team is less than the total search region to be observed. That is,

∪
ui∈U

FOV(ui) < S (6)

The ultimate objective is a combination of η̄, ση and β, which is different from [6,19],
whose objectives only consider the average observation rate η̄. In this study, the UAV team
needs to balance between giving the known targets a fair observation and exploring the
search region through an efficient method.

3. Methods
3.1. Overview

We formulate the CMUOMMT problem as a POMDP and solve it with a DRL method.
In this method, all UAVs share a global control policy π to decide actions. The action is
selected according to the observation from the environment, i.e., at ∼ π(at|ot), ot ∼ O(st),
where st is the global state of the environment, ot is the local observation of the environment
state, O(st) is the observation function determined by the UAVs’ sensing range and
communication range, and at is the selected action. The observation ot includes four
observation maps about the environment, which will be given in Section 3.2.

In a reinforcement learning (RL) framework, an RL agent learns an optimal policy
at ∼ π∗(at|ot) through interacting with the environment. The goal of the RL agent is to
maximize a long-term accumulated reward

Gt =
∞

∑
k=0

γkrt+k+1 (7)

where rt+k+1 is the reward the RL agent received at time step t + k + 1, γ(0 < γ < 1) is the
discount factor to make Gt a bounded value.

In the proposed DRL method, we use a deep neural network πθ(at|ot) parameterized
by θ to approximate the UAVs’ control policy. The objective is to use a DRL method to
find the optimal parameters θ∗, which can make the UAV team balance between giving the
known targets a fair observation and exploring the search region. The system architecture
is shown in Figure 2.

As shown in Figure 2, each UAV first gets the observations from the environment
through its onboard sensor to update its local observation maps. Then, each UAV receives
the local maps of the other UAVs through its communication device, and the local maps
are merged to provide the deep network πθ an observation ot. Finally, the deep neural
network πθ outputs the action at to control the UAV and receives the reward rt+1 at the
next time step. The maps merging method is introduced in the next subsection, and the
ingredients of deep reinforcement learning are introduced in Section 3.3.
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Figure 2. The system architecture.

3.2. Maps Merging

During the mission, each UAV maintains four observation maps:
(1) The observation map of the UAV’s position in the search region, denoted by a

CL × CW matrix MSt(ui), MSt(ui) ∈ R2, defined as follows:

MSt(ui) =
[
mskl

t (ui)
]

CL×CW
, mskl

t (ui) =

{
1, if ct(ui) = ckl
0, else

(8)

(2) The observation history map of the cells, which records the latest observed time
for each cell. This map is denoted by a CL × CW matrix MCt(ui), MCt(ui) ∈ R2, defined
as follows:

MCt(ui) =
[
mckl

t (ui)
]

CL×CW
(9)

The map MCt(ui) is obtained in two steps. At each time step t, the map MCt(ui)
is first updated by the observation of the UAV ui on the subset of cells within FOVt(ui),
that is,

mckl
t (ui) = t, for ckl ∈ FOVt(ui) (10)

In addition, the observation history maps from other UAVs within a communication
range will also update the local maps. The values of corresponding cells in the observation
history map will be updated with the latest observation time as follows:

mckl
t (ui) = mckl

t (uj), if mckl
t (uj) > mckl

t (ui) and dt(ui, uj) < dc, uj ∈ U , j 6= i (11)

where dt(ui, uj) represents the distance between UAV ui and UAV uj.
(3) The position history map of the other UAVs, which records the history positions

of the other UAVs. This map is denoted by a CL × CW matrix MUt(ui), MUt(ui) ∈ R2,
defined as follows:

MUt(ui) =
[
mukl

t (ui)
]

CL×CW
, (12)

mukl
t (ui) =

{
1, if ct(uj) =ckl and dt(ui, uj) < dc, uj ∈ U , i 6= j
0, if t = 0

(13)

At each time step, the map MUt(ui) is updated by the observation history maps from
other UAVs within a communication range as follows:

mukl
t (ui) = mukl

t (uj), if mukl
t (uj) > mukl

t (ui) and dt(ui, uj) < dc, uj ∈ U , j 6= i (14)

In addition, the knowledge about the positions of the other UAVs at the last observa-
tion time might be outdated. Thus, at the next time step, the values of cells in MUt(ui) are
decayed as follows:

mukl
t+1(ui) = mukl

t (ui)−
1

tU
, if mukl

t (ui) ≥
1

tU
(15)
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where tU is a time constant, representing the decay period of the value of mukl
t (ui).

(4) The position history map of the targets, which records the historical positions of
the targets. This map is denoted by a CL × CW matrix MTt(ui), MTt(ui) ∈ R2, defined
as follows:

MTt(ui) =
[
mtkl

t (ui)
]

CL×CW
, (16)

mtkl
t (ui) =

{
1, if ct(νj) = ckl and ct(νj) ∈ FOVt(ui), νj ∈ V
0, if t = 0

(17)

The map MTt(ui) is also updated by the observation history maps from other UAVs
within a communication range, that is,

mtkl
t (ui) = mtkl

t (uj), if mtkl
t (uj) > mtkl

t (ui) and dt(ui, uj) < dc, uj ∈ U , j 6= i (18)

Same as the map MUt(ui), the values of cells in MTt(ui) are decayed as follows:

mtkl
t+1(ui) = mtkl

t (ui)−
1
tT

, if mtkl
t (ui) ≥

1
tT

(19)

where tT is a time constant, representing the decay period of the value of mtkl
t (ui).

One example of four observation maps for UAV u0 is shown in Figure 3.

Figure 3. An illustration of four observation maps for UAV u0. The parameters are set as follows:
N = 10, M = 5, CL = 50, CW = 50, ds = 5 cells, dc = 10 cells, tU = 5, tT = 8. The current time
step is t = 200. The map MCt(u0) is normalized as follows: mckl

t (u0) = mckl
t (u0)/ max(MCt(u0)),

where max(MCt(u0)) represents the maximum value of elements in matrix MCt(u0). From the map
MUt(u0), we can see that this map records one UAV’s historical positions. From the map MTt(u0),
we can see that this map records three targets’ historical positions.

3.3. Deep Reinforcement Learning

In this section, we introduce the key elements of the proposed DRL method, con-
sisting of observation space, action space, network architecture, reward function, and
training algorithm.
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3.3.1. Observation Space

At time step t, the observation of UAV ui consists of four parts, i.e.,
ot(ui) = [o1

t (ui), o2
t (ui), o3

t (ui), o4
t (ui)].

• The observation o1
t (ui) is a part of the map MSt(ui) centered in the UAV’s current cell

ct(ui), with length Cinput and width Cinput. That is, o1
t (ui) is a Cinput × Cinput matrix,

representing the positional relationship of UAV ui relative to the boundary of the
search area S, which is defined as follows:

o1
t (ui) = [1okl

t (ui)]Cinput×Cinput , (20)

1okl
t (ui) =


1, if ct(ui) = ckl or ckl /∈ S, k = 1, 2, · · ·Cinput,

l = 1, 2, · · ·Cinput
0, else

(21)

• The observation o2
t (ui) is a part of the map MCt(ui) centered in the UAV’s current

cell ct(ui), with length Cinput and width Cinput. Similarly, o2
t (ui) is a Cinput × Cinput

matrix, representing the observation state of the cells around UAV ui, which is defined
as follows:

o2
t (ui) = [2okl

t (ui)]Cinput×Cinput , (22)

2okl
t (ui) =


mcmn

t (ui)/t, if t > 0 and ckl ∈ S and ckl = cmn , k = 1, 2, · · ·Cinput,
l = 1, 2, · · ·Cinput, m = 1, 2, · · ·CL, n = 1, 2, · · ·CW

1, elseif ckl /∈ S
0, else

(23)

• The observation o3
t (ui) is a part of the map MUt(ui) centered in the UAV’s current

cell ct(ui), with length Cinput and width Cinput. Like o2
t (ui), o3

t (ui) is a Cinput × Cinput
matrix, representing historical position information of other UAVs around UAV ui,
which is defined as follows:

o3
t (ui) = [3okl

t (ui)]Cinput×Cinput , (24)

3okl
t (ui) =


mumn

t (ui), if ckl ∈ S and ckl = cmn, k = 1, 2, · · ·Cinput,
l = 1, 2, · · ·Cinput, m = 1, 2, · · ·CL, n = 1, 2, · · ·CW

0, else
(25)

• The observation o4
t (ui) is a part of the map MTt(ui) centered in the UAV’s current

cell ct(ui), with length Cinput and width Cinput. Similarly, o4
t (ui) is a Cinput × Cinput

matrix, representing historical position information of targets around UAV ui, which
is defined as follows:

o4
t (ui) = [4okl

t (ui)]Cinput×Cinput , (26)

4okl
t (ui) =


mtmn

t (ui), if ckl ∈ S and ckl = cmn, k = 1, 2, · · ·Cinput,
l = 1, 2, · · ·Cinput , m = 1, 2, · · ·CL, n = 1, 2, · · ·CW

0, else
(27)

One example of observations for UAV u0 is shown in Figure 4, which is consistent
with the scenario shown in Figure 3.
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Figure 4. An illustration of observations for UAV u0. The parameters are consistent with those in
Figure 3. The value of Cinput is set to 21 cells. From the observation o1

t (u0) and o2
t (u0), we can see

that UAV u0 is very close to the right boundary of the search region.

3.3.2. Action Space

The UAV’s action space is a set of target cells around the UAV, that is, each UAV can
move into one of its eight neighbor cells or stay at its current cell. Thus, the action space
has a total of nine command actions. The actual command action is selected according to
the selection probabilities calculated by the deep neural network.

3.3.3. Network Architecture

In this study, a deep neural network is used to process the observation ot, and its
outputs are the selection probabilities of actions, denoted by P(at|ot). The deep neural
network architecture is shown in Figure 5.

Figure 5. The deep neural network architecture. The value of Cinput is set to 21.

As shown in Figure 5, we use four hidden layers to process the observation ot. The
first hidden layer uses the CNN to process the input data, which has 4 two-dimensional
filters with kernel size = (2, 2) and stride = 1, and its activation function is ReLU [29]. The
second and third hidden layers are two fully connected layers with 200 rectifier units. The



Sensors 2021, 21, 1076 10 of 18

last hidden layer contains nine nonlinear units with an activation function of Softmax,
limiting the output to (0, 1), whose outputs are the selection probabilities of each action.

3.3.4. Reward Function

The design of the reward function is closely related to our objective, which is to enable
the UAV team to balance between giving the known targets a fair observation and exploring
the search region. Thus, a reward function is designed to achieve this objective:

rt(ui) = r1
t (ui) + r2

t (ui) + r3
t (ui) + r4

t (ui) (28)

where rt(ui) is the reward received by UAV ui at time step t, which is a sum of four different
rewards.

The reward r1
t (ui) encourages UAV ui to track targets that have been discovered,

which consists of the following three terms:

r1
t (ui) = λ1

lr1
t (ui) + λ2

gr1
t (ui) + λ3

hr1
t (ui) (29)

where lr1
t (ui) represents the local reward for tracking the discovered targets, gr1

t (ui) repre-
sents the global reward for tracking the discovered targets, hr1

t (ui) represents the reward
for recording the historical positions of the targets, λ1, and λ2 and λ3 are the positive
coefficients. The rewards lr1

t (ui), gr1
t (ui) and hr1

t (ui) are designed as follows:
lr1

t (ui)= min(
N
∑

j=1

ds
20∗dt(ui , νj)

, 1), for dt(ui, νj) < ds

gr1
t (ui) = η̄t − η̄t−1

hr1
t (ui) = min(sum(MTt(ui)), 1)

(30)

where dt(ui, νj) represents the distance between UAV ui and target νj at time step t, η̄t
represents the average observation rate of targets at time step t, sum(MTt(ui)) represents
the sum of the values of the elements in matrix MTt(ui), min(x, y) returns the minimum
value of x and y.

The reward r2
t (ui) encourages UAV ui to explore the search region, which consists of

the following two terms:
r2

t (ui) = λ4
lr2

t (ui) + λ5
gr2

t (ui) (31)

where lr2
t (ui) is the local reward for exploring the search region, gr2

t (ui) is the global reward
for exploring the search region, λ4 and λ5 are the positive coefficients. The rewards lr2

t (ui)
and gr2

t (ui) are designed as follows:{
lr2

t (ui)= min(CLCW (βt(ui)−βt−1(ui))
M∗ds

, 1)
gr2

t (ui) = min(CLCW (βt−βt−1)
M∗ds

, 1)
(32)

where βt(ui) represents the local exploration rate of the search region known by UAV ui
at time step t, βt represents the global exploration rate of the search region at time step t.
βt(ui) and βt are calculated as follows:

βt(ui) =
1
t

1
CLCW

CL
∑

k=1

CW
∑

l=1
mckl

t (ui)

βt =
1
t

1
CLCW

CL
∑

k=1

CW
∑

l=1
tstamp(ckl)

(33)
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The reward r3
t (ui) penalizes UAV ui for approaching other UAVs too close, which is

designed as follows:

r3
t (ui) =

M

∑
j=1,j 6=i

r3
t (ui, uj), r3

t (ui, uj)=


−0.2, if 0.8ds ≤ dt(ui, uj) < ds
−0.5, else if 0.5ds ≤ dt(ui, uj) < 0.8ds
−1.0, else if dt(ui, uj) < 0.5ds
0.0, else

(34)

The reward r4
t (ui) penalizes UAV ui for leaving the search region, which is designed

as follows:

r4
t (ui) =

{
−5, if ct(ui) /∈ S
0, else

(35)

The reward function designed above can make UAVs receive dense rewards in the
training process, which can reduce the difficulty of learning. In addition, we set λ1 = 0.6,
λ2 = 0.2, λ3 = 0.2, λ4 = 0.7, and λ5 = 0.3 in the training process.

3.3.5. Training Algorithm

In this study, we used a policy-based DRL algorithm, proximal policy optimization
(PPO) [30], to train the deep neural network. The PPO has the benefits of optimizing control
policies with guaranteed monotonic improvement and high sampling efficiency, and it has
been widely used in the control of robots [31,32].

The algorithm flow is shown in Algorithm 1. In the training process, a centralized
training, decentralized execution paradigm is used. Specifically, at each time step, each
UAV independently obtains the observation and selects action through the shared policy,
and the policy is trained with experiences collected by all UAVs during network training.
The collected experience is used to construct the loss function LCLIP(θ) for the policy
network πθ and the loss function LV(φ) for the value network Vφ. The value network
structure is the same as the policy network structure, except that it has only one linear
unit in its last layer. In each episode, the policy network πθ is optimized Eπ times, and the
value network Vφ is optimized EV times on the same minibatch data sampled from the
collected experience with Adam optimizer [33].

4. Results

In this section, simulation experiments are performed to evaluate the effectiveness
of our proposed policy. We first describe the simulation setup and introduce the training
process. Then, we compare our policy with other methods in various scenarios to validate
its performance. Finally, we discuss the results.

4.1. Simulation Setup and Training Results

We conduct simulation experiments in a Python environment. The deep neural
networks are implemented with Pytorch [34]. In the training process, we consider a search
region of size 50× 50 cells, i.e., CL = CW = 50 cells. The numbers of UAVs and targets in
the search region are set to M = 5 and N = 10, respectively. The sensing range of each
UAV is set to ds = 5 cells and the communication range of each UAV is set to dc = 10 cells.
In addition, the maximum UAV speed is set to 1 cell per time step, and the maximum target
speed is set to 0.5 cells per time step. The total mission time step is 200, i.e., T = 200. We
set tU = 5 and tT = 8 for the decay period of the position history map of the UAVs and
that of the position history map of the targets, respectively. The parameters in Algorithm 1
are listed in Table 1. In addition, the observation input size is set to Cinput= 21 cells.
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Algorithm 1: PPO with multiple UAVs for CMUOMMT
Initialize policy network πθ , πθ′ , and value function Vφ, let πθ′=πθ

for episode = 1,2,. . . , do
for t = 1,2,. . . ,T do

for UAV i = 1, 2, . . . , M do
Run policy πθ′ , collecting experience {ot(ui), at(ui), rt+1(ui), ot+1(ui)}.
Estimate advantages using
Ât(ui) = −Vφ(ot(ui)) + rt+1(ui) + · · ·+ γT−trT+1(ui) + γT−t+1Vφ(oT+1(ui)).

end
end
for UAV i = 1, 2, . . . , M do

for j = 1,2,. . . ,Eπ do

LCLIP(θ) = −Êt
[
min

(
rt

i (θ)Ât(ui), clip
(
rt

i (θ), 1− ε, 1 + ε
)

Ât(ui)
)]

, rt
i (θ)=

πθ(at
i |o

t
i)

πθ′(at
i |o

t
i)

.

Optimize surrogate LCLIP(θ) wrt θ, with minibatch size B and the learning rate lrθ . (Note:
clip(x, xmin, xmax) limits the value of x between xmin and xmax)

end
for k = 1,2,. . . ,EV do

LV(φ) =
T
∑

t=1

(
∑

t′>t
γt′−trt′(ui)−Vφ(ot(ui))

)
.

Optimize surrogate LV(φ) wrt φ, with minibatch size B and the learning rate lrφ.
end

end
θ′ ← θ

end

Table 1. Training parameters in Algorithm 1.

Parameters Values

T 200
M 5
γ 0.99

Eπ 10
ε 0.1
B 64
lrθ 0.00005
EV 10
lrφ 0.001

The training process took 3000 episodes. At the beginning of each training episode,
the positions of the UAVs and the targets are randomly reset. The speed of each target is
randomly generated between [0, 0.5] cells per time step and remains unchanged during
a training episode. We recorded the average and variance of each episode’s cumulative
reward every 100 episodes. The cumulative reward for each training episode is the average
of the cumulative rewards received by all UAVs. The training results are shown in Figure 6.
As training progresses, each UAV receives progressively larger rewards, which means that
the control policy gradually converges, allowing each UAV to track discovered targets and
explore unknown environments. It is worth noting that in the early stages of training, the
UAVs receive negative rewards due to leaving the search region.
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Figure 6. Training curve of the average and variance of each episode’s cumulative reward every
100 episodes.

4.2. Comparison with Other Methods

In this subsection, we compare our policy with other methods, including A-CMOMMT [6],
P-CMOMMT [8], PAMTS [19], and Random policy. A-CMOMMT is a traditional approach
for solving the CMOMMT problem, which uses weighted local force vectors to control UAVs.
P-CMOMMT considers the uniformity of the observation of the targets compared with A-
CMOMMT. PAMTS is a novel distributed algorithm, considering tracking the targets and
exploring the environment in a unified framework. Random policy serves as a baseline of the
CMOMMT problem.

In each set of comparative simulation experiments, we ran 50 random test experiments
for each method and calculated the average of the following three metrics:

• the average observation rate of the targets η̄,
• the standard deviation ση of the observation rates of the N targets, and
• the exploration rate β of the search region.

We first compared our policy against other methods with different numbers of UAVs
while the number of targets was fixed to 10. As shown in Figure 7a, the average observation
rates of the targets continued to increase as the number of UAVs increased across all
methods. Our policy had the best performance when the number of UAVs was 2, 10,
or 15, and it was the second best method when the number of UAVs was 5 or 20. In
addition, Figure 7b shows that our policy had the minimum standard deviation of the
observation rates compared with A-CMOMMT and PAMTS in most cases, which shows
that our policy can give the targets relatively fair observations. It is worth noting that
the standard deviation of the observation rates gradually increased with the increase in
the number of UAVs when using P-CMOMMT and Random policy. This is because the
number of targets being observed increases when the number of UAVs increases, so that
the standard deviation of the observation rates also increases with it. Figure 7c shows the
exploration rate of the search region with the various number of UAVs. It can be seen that
our policy had a high exploration rate in most cases relative to other methods except for
the random policy. Overall, our policy can give targets a high and fair observation while
maintaining a high exploration rate of the search region.

The impact of the total mission time on the three metrics was also studied. Figure 8a
shows that the observation rates with A-CMOMMT, PAMTS, and our policy continued to
improve as the total mission time increased. It is because that the increased mission time
allows UAVs to search the environment sufficiently to find the targets. In addition, the
observation rates of the A-CMOMMT, PAMTS, and our policy gradually approached as
the total mission time increased, which means all three methods can find the targets in the
search region with enough mission time. P-CMOMMT had a low observation rate because
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it tries to give a uniform observation to the targets, which can also be seen from Figure 8b,
where P-CMOMMT had a relatively low standard deviation of the observation rates. As
shown in Figure 8b, our policy had a medium standard deviation of the observation rates.
Similarly, as shown in Figure 8c, our policy had a medium exploration rate compared to
the other methods. The results show that our policy can increase the observation rate of
the targets when the mission time increases, while reducing the standard deviation of the
observation rates and increasing the exploration rate of the search region.

Figure 7. Comparison of results when the number of UAVs is increasing while the number of targets is fixed to 10. Other parameters
are the same as those in the training process. (a) The results of the average observation rates change with the number of UAVs. (b) The
results of the standard deviation of the average observation rates change with the number of UAVs. (c) The results of the exploration
rates change with the number of UAVs.

Figure 8. Comparison of results when the total mission time is increasing. Other parameters are the same as those in the training
process. (a) The results of the average observation rates change with the total mission time. (b) The results of the standard deviation
of the average observation rates change with the total mission time. (c) The results of the exploration rates change with the total
mission time.

In addition, the impact of the size of the search region on the three metrics is studied.
Figure 9a,c shows that the observation rate of the targets and the exploration rate of the
search region decreased as the size of the search region increased. It is obvious that targets
were more scattered in a larger search region, which makes it difficult for UAVs to find
targets and explore the entire search region. As shown in Figure 9b, the increase in the
standard deviation of the observation rates from CL = CW = 25 to CL = CW = 50 was
due to the number of the discovered targets decreasing as the size of the search region
increased. However, the decrease in the standard deviation of the observation rates from
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CL = CW = 50 to CL = CW = 125 was due to the difficulty for UAVs to find the targets in
a large search region.

Finally, we studied the impact of the communication range on the three metrics. As
shown in Figure 10, for our policy, the observation rate and the exploration rate continued
to improve, and the standard deviation of the observation rate continued to decrease as the
communication range increased, until the communication range was greater than 10 cells,
where all three metrics basically no longer changed. The impact of the communication range
on the three metrics under PAMTS was consistent with our policy, except when there was
no communication among UAVs, i.e., dc = 0 cells. The results show that the information
from the nearby UAVs can bring significant improvements, and the information from the
remote UAVs has little impact on this mission. In addition, because A-CMOMMT and
P-CMOMMT only consider the impact of UAVs within the sensing range, the variation
in communication range has no effect on the three metrics. Like the above results, our
policy has a high observation rate just below PAMTS and a low standard deviation of
the observation rates and a high exploration rate of the search region compared with
A-CMOMMT and PAMTS.

Figure 9. Comparison of results when the size of the search region is increasing. Other parameters are the same as those in the
training process. (a) The results of the average observation rates change with the size of the search region. (b) The results of the
standard deviation of the average observation rates change with the size of the search region. (c) The results of the exploration rates
change with the size of the search region.

Figure 10. Comparison of results when the communication range is increasing. Other parameters are the same as those in the
training process. (a) The results of the average observation rates change with the communication range. (b) The results of the standard
deviation of the average observation rates change with the communication range. (c) The results of the exploration rates change with
the communication range.
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4.3. Discussion

The above comparison results show that our policy can find a balance between giving
the known targets a fair observation and exploring the search region. Though our policy has
a low observation rate compared with PAMTS in most cases, it can give a fair observation
to the targets with a low standard deviation of the observation rates and continue a high
exploration rate of the search region, which can enable UAVs to find more targets when the
total number of the targets is unknown. It is worth noting that PAMTS assumes that the
total number of targets is known, and we do not have this assumption.

5. Conclusions

In this paper, a DRL based approach is proposed to solve the CMUOMMT problem.
Unlike traditional CMOMMT approaches, we considered the average observation rate of
the targets, the standard deviation of the observation rates, and the exploration rate of the
search region at the same time under the assumption that the total number of the targets is
unknown. To achieve this objective, we used four observation maps to record the historical
positions of targets and other UAVs, exploration status of the search region, and the UAV’s
position relative to the search region. In addition, UAVs’ maps were merged from the maps
of different UAVs within a communication range. The merged maps were then cropped
and processed with a deep neural network to obtain the selection probabilities of actions.
The reward function was designed carefully to provide UAVs with dense rewards in the
training process. The results of the extensive comparison simulation experiments prove
that our policy can give the targets a fair observation and meanwhile maintain a high
exploration rate of the search region. Future work will study the CMUOMMT problem
in a search region with obstacles and targets with evasive movements. This is a more
challenging problem that requires smarter collaboration between UAVs.
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Abbreviations
The following abbreviations are used in this manuscript:

A3C Asynchronous advantage actor-critic
CMOMMT Cooperative Multi-Robot Observation of Multiple Moving Targets
CMUOMMT Cooperative Multi-UAV Observation of Multiple Moving Targets
CNN Convolutional neural network
DRL Deep reinforcement learning
EKF Extended Kalman filter
FOV Field of view
GA Genetic algorithm
MOSOS Multi-Objective Symbiotic Organisms Search
MPC Model Predictive Control
PHD Probability Hypothesis Density
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POMDP Partially Observable Markov Decision Process
PPO Proximal policy optimization
PSO Particle Swarm Optimization
SAR Search and rescue
UAV Unmanned aerial vehicle
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