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Abstract: This study suggests a method to select core data that will be helpful for machine learning.
Specifically, we form a two-dimensional distribution based on the similarity of the training data
and compose grids with fixed ratios on the distribution. In each grid, we select data based on
the distribution consistency (DC) of the target class data and examine how it affects the classifier.
We use CIFAR-10 for the experiment and set various grid ratios from 0.5 to 0.005. The influences
of these variables were analyzed with the use of different training data sizes selected based on
high-DC, low-DC (inverse of high DC), and random (no criteria) selections. As a result, the average
point accuracy at 0.95% (±0.65) and the point accuracy at 1.54% (±0.59) improved for the grid
configurations of 0.008 and 0.005, respectively. These outcomes justify an improved performance
compared with that of the existing approach (data distribution search). In this study, we confirmed
that the learning performance improved when the training data were selected for very small grid
and high-DC settings.

Keywords: learning influence; machine learning; training data similarity; distribution consistency

1. Introduction

The performance of artificial intelligence (AI) applications is influenced by machine
learning (ML) models and training data. In here, we define that a term “learning influence”
means an accuracy of a trained ML model. The development of ML models has received
intense attention, and to-this-date, there has been significant progress in their develop-
ment [1–13]. To train these models more accurately, high-quality data must be obtained. It
is well-known that a larger amount of data has a more positive influence on the learning
performance, and an increased amount of time and cost needs to be invested to collect
the data [14]. Using data above a certain quantity increases the computational complexity,
while the corresponding learning performance improvement is not considerable. As a
result, more time, memory, and computational resources are required for learning that
affect adversely its cost effectiveness.

A large amount of data and complex models require a considerable amount of time
for each epoch that impedes the development of AI. To develop the AI that is executing
specific tasks automatically and intelligently, ML experts should be involved for specific
jobs, such as data acquisition and preprocessing, model selection, hyper-parameter tuning,
optimizer selection, performance matrix selection, and others. These jobs are repeatedly
required in the ML process. This is referred to as the human-in-the-loop (HITL) process
and the process is repeated until the AI achieves the performance objective [12].

To shorten the HITL process, we propose a method of distribution consistency. This
method can be applied to active learning, curriculum learning, and other types of learning
that require ML efficiency. This method involves processes that form a two-dimensional
distribution of the training data, composes grids on the distribution, and selects a predeter-
mined size of data according to the order of distribution consistency (DC).
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Based on a method of data distribution search that was performed in our previous
study, we inferred that a data selection process that considers the data density in each grid
was effective to some extent. However, this was not applicable to the cases where data less
than 40% of the entire data were selected (random selection was better [15].

In the present study, we have developed further the DDS. Accordingly, this study
describes the investigation of a method that can have a higher accuracy, contributes to the
performance improvement in all selections of different number of data, and shares data
selection insights gained from the experiments.

The remainder of this study is organized as follows. Section 2 describes the back-
ground research of this study, and Section 3 introduces the DC method with previous work.
Its experimental analysis is explained in Section 4. Conclusions are outlined at the end
with suggestions for further research in Section 5.

2. Background Research

This study was initiated based on the question, “Can we find a method to select train-
ing data that contribute more to ML?” To find the answer, we started with the hypothesis
that “similar data make a similar contribution to ML.” We found in the previous work
that the hypothesis was correct [15]. Figure 1 shows the distribution of the MNIST (The
MNIST DATABASE of handwritten digits: http://yann.lecun.com/exdb/mnist/) dataset after
dimensional reduction using t-distributed stochastic neighbor embedding (t-SNE). Each
point corresponds to one image.
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Figure 1. Two-dimensional distribution of MNIST data (digit 3) using t-SNE.

As indicated, the data distributed in the neighborhood have similar characteristics.
Thus, we could assume that the learning contribution rate of the adjacent data would be
similar. In other words, ML would learn diversity from a small number of data in various
areas. According to this idea, when data from each class are distributed like in Figure 1,
a small percentage of data is selected in the dense area (the actual selected data may be
equivalent or higher than the sparse area), and a large percentage of data is selected in
the sparse area. From this observation, we proposed a data distribution search (DDS)
technique in the work [15] that formed subsets of training data from the data distribution
for each class.

To assess the performance of the proposed method, MNIST and CIFAR-10 datasets
were used, and the DDS selected subsets of training data with predetermined ratios, i.e.,
{60%, 50%, 40%, 30%, 20%, 10%, 4%, 3%, 2%}. Finally, we trained classifiers corresponding
to the subsets and tested each classifier with a test set (10,000 data).

Based on this test, we could confirm that the subsets selected by DDS yielded superior
performance compared with those of random selections. However, the improvement was
limited, and worked well only for selections of 60%, 50%, and 40%, in the case of CIFAR-10
(The CIFAR-10 Dataset: https://www.cs.toronto.edu/~kriz/cifar.html).

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
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The key point identified based on these results was that the distribution-based data
selection was able to select the core subsets. This study aims to overcome the existing
limitation and describe a new method to provide a better selection for core subsets with
high contributions to the learning performance.

3. Method of Distribution Consistency

This section describes the analysis of the learning influence based on the consistency
of the data distribution.

3.1. Overview of Research Architecture

As shown in Figure 2, the overall architecture of this study is composed of five steps:
input of all the training data, application of the representation learning model, formation of
data distribution, selection of core subsets, and experiments (classifier that trains and tests).
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Figure 2. Research architecture.

Additionally the detailed descriptions are as follows.

• Input of all training data: We prepared training data in this step, and used CIFAR-10
which contained real-world images, but its size was very small (32 × 32 pixels). This
means that the classification task is not easy with this data [16].

• Application of representation learning model: We applied one of the methods for
dimensional reduction such as t-SNE, principal component analysis (PCA), and
ISOMAP [11,17,18]. These methods defined core features of simple data like MNIST
and reduced their dimensionality well, but this was not the case for complicated data
like CIFAR-10 which have high complexity. To overcome this limitation, we employed
a pre-trained model that can understand image features. Accordingly, in this study,
GoogLeNet (InceptionV3) was used [9,10].

• Formation of data distribution: This step analyzes the high-dimensional data, extracts
key features, and generates an n-dimensional distribution. In general, this reduc-
tion is used to simplify data computation, and facilitate better understanding and
visualization. We employed t-SNE and reduced it in two dimensions.

• Selection of core subsets: This is the most important part of this study and is described
in detail in Section 3.2.

• Experiments: In this step, we set a convolutional neural network, train the network
with each subset of various sizes, and evaluate its classification performance with
10,000 test sets. Furthermore, we compare the performance with previous work and
random selection. This is described further in Section 4.

3.2. Subset Selection Based on Distribution Consistency

We suggest distribution consistency (DC) as a further developed version of the DDS
presented in our previous work [18]. The DDS considered the data distribution of a single
(target) class. Specifically, the training data were input to t-SNE to form a two-dimensional
distribution. Furthermore, the DDS divided the distribution into a fixed size with grid
ratio (rg), iteratively selected m data from dense to sparse grids, and finally formed n data.
Herein, the set {rg, m, n} constituted the hyper-parameter. These steps were repeated within
the number of classes, i.e., ten times for MNIST and CIFAR-10.

With the example of Figure 3, the DDS selects the subset from all data on the basis of
priority like Table 1 in the case of {1/6, 1, 15} for {rg, m, n}.
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Figure 3. Example of data distribution of a single class and grid formation with 1/6 given for rg

against the total x, y length (solid-line circles: target class, dotted-line circles: other class data).

Table 1. Data distribution search (DDS)-based selection process.

No. Grid Position (x, y) Number of Target
Data Priority

1 2, 1 3 3
2 3, 1 2 4
3 4, 1 1 5
4 5, 1 1 5
5 3, 2 2 4
6 4, 2 4 2
7 5, 2 1 5
8 1, 3 3 3
9 2, 3 1 5
10 4, 3 1 5
11 2, 4 1 5
12 3, 4 2 4
13 3, 5 2 4
14 5, 5 5 1

Order of selection: First search {14, 6, 1, 8, 2, 5, 12, 13, 3, 4, 7, 9, 10, 11}, second search {14}.

The DDS only considers the distribution of a target class, and thus ignores other class
data in each grid. Additionally, m data are selected from the high priority to the low priority.
In the case in which the priority is the same, one grid is selected randomly. Figure 4 shows
this data selection process.
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step based on the DDS (select m data from each grid sequentially, currently m is 1).

There are 2, 3, 4, and 1 target data in four grids (cylinders in the figure) in the left of
Figure 4. Because m is equal to one, one datum is selected from all grids in the first search
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and the fourth grid becomes empty. Thus, in the second search, one datum is selected from
the three grids. This process is run continually until n data are selected in total.

On the basis of the DDS method, we considered the DC of data for further develop-
ment. In other words, it is a method used to assign weights to the grids by measuring the
consistency ratio of the target class data. This is measured by (1).

weightconsistency =
ntarget

ntotal
(1)

where, the division of ntarget by ntotal represents the ratio of the target data contained in the
grid. The purpose of this study was to select the ones with high DC (weightconsistency) to
investigate the learning influence. However, we also examined the cases that selected the
subset according to a descending order, called low DC (= 1− weightconsistency). In Table 2, the
overall process of data selection is shown using the distribution represented in Figure 3.

Table 2. Data selection process based on high-distribution consistency (DC) and low DC.

No. x, y Data Number Weights

Target Others 1st 2nd 3rd

1 2, 1 3 1 3/4 2/3 1/2
2 3, 1 2 1 2/3 1/2 -
3 4, 1 1 1 1/2 - -
4 5, 1 1 0 1/1 - -
5 3, 2 2 0 2/2 1/1 -
6 4, 2 4 0 4/4 3/3 . . .
7 5, 2 1 1 1/2 - -
8 1, 3 3 0 3/3 2/2 1/1
9 2, 3 1 3 1/4 - -

10 4, 3 1 0 1/1 - -
11 2, 4 1 0 1/1 - -
12 3, 4 2 0 2/2 1/1 -
13 3, 5 2 5 2/7 1/6 -
14 5, 5 5 0 5/5 4/4 ...

High-DC-based selection: 4→ 5→ 6→ 8→ 10→ 11→ 12→ 14→ 5→ 6→ 8→ 12→ 14→ 6→ 8. Low-DC-based
selection: 13→ 13→ 9→ 3→ 7→ 2→ 2→ 1→ 1→ 1→ 4→ 5→ 6→ 8→ 10.

Table 2 shows the conceptual examples of data selection based on the high DC and
low DC simultaneously. The strategy in which data are selected is different from the DDS.
This is summarized in Figure 5.
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Figure 5. Data selection strategy based on distribution consistency (DC).

Data selection started with the input of a set combination {n, rg, m’}, namely, with
the number of subset data, the grid ratio, and the number of grids selected in a single
calculation, respectively. Herein, m’ is different from m (of DDS), which denotes the number
of data selected from each grid. As shown in Figure 5, DC selects one grid (m’ = 1) or three
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grids (m’ = 3) according to the DC weight iteratively until n number of data are filled. The
data in each grid is selected randomly, and is the same as the DDS.

Using the DC weight proposed in this study, we selected a wide range of subsets, and
experimented with the data regarding their learning performance.

4. Experimental Analysis
4.1. Experimental Environmental

The experiment was conducted as follows.

• Data: this method can be applied to every type of image. However, in this case we
focused on CIFAR-10 only that contained real-world images with very small sizes and
on difficult mage classification tasks [19].

• Training set configuration: CIFAR-10 is composed of ten classes, and each class consists
of 5000 and 1000 images for training and testing, respectively. Herein, 3000, 2500,
2000, 1500, 1000, 500, 250, 200, 150, and 100 data from the original set were selected to
form the training subsets, and the entire test set was used for all classification tasks.
The selection of data was based on the three criteria: random selection, the high-DC
weight, and the low-DC weight.

• Classification model configuration: The CIFAR-10 dataset is considerably different
from that obtained from MNIST and requires complex convolutional neural network
architecture. Therefore, in this study, a convolution model with 14 hidden layers was
configured, as shown in Table 3. By using this model, a test accuracy of approximately
0.7846 (average value of results of five iterations—the same operation was applied to
all subsequent experiments) was achieved when the classification model was trained
with the entire training data.

Table 3. Classification model setting.

Layer Setting

Input Conv2D (32,(3,3)), ReLU), he_uniform
Hidden-1 Conv2D (32,(3,3)), ReLU, he_uniform
Hidden-2 MaxPooling2D(2,2)
Hidden-3 Dropout (0.2)
Hidden-4 Conv2D (64,(3,3)), ReLU, he_uniform
Hidden-5 Conv2D (64,(3,3)), ReLU, he_uniform
Hidden-6 MaxPooling2D (2,2)
Hidden-7 Dropout (0.2)
Hidden-8 Conv2D (128,(3,3)), ReLU, he_uniform
Hidden-9 Conv2D (128,(3,3)), ReLU, he_uniform
Hidden-10 MaxPooling2D (2,2)
Hidden-11 Dropout (0.2)
Hidden-12 Flatten ()
Hidden-13 128 Dense Layer, ReLU, he_uniform
Hidden-14 Dropout (0.2)

Output 10 Dense Layer, Softmax
Batch size = 64, epochs = 50.

We compared the test accuracies of the trained model with the subsets selected by
three different ways.

4.2. Test Accuracy of Random Selection

First, we measured the learning performance of the subsets selected randomly. As
mentioned in Section 4.1, we prepared five sets of each subset by random selection from the
entire CIFAR-10 dataset and the subsets consisted of 30,000, 25,000, 20,000, 15,000, 10,000,
5000, 2500, 2000, 1500, and 1000 data respectively. We trained the model of Table 3 with the
prepared data, and tested each model with 10,000 test set. We calculated their accuracies
(correct answer rates) on average and Figure 6 summarizes the result.
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Figure 6. Learning performance of randomly selected data.

An accuracy of 0.7846 was obtained with the entire dataset (50,000 in total), and its
value decreases to 0.7518, 0.7092, and to smaller values with fewer training subsets.

It is natural that learning performance improves as the number of data increases, but
the degree of improvement is not directly proportional to the number of data. That is,
randomly increasing the number of data or creating a model by using the entire dataset
from the beginning may be costly in terms of computation time, while its performance
improvement is limited. This is one of the major reasons for which we developed a data
selection method that can positively influence the learning performance. There is a Selection
via Proxy (SVP) method which is one of the latest research work for core data selection [19].
The SVP compared its performance with random selection. From this aspect, we also aimed
to derive superior performance compared with the case of randomly selected data.

4.3. Learning Performance according to Distribution Consistency

To investigate the effect of DC proposed in Section 3.2, various combinations of {rg, m′,
n} were formed as follows:

• rg: {0.5, 0.25, 0.2, 0.125, 0.1, 0.05, 0.04, 0.025, 0.02, 0.01, 0.008, 0.005}. These are decimal
numbers that can be divided by unity without leaving a remainder. Grids with sizes
of 2 × 2 are formed in the case of 0.5 and of 200 × 200 in the case of 0.005.

• m′: {1} means that m’ is equal to one. Up to this now, we only considered how effective
the distribution consistency and the grid ratio are.

• n: {30,000, 25,000, 20,000, 15,000, 10,000, 5000, 2500, 2000, 1500, 1000}. This sequence is
the same as the random selection described in Section 4.2.

In these configurations, we trained the classification model with the data obtained
from each combination, and applied the model to the test set. This process was iterated
five times to calculate the average accuracy. A summary of the results is shown in Figure 7.

In Figure 7, the results of training and tests are shown using datasets of size n from
the top to the bottom. The orange line indicates the accuracies of high DC, the blue line is
the low DC, and the gray line means the random selection. The overall test results, based
on these combinations, indicate that the data selected based on the high DC positively
influence the increases in the test accuracy. In addition, it can be observed that the detailed
subdivision of the grids increases the performance. In the case of CIFAR-10, the complexity
of the data is high, and it is thus difficult to show outcomes superior to the learning
performance of randomly selected data. However, we could confirm that superior accuracy
was achieved when the grid ratios of 0.008 and 0.005 were used, compared with the case of
random selection.
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We compared the accuracies with the random selection and the DDS. Figure 8 shows
the comparison outcomes. The DDS shows the best accuracy for a 60% selection but it is
not the case in others, even when it achieved the worst performance (selection of data less
than 40%). Conversely, the DC achieved stable accuracies within the entire selection range.
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Figure 8. Accuracies of data subsets selected based on high DC (rg = 0.005), DDS (the best case), and
random selection.

In summary, the implication of this study is associated with the fact that we can
enhance the learning performance when we select the data based on the detailed grid ratio
and the priority depending on the high DC values. We could confirm this with Figure 7
that consistently shows the better accuracies in the combination of the detailed grids
(specifically, 0.008 and 0.005) and high DC. Moreover, the high DC attained more stable
data selection, as shown in Figure 8, than that of DDS. DDS showed the best accuracies in
two cases (60% and 50% data selection) but decreased drastically in lesser data selection.
On the other hand, the high DC method has the stable and the best performance in general.

To identify the reason for this implication, we investigated the distribution of selected
data based on high and low DCs. Tables 4 and 5 show the data distributions for one class.
Each distribution contains all the data (5000 orange and blue points), wherein orange
points denote the selected data and blue points do not. Herein, from the difference in the
DC, it can be observed that the cases associated with high DC select data from a dense
area, and the cases associated with low DC select data from a sparse area. Considering
that high DC exhibits superior performance, this finding is the opposite of the premise of
prior research [16] in which the data distributed in similar areas were found to have similar
contributions to the learning performance. In addition, we can check that as the grid ratio
decreases and becomes more refined, the area in which data are selected is expanded. These
results empirically demonstrate that data selection from a wide area with a high DC can
positively contribute to the learning performance.
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Table 4. Data distribution selected by high-DC (3000 Data of Class Number 0).

rg Data Distribution

0.125
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Table 5. Data distribution selected by low-DC (3000 data of class number 0).

rg Data Distribution

0.125
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4.4. Time-Efficiency Analsysis

Because a routine for selecting core subsets for ML is added prior to the classifier,
additional time is required for computation. First, we measured the elapsed time for
learning with different numbers of data, and Figure 9 shows the result. Evidently, more
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time is needed when more data are available, but the performance does not improve
considerably (refer to Figure 8). This means that the time for HITL can be shortened by
starting with a small amount of data to create an optimal ML model. Furthermore, the
method can be utilized for various applications such as data selection for active learning,
curriculum learning, and others. These points indicate why it is important to form core
subsets for efficient training.
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Figure 9. Learning time according to training data size (Unit: s, using NVIDIA GeForce RTX 2080Ti).

The time for data selection is added to the aforementioned classifier, and the DC
method is expected to expend approximately 13.28 s, as shown in Table 6. The selection
process is performed just once before entering the stage of ML. This means that it is
independent of the HITL process which requires the maximum amount of time and cost to
create AI. In addition, it can be regarded that the added time is not large compared with the
time taken for model training, especially in view of the fact that the method demonstrates
better performance compared with random selection.

Table 6. Time required for data selection (Grid Ratio: 0.005).

Number of Data Elapsed Time for Selection (s)

30,000 12.550
25,000 13.600
20,000 13.697
15,000 13.465
10,000 13.409
5000 13.334
2500 13.266
2000 13.207
1500 13.200
1000 13.112

Computer: Windows 10, 64 GB memory, Intel Core processor i9-9980XE 3.00 GHz.

5. Conclusions

We suggested a method that selected core subsets to contribute positively to the
learning performance. For this purpose, we investigated the effects on test accuracy
according to the DC of training data. Specifically, we employed the InceptionV3 model to
interpret complex images, and the t-SNE method to reduce to low n-dimensions, especially
to two-dimensional planes for easy understanding. Furthermore, we divided the plane
into grids at fixed ratios, and calculated weights with the use of high DC and low DC of
each grid. As a result, we confirmed that the learning performance could be better when
training data were selected in conditions in which the grid ratio was less than 0.008, and the
distribution consistency was high. In addition, this selection achieved the best performance
that was more stable than those of DDS and random selection.
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ML is an AI development tool and it accompanies an HITL process in which humans
are repeatedly involved until they reach the desired performance in the development of au-
tomatic and intelligent software. It is almost impossible to reach the targeted performance
in a few trials. Instead, additional data collection, data preprocessing, model selection, and
hyper-parameter tuning are needed, but these require significant amounts of time and cost.
The method proposed in this study is related to the data collection in the HITL and can
contribute to shortening the HITL time to derive the optimal model with a smaller amount
of data. Moreover, the results of this study present the criteria for selecting training data
that improve the learning performance, rather than using indiscreetly large amounts of
data when additional data are needed, including active learning. In addition, the findings
of this study can be utilized in the development of a strategy for the selection of training
data in curriculum learning to quickly reach the global minimum point of the loss function
when training is performed with the entire set of acquired data.

Based on this viewpoint, numerous additional studies ought to be conducted. We
will investigate the performance change by setting the diversity of m’ values by changing
various representation learning models and dimensional reduction methods, and by apply-
ing newly improved selection methods. Furthermore, we will use various benchmarking
datasets. Overall, we will apply the selection methods for active and curriculum learning.
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