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Abstract: The operation and maintenance of buildings has seen several advances in recent years. 

Multiple information and communication technology (ICT) solutions have been introduced to better 

manage building maintenance. However, maintenance practices in buildings remain less efficient 

and lead to significant energy waste. In this paper, a predictive maintenance framework based on 

machine learning techniques is proposed. This framework aims to provide guidelines to implement 

predictive maintenance for building installations. The framework is organised into five steps: data 

collection, data processing, model development, fault notification and model improvement. A sport 

facility was selected as a case study in this work to demonstrate the framework. Data were collected 

from different heating ventilation and air conditioning (HVAC) installations using Internet of 

Things (IoT) devices and a building automation system (BAS). Then, a deep learning model was 

used to predict failures. The case study showed the potential of this framework to predict failures. 

However, multiple obstacles and barriers were observed related to data availability and feedback 

collection. The overall results of this paper can help to provide guidelines for scientists and practi-

tioners to implement predictive maintenance approaches in buildings. 
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1. Introduction 

In Europe, buildings are responsible for 40% of energy consumption, and approxi-

mately 28% of total direct and indirect CO2 emissions [1,2]. A large part of this energy is 

consumed by building installations, mainly cooling and heating systems. Indeed, faulty 

operations of building installations lead to significant waste, causing up to a 20–30% in-

crease in the total building energy consumption [3]. To achieve energy efficiency goals, 

building maintenance and management approaches must be improved and optimised. 

Facility management (FM) teams depend on real-time, accurate and comprehensive 

data to perform day-to-day maintenance activities and to provide accurate information to 

top management [4]. However, the activities of inspecting facilities, assessing mainte-

nance and collecting data are labour-intensive and time consuming [5]. In addition, the 

budget and resources allocated for building maintenance are limited [6], and maintenance 

personnel argue that their budget and resources are insufficient and below their needs 

[7,8]. This trade-off affects the quality and the relevance of the maintenance activities and 

inspections, which leads to poor maintenance and quality management policies in facili-

ties. 
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Nowadays, maintenance practices in the field of FM are mainly based on corrective 

maintenance: late actions are taken following a user complaint or an unplanned failure 

[9]. The lack of a budget and human resources limits the use of preventive maintenance 

to the minimal level of mandatory inspections in critical installations. Moreover, the con-

cept of predictive maintenance is based on processing the operation data sent via sensors 

using data analytics techniques. This approach offers the possibility to address the gap in 

maintenance practices by supporting the FM teams to take early action and avoid un-

planned failures without the need for costly intensive site inspections of the installations. 

Recently machine learning and data science techniques have been used in many as-

pects of modern society, including the Internet, finance, insurance, and medical applica-

tions [10]. In addition to the recent advances in machine learning, the introduction of 

smart devices and the Internet of Things allowed for the connection of physical assets and 

real-time data streaming at a low cost [11,12]. As a consequence, the field of operation and 

maintenance management is evolving. Classic maintenance approaches and quality man-

agement methods that were all controlled by people in the past are being transformed into 

predictive maintenance thanks to machine learning (ML) and artificial intelligence (AI) 

[13]. The industry of facility management can benefit from the rise of machine learning 

and IoT in order to improve the management of their assets and reduce waste. This paper 

presents a predictive maintenance approach for the field of facility management; for this 

purpose, a framework based on machine learning is proposed whilst taking into account 

the specificities of the FM field. 

2. Research Background 

This section first presents an overview of the main maintenance approaches and de-

scribes the differences between them. Following this, an overview of the deep learning 

algorithms used in this research is presented: autoencoders, recurrent neural networks 

and long short-term memory (LSTM). 

2.1. Maintenance Approches 

According to the British standards [14], maintenance is the combination of all tech-

nical, administrative, and managerial actions during the life cycle of an item intended to 

retain it in or restore it to a state in which it can perform the required function. Approaches 

of maintenance management can be grouped into three main groups as follows [15]:  

 Corrective maintenance: also known as reactive maintenance or run to failure 

maintenance, which consists of intervening after the failure. The equipment is al-

lowed to operate until it fails.  

 Preventive maintenance: this consists of carrying out inspection and maintenance ac-

tions while the equipment is still running to reduce the probability of breakdowns. 

Preventive maintenance can be either time-based via a schedule or usage-based (e.g., 

every 100 km). This approach helps to reduce the number of failures, but unnecessary 

inspections are performed and unplanned failures still occur, which increases the 

cost of maintenance.  
 Predictive maintenance: this approach is based on using condition monitoring data 

to predict the future machine health state [15]. This approach aims to predict when, 

where, and which components may have potential failures. 

Nowadays, maintenance practices are mainly corrective and preventive; predictive 

maintenance is only applied for critical situations [16]. Traditionally in facility manage-

ment, aside from mandatory tests and inspections for critical equipment such as boilers 

and chillers, the majority of maintenance activities in buildings remain mainly corrective, 

simply responding to users’ complaints or to unplanned failures [9]. 

Previous studies have addressed the amelioration of preventive maintenance in the 

FM field. The most important issue for the maintenance manager is to anticipate the suit-

able time for the effective implementation of each maintenance activity [17] within the 



Sensors 2021, 21, 1044 3 of 15 
 

 

limits of the maintenance budget and the available resources. With this intent, studies 

were conducted to optimise the inspection scheduling in HVAC installations using opti-

misation techniques such as the Monte Carlo method [18,19]. Similar studies used data 

mining techniques and time series forecasting to optimise the maintenance scheduling 

based on the history of the maintenance operations in the building [17]. These studies 

showed interesting results by optimising the inspection periods. However, unplanned 

failures still occurred. Different studies focused on adopting industrial maintenance tech-

niques such as mechanical vibration analysis to monitor building installations using Fou-

rier transformation and fuzzy logic [20,21] or simulation techniques for fault detection 

[22]; similarly, statistical models including linear and nonlinear regression were used for 

fault detection and diagnostics in HVAC units [23]. However, the high cost of the model-

ling and the simulation as well as the limitation to generalise the models on similar instal-

lations have limited the use of these techniques in the FM field.  

The predictive maintenance approach presents an opportunity for the FM sector to 

reduce unplanned failures, reduce maintenance costs and penalties, as well as to improve 

the comfort and the security of the inhabitants. However, implementing a predictive 

maintenance approach presents multiple challenges, such as connecting physical assets, 

extracting valuable data and developing accurate predictive algorithms. Indeed, the con-

cept of predictive maintenance is not new; multiple studies were conducted in the past 

few decades, mainly focusing on statistical approaches [24]. Despite this, the deployment 

of effective predictive solutions remained expensive and difficult to implement. Further-

more, the recent development in the industry has increased machine complexity, which 

makes it difficult to predict failures with conventional methods [25]. Simultaneously, ma-

chine learning techniques have been gaining ground from computer vision [26] to natural 

language processing [27], from medical applications [28] to games [29], including appli-

cations in predictive maintenance and anomaly detection [30–33]. 

2.2. Deep Learning Overview 

Deep learning is a sub-field of machine learning and an approach of artificial intelli-

gence. It is a set of methods based on representation learning. It consists of representing 

the learning task as an embedded hierarchy of concepts to facilitate the extraction of useful 

patterns from raw data [10,34]. This hierarchy is represented as an artificial neural net-

work of several layers, with each layer containing several neurons, and each neuron per-

forming a simple but nonlinear transformation. The composition of these simple transfor-

mations allows for the learning of complex representations and solving complex tasks. 

Deep learning has accelerated the advancement of multiple aspects in modern society, 

from machine translation [35] to self-driving cars [36]. There are multiple deep learning 

models, and they vary in terms of design and architecture. Their use depends on the na-

ture of the task (classification, prediction, clustering etc.) and the nature of the input data 

(text, images, sequences, etc.). A brief review of the deep learning architectures used in 

this work is presented below.  

2.2.1. Autoencoders 

Autoencoders are a set of deep learning architectures; they can be considered as a 

special form of neural networks designed for unsupervised learning tasks [37]. The learn-

ing process is unsupervised since there is no label variable. In this type of neural network, 

the output variable is set to have the same dimension as the input variable [38]. An auto-

encoder is composed of two processes—an encoder and a decoder. The encoder trans-

forms the input data trying to dig out hidden representations, while the decoder tries to 

reconstruct the input data from the hidden representations [37,39]. This process of encod-

ing and decoding the input data can be seen as a learning circuit that tries to reconstruct 

the inputs with the minimum amount of distortion and noise [40]. An illustration of an 

autoencoder architecture is presented below in Figure 1. Autoencoders have been widely 
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used for dimensionality reduction applications [41], signal reconstruction applications, 

and anomaly detection applications [37,42,43]. 

 

Figure 1. Illustration of an autoencoder architecture. 

2.2.2. Long Short-Term Memory (LSTM) 

Long short-term memory is a variant of the artificial recurrent neural network (RNN) 

architecture, which is a type of artificial neural network designed to process sequential 

data as time series data and text and speech data [44]. LSTM and RNNs in general are 

capable of capturing long-term dependencies in a sequence. This means they can capture 

information about the past of the sequence. Thanks to this characteristic, LSTM are widely 

used in multiple applications including natural language processing applications [44], 

forecasting time series [35], and anomaly detection [30,45].  

3. Research Objective and Methodology 

3.1. Aim of the Current Study 

The aim of this study is to propose a generic framework for predictive maintenance 

in order to reduce unplanned failures and minimise faulty operations in building instal-

lations. However, buildings are different, in terms of size, occupancy, and use. Thus, a 

generic framework should be flexible and adjustable to the differences between one build-

ing and another. For this reason, this study focuses on providing general guidelines to 

implement predictive maintenance. However, some propositions in this framework, such 

as the architecture of the predictive model or the collected data, can be changed depend-

ing on the building context and its environment. The objective is that the approach can be 

applied to any type of building installation (HVAC, lift, electrical machinery, etc.). Later 

in the study, this framework is tested using a case study of a sport facility. 

3.2. Quantitative Research 

Since the implementation of predictive maintenance and machine learning ap-

proaches in buildings is still new, there is little empirical research on this topic. To gather 

data and complete the literature research, the authors used face-to-face interviews with 

experts operating in facility management. Interviews were conducted with six experts. 

The goals of the interviews were: (1) to identify the actual tools used in the building envi-
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ronment, (2) to identify the available data, and (3) to assess their perspectives of the frame-

work. The results of the interviews were used alongside the literature research to identify 

the list of the data sources in the building environment. These interviews helped us to 

design the fault detection and the feedback modules in the framework found in Section 4. 

Interviewees were asked questions such as: how do you (the user) expect the interface of 

the fault detection? Would you like to control the number of alerts? How would you like 

to formulate and send your feedback in the application?  

4. Framework Design 

4.1. Defining Data Sources 

The first step in this study was to define the data sources available in the building 

environment. Below, a list of data sources in the building environment are identified. 

 Building automation systems (BAS): BAS are largely used in modern buildings to 

control and monitor the different installations via real-time data [46]. BAS contain 

both numerical and categorical data. Typical examples of numerical data are meas-

urements such as temperature, energy consumption, and air and water flow rate, etc., 

whereas categorical data consist of time, alerts, and the binary state (ON/OFF), 

etc.[37] 

 IoT devices and sensors: connected sensors and IoT devices have been introduced in 

buildings in recent years in order to collect information on the building and its sur-

roundings [47–49]. These devices can be used to collect multiple types of information; 

they can be deployed on the installations (air handling unit (AHU), lift, chiller, etc.) 

to extract data such as temperature and vibration [50]. They can be used to collect 

human behaviour data such as occupation or mobility [48,51]. They can also be used 

to collect indoor and outdoor environmental measurements such as CO2 levels [52]. 

 Computerised maintenance management systems (CMMS): CMMS are used to man-

age daily maintenance activities. Functionalities of CMMS include: receiving emer-

gency work orders and users’ requests, scheduling preventive maintenance activi-

ties, recording the history of maintenance activities, and inventory control, etc. 

[53,54]. Thus, CMMS represents an important data source for predictive mainte-

nance.  

 Building information modelling (BIM): the BIM model provides architectural 3D vis-

ualisation and standardisation of building information exchange between the stock-

holders along the construction project life cycle [55]. In recent years, several studies 

have been carried out to implement the BIM in the operation and maintenance phase 

[56–58]. BIM can be used to support FM teams while operating maintenance activities 

[59], to monitor energy efficiency in buildings [57] and to provide visual analytics for 

maintenance activities [60]. 

 Other data sources: building energy management system (BEMS), computer aided 

facility management (CAFM) and integrated workplace management system 

(IWMS) are examples of other data sources that can be found in the building envi-

ronment. However, their use is limited to some specific facilities.  

4.2. The Framework Architecture 

The proposed framework in Figure 2 represents a machine learning approach 

adapted to the building context. The framework is composed of five steps: data collection, 

data processing, model development, fault notification and model improvement. All the 

steps are discussed and detailed below. 
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Figure 2. The proposed framework architecture. 

4.3. Data Collection, Storage and Processing 

This part consists of preparing the data flow for the learning process. It starts with 

collecting data from the sources then storing it before applying necessary data cleaning 

and transformation. 

 Data collection: the first step of the framework aims to collect data from the available 

sources in the building environment. It involves defining the data sources in the 

building then connecting them to extract the necessary data. The data sources were 

defined in this work in Section 4.1. However, data collection methods are not speci-

fied in this framework, since they depend on the user preference and the available 

ICT infrastructure.  

 Data storage: this consists of storing the data after collecting them in a storage me-

dium. There are different storage methods (cloud, local, etc.) which depend on the 

preference and the infrastructure of the user. in this framework, data storage is not 

discussed.  

 Data pre-processing: the purpose of this step is to transform the raw data into a struc-

tured dataset ready for the training process. This step is comprised of two main parts: 

o Data cleaning: this consists of cleaning the data entries by removing irrelevant 

entries, replacing Nan values, and treating outliers. 

o Data transformation: in this study, only two transformations were proposed: 

normalisation of numerical features and encoding of categorical features. How-

ever, other transformations and feature engineering can be used [61,62].  

4.4. Model Development 

In this framework, the dataset is split into a training set and a testing set. The training 

set is used while training the model to learn the anomaly patterns, while the testing set is 

used to validate the model and to tune its parameters such as the anomaly threshold. In 

this study, an autoencoder architecture was chosen for the machine-learning model. 
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4.4.1. The Autoencoder Model 

The proposed model has the architecture of an autoencoder: the encoder part consists 

of two LSTM layers followed by a reshaping layer to reshape the vector into the right 

dimension. The decoder part is similar and is composed of two LSTM layers and a reshap-

ing layer. The resultant vector in the output layer has the same dimension as the input 

vector (Figure 3). 

 

Figure 3. Illustration of the autoencoder model. 

The choice of the autoencoder is justified by the model’s nature as an unsupervised 

learning algorithm [63]. The autoencoder does not require labelled datasets (data explic-

itly tagged with fault/normal labels) which are generally not available in buildings. Fur-

thermore, autoencoders are flexible methods that require less hand engineering work and 

can be adapted to several applications. Moreover, the choice of LSTM layers is justified 

because they are designed to process sequential data such as time-series [44], which is the 

case of the majority of the installations monitoring data (temperature, vibration, and en-

ergy consumption, etc.).  

4.4.2. Anomaly Score 

Anomaly score is an evaluation metric to calculate the distance between the input 

vector � and the output vector �� . There are multiple evaluation metrics such as root 

mean square error (RMSE), mean absolute error (MAE), etc. 

In this study, RMSE was used. It is defined as below (Equation (1)). 

Let � = (��, ��, … . , ��) and �� = (���, ���, … . , ���) 

RMSE��, ��� = �
∑ (�� − ��� )��

�

�
 (1)

A threshold is defined depending on the training algorithm and depending on the 

targeted accuracy. If the anomaly score at a given time is higher than the defined thresh-

old, the model sends an anomaly alert. This process is illustrated in Figure 4.  

 

Figure 4. An Illustration of the process of calculating the anomaly score. 
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4.5. Fault Notification 

In this step, the model is deployed online after the training and the validation steps 

are done. Data are collected and processed before they are streamed to the fault detection 

model. If the anomaly score is bigger than the defined threshold, a notification is dis-

played in the CMMS then sent to the facility manager via SMS. The notification contains 

the name of the equipment, its location, and the time of the alert event.  

4.6. Feedback and Continuous Improvement 

Machine learning models need to be regularly updated in order to improve the accu-

racy of the results. For this reason, collecting feedback after the deployment is crucial to 

improve the fault prediction model. The feedback is collected from the facility manage-

ment team (the users) where they can report false alerts or undetected failures. This feed-

back is collected and stored via the CMMS. After the feedback is collected, a procedure of 

error evaluation is carried out, where the errors of the model are inspected. Following 

this, the model is updated using new training data, and its parameters are tuned to reduce 

the errors ratio.  

The improvement of the model is not a systematic approach; the procedure of updat-

ing the model using the collected feedback should be done via a proper schedule and by 

a machine learning specialist. In order to give the FM team a quicker response, the anom-

aly threshold was designed as an external parameter where the user can directly change 

the setting without a need for a total update to the model.  

4.7. Model Implementation 

The framework can be applied to the different installations in the building including 

HVAC, lifts, and pumps. After defining the installations that will be involved, data are 

collected following the guidelines in Section 4.1; these data can also be completed by the 

use of IoT sensors such as vibration sensors, temperature sensors, and energy consump-

tion meters, as illustrated later in the case study. As highlighted previously, the FM teams 

are free to choose how to send and store the data depending on the available ICT infra-

structure in the building; for example, in the case study below, the Lora network was used 

to send the data that were stored and processed in the cloud. The first implementation of 

the model requires a period of collecting data to create the training and validation da-

tasets. The development step in the framework is based on the classic ML validation meth-

odology by splitting the dataset into a training set and a validation set. The proposed au-

toencoder model is flexible and can be deployed with different types of time series data. 

After the validation phase is completed, the model can be deployed online in the facility, 

the framework proposes to integrate the FM team in order to set the alert threshold de-

pending on the availability of the team to check the alerts and on the criticality of each 

installation. The framework proposes integrating the FM team into the model improve-

ment process. The FM team can continuously change the threshold alert to improve the 

accuracy of the model. Their feedback is also collected for future updates of the model. 

Since the predictive model is based on a deep learning model, the predictive model can 

be reused on similar installations in different facilities by using transfer learning [64], 

which can allow one to cut the development cost and reduce the implementation time. 

5. Case Study: Predictive Maintenance for HVAC Installations in Sport Facility Build-

ings 

5.1. The Facility Characteristics 

The case study in this paper was conducted at a sport facility in the Paris region, 

France. It is composed of two principal buildings covering an area of 15,000 m2. The facil-

ity contains multiple installations. However, for accessibility and privacy reasons, this 

case study focused only on a selected group of HVAC installations that includes: two 

AHUs, three boilers, and three double pumps. The facility is equipped with a building 
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automation system (BAS) that monitors and controls the different installations in the fa-

cility. 

5.2. Data and Model Characteristics 

According to the guideline defined previously in the framework, data sources were 

identified. The available sources are presented below.  

 The building automation system (BAS) was connected to a web server. Each installa-

tion is monitored via the BAS through one or multiple variables such as temperature, 

energy consumption, water consumption, and air or water flow rate, etc. A report 

from the BAS is uploaded every hour. The report contains the date and the time, the 

name of the variable and its value at that time. 

 An extract from the CMMS that contains a part of the maintenance record. 

 Vibration device: an IoT device was installed on the surface of the equipment; it is 

used to collect the vibration measurements on the installation. The data reported by 

the device are the acceleration measures on the three axis (x, y and z-axis), the fre-

quency of vibration of the three axis, a binary variable (ON/OFF, which detects if the 

machine is enabled) and the temperature in the surface of the equipment. An exam-

ple is presented in Figure 5 that shows a vibration device attached to a double pump. 

 Electric meter device: an IoT meter installed to collect the electric energy data which 

includes the following measures: electric current intensity and voltage as well as the 

temperature on the surface of the equipment. 

 

Figure 5. A photo of a vibration device installed on a double pump. 

The IoT devices were only attached to the surface of the installations so that no dete-

rioration or harm happens to the installations. The IoT devices are connected to the inter-

net via the Lora network [65]. They were programmed to upload the measures in a 1 h 

cycle. The data are uploaded and stored on the web platform of Objenious: a French com-

pany (By Bouygues Telecom) specialising in IoT solutions and development. 

Table 1 presents the group of the HVAC installations used in this study and the IoT 

device attached to each installation. The vibration device was attached to each installation. 

Due to accessibility issues, the electric meter device was only attached to the two AHUs.  
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Table 1. The HVAC installations and the attached IoT devices. 

Quantity Installation Attached IoT Devices 

2 AHU 
Vibration device 

Electric meter device 

3 Boilers Vibration device 

3 Double pump Vibration device 

In order to build the training dataset, data were collected for a period of around 3 

months. The predictive model used in this case study has the same architecture presented 

in Section 4.4.1. The root mean square error (RMSE) was used as an anomaly score (Section 

4.4.2). Following this, the alert threshold was in accordance with the user to limit the num-

ber of alerts below an acceptable number. As a result of this process, the threshold was set 

to 0.0040, considering that the anomaly score (RMSE) varies from 0 to 0.0125 (dimension-

less measure), as illustrated in Figure 6. 

 

Figure 6. Distribution of the prediction error. 

5.3. Results and Analysis 

The model was tested for a period of 45 days (from 10 April 2020 to 25 May 2020). 

The results are presented in Table 2. There are three possibilities: (1) confirmed failure or 

true positive (the algorithm truly predicted a failure, then it is confirmed by the technician 

in the site). (2) Not confirmed failure or false positive (false alarm and no failure was re-

ported in the site). (3) Failure not detected (the algorithm fails to report a failure). As 

shown in Table 2, four alerts were issued; two of them were confirmed as a true positive, 

and the other two were reported as false positive. During this period, a failure happened 

in “AHU 1” but the model failed to detect it. The true positive alerts were issued two days 

before they occurred on site. 
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Table 2. Summary of faults alerts during the test period. 

Installation Alert date Feedback 

Boiler 2 14 April 2020 Confirmed Failure  

Boiler 2 15 April 2020 Confirmed Failure 

AHU 2 25 April 020 Not Confirmed 

Boiler 2 12 May 2020 Not Confirmed 

AHU 1 Not detected  Failure not detected  

This demonstrates that the algorithm can predict failures in advance. False positives 

are accepted since they can correspond to small anomalies that have not been reported as 

failures. However, the algorithm needs to be improved and to be tested on a bigger set of 

data. 

For instance, Figure 7 illustrates the anomalies detected in “Boiler 2”. The anomalies 

are projected on the vibration graph of “Boiler 2”, where the x-axis represents the time, 

and the y-axis represents the vibration (unit: 1 mGal =  1 × 10��m/s2). 

 

Figure 7. Projection of the anomalies detected in ‘Boiler 2’ on the vibration graph of the ‘Boiler 2’. 

The first observation from this case study is the low number of alerts and failures 

during this period. This is due to the COVID-19 pandemic lockdown, which coincided 

with this period. Indeed, the sport facility was closed, and the HVAC installations were 

operating at their minimum regime, making failures less likely to happen. 

One of the limitations of this case study is the small duration of data collection. This 

period does not take into consideration the changes in the HVAC operations related to 

change in seasons or the change in occupancy levels in the facility (big events). These 

changes in the regime are the cause of the majority of breakdowns and failures in the 

HVAC system according to the FM team in the facility. However, this trial phase was 

necessary and required by the FM team to give first feedback and results about the model. 

In accordance with the user, data and feedback will be collected for a period of one 

year to take into consideration the different changes. This aims to give an accurate evalu-

ation of the model and helps to improve the model for further implementation. 

6. Discussion and Conclusions 

The primary purpose of this study was to develop a generic framework for the pre-

dictive maintenance for buildings. For this, this study incorporated a literature review and 

face-to-face interviews with FM experts. Before designing the framework, identifying data 

sources in the building environment was necessary since data are the essence of the ap-

proach. A not exhaustive list was defined containing the most frequent sources in the 

buildings. Then the framework was organised into five steps: (1) data collection, (2) data 

processing, (3) model development, (4) fault notification, and (5) model improvement. A 

case study was addressed to demonstrate the implementation of the framework. This case 
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study has multiple limitations, mainly related to the duration of the study and the small 

size of the collected data. However, this case study illustrates the process to implement 

the framework. It also revealed that the topic of predictive maintenance for building in-

stallations presents multiple opportunities as well as multiple challenges. Below, we reit-

erate some observations from the case study. 

 Data between diversity and scarcity: data in the building environment are diverse in 

terms of sources and in terms of nature. They are generated from the human activity 

indoors, from the diverse installations in the building (mechanical, electrical, elec-

tronic etc.), and from the building itself. However, the majority of data are not col-

lected and not stored. Moreover, unlike other industries, there is a lack of open data-

bases containing building data, except some databases mainly focusing on building 

energy consumption [66]. As a result, building predictive maintenance has become a 

hard and a costly task. 

 Return on investment: predictive maintenance strategy offers the facility manager 

the possibility to take early action to prevent failures, which improves the lifespan of 

the installations and improves the comfort of the inhabitants. However, the imple-

mentation of predictive maintenance may take a significant time to build an effective 

model. This presents an important barrier for the facility managers to invest in solu-

tions that can take a significant time before it starts getting profitable. 

 Each building is unique: unlike other industries, such as the manufacturing industry, 

where multiple installations are the same, each building has a different use, different 

architecture, and different occupancy. Thus, two same AHUs are not the same any-

more once they are installed in different buildings. This unicity of buildings presents 

multiple opportunities and a wide market for predictive maintenance; moreover, it 

reveals several challenges to developing effective and affordable solutions. 

In order to address the limitations of the case study, data will be collected for a one-

year period to improve the training dataset. Further work will also focus on implementing 

the framework in different buildings to test the limits of scaling over multiple buildings. 
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