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Abstract: The quality of magnetic resonance images may influence the diagnosis and subsequent
treatment. Therefore, in this paper, a novel no-reference (NR) magnetic resonance image quality
assessment (MRIQA) method is proposed. In the approach, deep convolutional neural network
architectures are fused and jointly trained to better capture the characteristics of MR images. Then,
to improve the quality prediction performance, the support vector machine regression (SVR) tech-
nique is employed on the features generated by fused networks. In the paper, several promising
network architectures are introduced, investigated, and experimentally compared with state-of-the-
art NR-IQA methods on two representative MRIQA benchmark datasets. One of the datasets is
introduced in this work. As the experimental validation reveals, the proposed fusion of networks
outperforms related approaches in terms of correlation with subjective opinions of a large number of
experienced radiologists.

Keywords: image quality assessment; deep learning; network fusion; magnetic resonance images

1. Introduction

Image quality assessment (IQA) of magnetic resonance images (MR) plays a vital
part in the diagnosis and successful treatment [1–3]. The IQA methods aim to provide
automatic, repeatable, and accurate evaluation of images that would replace tests with
human subjects. Such tests are often time-consuming, difficult to organize, and their
output may depend on the considered group of participants. Therefore, the progress in the
development of IQA techniques depends on the availability of assessed image databases.
This is particularly important for MRIQA methods that require MR image databases
with opinions of a representative number of radiologists, i.e., the databases are used for
their comparison and stimulate the emergence of new approaches in the field. The IQA
approaches are divided into three groups, depending on whether distortion-free images are
used: full-reference (FR), reduced-reference (RR), and no-reference (NR). The availability of
unaltered, distortion-free, reference images is a basis for their differentiation. Nevertheless,
such pristine images, or their partial characteristics, are unavailable for MR images, limiting
the practical application of FR and RR methods. Therefore, the NR MRIQA measures are
highly desired, while FR and RR approaches are mostly employed for artificially distorted,
high-quality MR images.

There are several approaches to the FR medical IQA [4]. Among them, the Peak
Signal-to-Noise Ratio (PSNR) is the most popular. However, it might not be accurate
enough to give a proper measure between distorted and reference images, concerning
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their characteristics and known inability of the PSNR to reliably reflect human subjective
opinions. In the assessment of medical images, its derivative approaches, i.e., the signal-to-
noise ratio (SNR) and contrast-to-noise ratio (CNR) [1], are often used. Furthermore, some
early methods adapt solutions from the IQA of natural images [5], train them on images
assessed by the SNR [2], or add additional features to characterize MR images [6]. Some
approaches employ the entropy of local intensity extrema [7] or specific image filtering to
facilitate the usage of local features [8]. Other works are devoted to a binary classification
of noisy MR images [9,10] or for classification of images with prior detection of selected
distortion types [11,12].

In this paper, taking into account the lack of NR IQA measures devoted to MR images
in the literature, a novel NR method is proposed in which deep learning architectures are
fused and the transfer-learning process is jointly performed. The resulted fusion allows
the network to better characterize distorted MR images due to the diverse backgrounds of
employed architectures. Furthermore, to improve the quality prediction of the approach,
the SVR is used on features extracted from fused networks. As most of the databases used
in the literature are not publicly available, contain artificially distorted images, and/or
were assessed by a few radiologists, in this paper, a novel IQA MRI database with images
assessed by a large number of radiologists is introduced.

The main contributions of this work are as follows: (i) Fusion of deep convolutional
network architectures for MRIQA. (ii) The usage of the SVR with features obtained in joint
transfer learning of networks to improve the performance of the method. (iii) Novel large
IQA database of MR images assessed by a large number of radiologists. (iv) Extensive
evaluation of the numerous deep learning architectures and related techniques.

The remainder of the paper is organized as follows. In Section 2, previous work
on NR-IQA is reviewed, while in Section 3, the proposed approach is introduced. Then,
in Section 4, the experimental validation of the method and related techniques is presented.
Finally, Section 5 concludes the paper and indicates future directions of the research.

2. Related Work

The introduced method belongs to the category of NR techniques that use a deep
learning approach to predict the quality of assessed images. However, before such ap-
proaches were possible for the IQA of natural images, many handcrafted IQA measures
were proposed. For example, the method of Moorthy and Bovik [13] employs a two-
stage framework in which distortion type is predicted and used for the quality evaluation.
A framework in which a probabilistic model with DTC-based natural scene statistics (NSS)
is trained was proposed by Saad et al. [14]. Then, the popular BRISQUE technique [15] was
introduced, which uses the training of the Generalized Gaussian Distribution (GGD) with
Mean Substracted Contrast Normalization (MSCN) coefficients. The Gabor features and
the soft-assignment coding with the max-pooling are employed in the work of Ye et al. [16].
In the High Order Statistics Aggregation (HOSA) [17] method, low and high order statistics
for the description of normalized image patches obtained from codebook using the soft
assignment is presented. In the method, the codebook was obtained with the k-means
approach. As gradient-based features can effectively describe distorted images, many
approaches use them for quality prediction. They employ global distributions of gradient
magnitude maps [18], relative gradient orientations or magnitude [19], and local gradient
orientations captured by Histogram of Oriented Gradient (HOG) technique for variously
defined neighborhoods [20]. A histogram of local binary patterns (LBP) characterizing a
gradient map of an image is used in the GWHGLBP approach [21]. In the NOREQI [22]
measure, an image is filtered with gradient operators and described using speeded-up ro-
bust feature (SURF) descriptor. Then, the descriptors are characterized by typical statistics.
The joint statistics of the gradient magnitude map and the Laplacian of Gaussian (LOG)
response are used to characterize images in the GM-LOG technique [18].

Most learning-based NR-IQA techniques devoted to natural images employ the SVR
method to create a quality model. However, some methods do not require training. For ex-
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ample, in the Integrated Local Natural Image Quality Evaluator (IL-NIQE) [23], natural
image statistics derived from multiple cues are modeled by the multivariate Gaussian
model and used for the quality prediction without additional training step. In the BPRI [24],
a pseudo-reference image is created and compared with the assessed image using quality
metrics that measure blockiness, sharpness, and noisiness.

In recent years, more complex IQA approaches have been introduced that use deep
neural network architectures. They do not contain a separate image description and
prediction stages. However, their training requires a large amount of data or an adaptation
of architectures developed for computer vision tasks not related to the IQA. Some of the
early models address those challenges by using image patches [25,26], training with scores
generated by FR-measures or [26,27], or fine-tuning of popular networks [28].

Considering the quality assessment of MR images, the number of approaches is much
less diverse. Here, only several works have been published, revealing the lack of successful
techniques and the scarcity of the IQA MRI benchmarks that could be used to stimulate
their development. Furthermore, most clinical applications use the SNR and CNR [1]
measures to assess images or calibrate scanners. However, they require an indication
of disjoint image regions with noise and tissue, despite providing an inferior quality
evaluation of images in comparison with modern methods. Some of NR IQA measures
designed for the assessment of MR images adapt solutions devoted to natural images.
For example, Chow and Rajagopal [5] trained the BRISQUE on MR images, Yu et al. [2]
used SNR scores to train BRISQUE and three other IQA methods, while Jang et al. [6]
used MSCN multidirectional-filtered coefficients. In the work of Esteban et al. [9], image
quality was not predicted but binarily classified based on a set of simple measures. Taking
into account the inclusion of neural network architectures for processing MR images,
Kustner et al. [11] and Sujit et al. [12] detected motion artifacts and performed binary
classification of structural brain images, respectively. Volumetric and artifact-specific
features were used by Pizarro et al. [10] to train the SVM classifier. In previous authors’
works on the MRIQA, the entropy of local intensity extrema was used for direct quality
prediction [7] or high-boost filtering followed by the detection and description of local
features [8] was used with an SVR-based quality model.

Taking into account the lack of deep learning architectures for the MRIQA, it can be
stated that their effectiveness remains largely uninvestigated, and the introduction of their
effective fusion can be seen as a promising area of research.

3. Proposed Method

In the proposed approach, a fusion of deep network architectures is considered. Such
architectures are mostly devoted to image recognition tasks and were propagated to other
areas of computer vision [29]. Among popular deep learning networks, the approach of
Simonyan and Zisserman [30] (VGG) uses 3× 3 convolutional filters and achieves outstand-
ing performance at the ImageNet Large Scale Visual Recognition Competition (ILSVRC)
2014 competition. Another solution, Resnet [31], introduces a residual learning framework,
with a shortcut connection between layers to address the overfitting experienced by the
VGG. With the same purpose, Szegedy et al. [32,33] introduced the Inception module in the
GoogLeNet model. In other works, Howard et al. [34] created Mobilenet aiming to reduce
the computational costs, or Huang et al. [35], in the DenseNet, used network layers with
inputs from all preceding layers.

Deep learning models were also used for the IQA of natural images [26,36–39]. Most
of such adaptations employ transfer learning, making the networks aware of domain-
specific characteristics. Therefore, in this study, a similar approach was applied at the
beginning of the research. Thus, adapted single models can be seen as counterparts of
the first approaches with deep learning models to the IQA of natural images. However,
the performance of a single network turned out to be insufficient to provide superior
performance in the MRIQA task (see Section 4.6). Therefore, the approach introduced in
this paper considers an internal fusion of networks, assuming that the fusion of different
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network types can capture characteristics of MR images, leading to outstanding IQA
accuracy across the benchmark datasets.

Considering an image In that belongs to a set of N training images, n = 1, . . . , N,
each of which is associated with subjective score qs

n obtained in tests with human subjects.
Note that the subjective scores are denoted as Mean Opinion Scores (MOS) or Difference
MOS (DMOS). The input image I = Rh×w×c, where h, w, and c corresponds to the height,
width, and the number of channels, respectively, is processed by the network. The network
often consists of stacked modules of convolutional and pooling layers, and several fully
connected layers. The convolutional layers extract features from earlier layers. This can be
written as Ok = f(Wk ~ I), where Wk denotes a k-th filter or weights, ′~′ is convolutional
operator, and f is the nonlinear activation function, often represented by rectified linear
units (ReLUs). The pooling layers reduce feature maps, introducing average or maximum
values of inputs to the next layers. For example, the max pooling Ok(a, b) = max(Ik(i, j)),
where the (i, j) ∈ P(a, b) denotes location of the element in the pooled region P(a, b).
The fully connected layers are used to interpret features and provide high-level problem
representations. Their outputs are further processed by the softmax or regression layer for
the classification or regression problems, respectively.

Network Fusion

As the number of images in MRIQA benchmarks is not large enough for efficient train-
ing of considered network architectures or their fusions, in this study, transfer learning [40]
is applied instead of learning from scratch. The considered networks are pretrained on
ImageNet dataset and classify images into 1000 categories. However, the IQA task requires
solving the regression problem, which forces the modification of the architecture of the
network towards the quality prediction purpose. Therefore, in this study, the last three
network layers of each used network, configured for 1000 classes, are replaced with a fully
connected layer and the regression layer. Note that the replacement is performed regarding
all network architectures, either single or fused. Here, the networks share the inputs and
are connected to each other with a feature concatenation layer that adds outputs from
multiple layers in an element-wise manner. If needed, the input image is resized to match
the input size of a network. As layers responsible for average pooling remain in each
network architecture after the removal of the part associated with image classification, they
are used as inputs to the concatenation (addition) layer. An exemplary fusion of ResNet-18,
ResNet-50, and GoogLeNet is presented in Figure 1. In the network graph, each network
is represented by connected sets of convolution layers (yellow blocks). Among the last
elements in each network are the global average pooling layer, addition layer that fuses
their outputs, fully connected layer, and regression layer.

For the training of the resulted network architecture, N images are used. However, as
MR images are often 2-dimensional 16-bit matrices, they are concatenated to form three
channels (c = 3) to facilitate processing by the pretrained networks. To estimate network
parameters, the half Mean Squared Error (MSE) loss function L is applied. Considering
that Qo = (qo

1, . . . , qo
N) is the vector of objective scores and Qs = (qs

1, . . . , qs
N) represents

subjective scores, L is calculated as

L(Qs, Qo) =
1
N

N

∑
n=1

(qs
n − qo

n)
2. (1)

Typically, transfer learning of the network assumes freezing the original layers to
prevent back-propagation of errors. However, as in this study MR images are processed
and have different characteristics from natural images, the weights of fused networks were
modified using a small learning rate.
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Figure 1. Example of fusion network composed of ResNet-50 (left), GoogleNet (center), and ResNet-18 (right).

Once the training of the network is finished, a second step of the approach is executed
in which concatenated feature vectors (see the addition layer in Figure 1) are used as
an input x to the SVR module to obtain a quality prediction model, x = xnet1 ⊕ xnet2 ⊕
· · · ⊕ xnetM , where ⊕ is the concatenation operator and M is the number of fused deep
learning architectures.

The SVR technique is commonly used to map perceptual features to MOS. In this
paper, the ε-SVR is employed for training the regression model. Given training data
(X, Qs) = {(x1, qs

1),...,(xN , qs
N)}, where xn is the feature vector and qs

n is its MOS, a function
f(x) = 〈ω,x〉 + b is determined in which 〈·,·〉 denotes the inner product, ω is the weight
vector, and b is a bias parameter. Introducing the slack variables ξn and ξ∗n, ω and b can be
computed by solving the following optimization problem,

minimize
1
2
‖ω‖2 + C

N

∑
n=1

(ξn + ξ∗n)

subject to


〈ω, xn〉 − (qs

n − b) ≤ ε + ξn
qs

n − b− 〈ω, xn〉 ≤ ε + ξ∗n
ξn, ξ∗n ≥ 0,

(2)

where C is a the constant parameter to balance ω and the slack variables. The ω =

∑N
n=1 tnxn, where tn is a combination coefficient. Usually, in the first step, the input feature

vector is mapped into a high-dimensional feature space Φ(x), and then the regression
function is obtained:
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f(x) =

〈
N

∑
n=1

tnΦ(xn), Φ(x)

〉
+ b

=
N

∑
n=1

tn〈Φ(xn), Φ(x)〉+ b. (3)

The inner product 〈Φ(xn), Φ(x)〉 can be written as a kernel function c(xn, x). Therefore,

f(x) =
N

∑
n=1

tnc(xn, x) + b. (4)

The radial base function (RBF) is often used as c, c(xn, x) = exp(−γ(|xn− x|)2), where
the γ is the precision parameter [18].

The main computational steps of the approach are shown in Figure 2. As it can be seen,
networks are fused and trained together (training A) to capture MR-specific characteristics.
Then, the SVR module is trained with concatenated feature maps (training B) to obtain the
quality model used in the prediction.

Figure 2. Block diagram of the proposed approach.

In this paper, the following networks are considered in the fusion: DenseNet-201 [35],
GoogLeNet [32], Inception-v3 [33], MobileNet-V2 [34], ResNet-101 [31], ResNet-18 [31],
and ResNet-50 [31]. The networks process 224 × 224 images (instead of Inception-v3 that
works with 299× 299 images). The ResNet employs 18, 50, or 101 layers, while GoogLeNet,
Inception-v3, MobileNet-V2, and DenseNet-201, use 22, 48, 53, and 201 layers, respectively.

To further justify the need for network fusion proposed in this paper and show its sensi-
tivity to distortions, a visualization of exemplary features processed by single and fused net-
works using DeepDream (https://www.tensorflow.org/tutorials/generative/deepdream
(accessed on 23 December 2020)) technique is provided in Figure 3. The technique is often
used to show what a given network has learned at a given stage. In the experiment, the best
and worst quality images of the same body part were used. As presented, the features in

https://www.tensorflow.org/tutorials/generative/deepdream
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fused networks distinctively respond to distortions that are propagated through the archi-
tecture. Furthermore, their features seem affected by the existence of another network in
the training which modifies their response comparing to single architectures. Interestingly,
the features of GoogLeNet or ResNet in the GoogLeNet+ResNet-18 fusion are more similar
to each other than to features from single network architectures. This can be attributed
to joint transfer learning. The fusion exhibits a different response to different distortion
severity. Consequently, it can be assumed that the quality prediction model based on the
fusion would be able to reliably evaluate MR images of different quality.

Figure 3. Visualization of features at different layers for the best and worst quality MR images. The GoogLeNet, ResNet-18,
and their fusion are shown.

4. Results and Discussion
4.1. Experimental Data

The proposed approach is evaluated on two MRIQA benchmark datasets. The first
dataset, denoted for convenience as DB1, contains 70 MR images [8], while the second one
(DB2) has been created for the needs of this study and contains 240 MR images.

The DB1 benchmark contains images selected from 1.5T MR T2-weighted sagittal
sequences: the spine (14 images), knee (14), shoulder (16), brain (8), wrist (6), hip (4),
pelvis (4), elbow (2), and ankle (2). The collection consists of images captured under
different conditions affecting the image quality (IPAT software to made GeneRalized
Autocalibrating Partially Parallel Acquisitions (GRAPPA); GRAPPA3 [41]). Apart from
the images, the benchmark contains the MOS, ranging from 1 to 5, which was obtained in
tests with a group of radiologists [8]. The resolution of images in the dataset is between
192 × 320 and 512 × 512. Exemplary images that can be found in the DB1 are shown in
Figure 4.

As the DB1 collection is relatively small and databases that can be found in the
literature were created for different purposes, are not available, or were assessed by a
small number of radiologists, a novel dataset has been introduced in this study. The DB2
collection contains T2 weighted MR images acquired during routine diagnostic exams of
the shoulders, knees, and cervical and lumbar spine. Patients aged 29–51 yo participated
in the study. Siemens Essensa 1.5 Tesla scanner equipped with table coils, 6-channel—
knee and 4-channel—shoulder coils, were used to obtain two-dimensional images in axial,
coronal, and sagittal planes. The gradient strength and a slew rate of the scanner were
set to 30 mT/m, and 100 T/m/s, respectively. The following parameters were also used:
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the echo time TE ranged from 3060 up to 6040 ms, repetition time TR (77 to 101 ms),
phase oversampling of 20, distance factor of 30, and flip angle of 150°. The dataset was
made on matrices from 192 × 320 to 512 × 512, using a voxel of nonisotropic resolution
at 0.8 mm × 0.8 mm × 3 mm. To obtain images of different quality in a controlled way,
the parallel imaging technique was applied (Siemens IPAT software) [41], reducing the
number of echoes. The parallel imaging shortens the acquisition time [42] as it is commonly
employed to increase patient comfort. However, in this study, it was applied to obtain
degraded images during the routine imaging process. The T2 sequences were obtained
using the GRAPPA approach, repeated in four modes with gradually increased severity of
echo reduction. Here, GRAPPA1, GRAPPA2, GRAPPA3, and GRAPPA4 were consecutively
applied, resulting in up to a 4-minute increase of total patient examination time. Finally,
30%, 40%, 60%, and 80% of the signals were lost with GRAPPA 1–4, respectively [43,44].
Obtained images were anonymized and saved ensuring the highest standards of personal
data safety. Then, the DB2 was created with images of different patients. The subset of
30 exams was further investigated: knee (images of eight patients), shoulder (10 patients),
cervical spine (three patients), and lumbar spine (nine patients). Then, from sequences of
a better and worse quality associated to a given patient, two images per sequence were
automatically selected. The selected scans were located at 1/3 and 2/3 of the length of
each sequence. Once the 240 images were selected for subjective tests, a large group of
24 radiologists with more than 6 years of experience in MR study reading was invited for
the assessment of their quality. The group was gathered in a room with limited access
to daylight, reflecting typical conditions of such examination. Images of the different
quality were displayed in pairs and presented to radiologists for 30 s (each pair) on Eizo
Radi-Force high-resolution monitors (2600× 1800) connected to dedicated graphic cards.
Each radiologist was introduced to the assessment procedure and assigned scores from 1
to 5 to each evaluated image on paper evaluation cards. In the assessment, a higher grade
reflects a better quality of an image. Then, subjective scores were processed and averaged
to obtain MOS. Exemplary images from the DB2 are presented in Figure 5.

Figure 4. DB1 benchmark: Exemplary magnetic resonance (MR) images and their subjective scores.
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Figure 5. Introduced MRIQA benchmark (DB2): Exemplary MR images and their subjective scores.

4.2. Evaluation Methodology

Image quality assessment techniques are evaluated and compared on benchmark
datasets using four performance criteria [45]: Spearman rank-order correlation coefficient
(SRCC), Kendall rank-order correlation coefficient (KRCC), Pearson linear correlation coef-
ficient (PLCC), and Root Mean Square Error (RMSE). The higher SRCC, KRCC, and PLCC,
and lower RMSE, the better output of objective IQA approach. The calculation of the
PLCC (Equation (5)) and RMSE (Equation (6)) require a nonlinear mapping of objective
scores Qo fitted with a regression model, Qo, and subjective opinions Qs. The model
employed for the mapping is expressed as Qo = β1

(
1
2 −

1
1+exp(β2(Qo−β3))

)
+ β4Qo + β5,

where β = [β1, β2, . . . , β5] [45]. The PLCC is calculated as

PLCC =
Q̄oTQ̄s√
Q̄oTQ̄oQ̄sTQ̄s

, (5)

where Q̄o and Q̄s are mean-removed vectors. The RMSE is calculated as

RMSE =

√
(Qo −Qs)T(Qo −Qs)

m
, (6)

where m is the total number of images. The SRCC is defined as

SRCC = 1−
6 ∑m

i=1 d2
i

m(m2 − 1)
, (7)

where di is the difference between i-th image in Qo and Qs, i = 1, 2, . . . , m. Consequently,
the KRCC calculated as

KRCC =
mc −md

0.5m(m− 1)
, (8)

where mc is the number of concordant pairs in the dataset, and md denotes the number of
discordant pairs.

As the proposed approach should be trained to obtain a quality model for the predic-
tion, a widely accepted protocol for the evaluation of related methods is used in which 80%
of randomly selected images of the dataset are selected for the training and the remaining
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20% of images test the approach [16,24]. Both image subsets are disjoint based on the
experiment that leads to the acquisition of images of a given body part. Then, to avoid
bias, the performance of an NR method is reported in terms of the median values of SRCC,
KRCC, PCC, and RMSE over 10 training–testing iterations [27,46].

4.3. Comparative Evaluation

The introduced approach is represented by three fusion models: Resnet-50_GoogLeNet
_ResNet-18 (R50GR18), ResNet-50_GoogLeNet_MobileNet-V2 (R18GR50M), and MobileNet-
V2_ResNet-50 (MR50). They are experimentally compared with 17 state-of-the-art tech-
niques: NFERM [47], SEER [20], DEEPIQ [27], MEON [46], SNRTOI [48], NOREQI [22],
BPRI [24], HOSA [17], NOMRIQA [8], IL-NIQE [23], GM-LOG [18], GWHGLBP [21],
BRISQUE [15], SISBLIM [49], metricQ [50], SINDEX [51], and ENMIQA [7]. The NOM-
RIQA, ENMIQA, and SNRTOI are designed for MR images, whereas DEEPIQ and MEON
are deep learning approaches devoted to natural images. Interestingly, as Chow and Ra-
jagopal [5] trained the BRISQUE on MR images in their approach, the BRISQUE in this
study, as well as other methods trained on considered benchmark databases, can be seen
as adaptations to the MR domain.

For a fair comparison, all methods were run in Matlab with their default parameters,
while the SVR parameters [52] were determined aiming at their best quality prediction
performance. NR techniques that process color images were assessing MR images con-
catenated to form three channels. For the training of the proposed fusion architectures,
stochastic gradient descent with momentum (SGDM) was used with a learning rate of
10−4, mini-batch size of 32, and 5 epochs. Furthermore, as the number of images in the first
dataset is relatively low (70), data augmentation was employed in which each distorted
image was rotated up to 360◦ with the step of 3◦. The approaches were run in Matlab
R2020b, Windows 10, on PC with i7-7700k CPU, 32GB RAM, and GTX 1080 Ti graphic card.

The results for both databases are presented in Table 1. Their analysis indicates
that the proposed network fusion techniques outperform the state-of-the-art approaches.
Specifically, the R50GR18 (composed of three network architectures) and MR50 (fusing
two networks) obtained the best SRCC and KRCC performances for the first database,
outperforming the recently introduced NOMRIQA. This is also confirmed by the results
for the remaining criteria, i.e., PLCC and RMSE. It is worth noticing that NR MRIQA
methods that do not require training, ENMIQA and SNRTOI, produce poorly correlated
quality opinions while compared with outputs of learning-based approaches as they are
not equipped with various perceptual features and powerful machine learning algorithms
that efficiently map them with subjective scores.

Table 1. Performance comparison of twenty evaluated methods on both datasets.

Method
DB1 DB2 Overall

SRCC KRCC PLCC RMSE SRCC KRCC PLCC RMSE SRCC KRCC PLCC RMSE

NOMRIQA * 0.7030 0.5527 0.7978 0.4322 0.8040 0.6087 0.8737 0.4605 0.7535 0.5807 0.8358 0.4464
HOSA 0.4804 0.3909 0.6997 0.5318 0.8756 0.7052 0.9276 0.3388 0.6780 0.5481 0.8137 0.4353
NOREQI 0.4359 0.2922 0.8045 0.4182 0.8675 0.6984 0.9072 0.3833 0.6517 0.4953 0.8559 0.4008
IL-NIQE 0.1695 0.1275 0.3619 0.6674 0.1197 0.0836 0.3090 0.8821 0.1446 0.1056 0.3355 0.7748
GM-LOG 0.4673 0.3424 0.6515 0.4779 0.8854 0.7123 0.9010 0.4091 0.6764 0.5274 0.7763 0.4435
GWHGLBP 0.5075 0.3935 0.6886 0.5257 0.8726 0.6927 0.8947 0.4080 0.6901 0.5431 0.7917 0.4669
BRISQUE 0.4610 0.3648 0.6100 0.5311 0.8544 0.6738 0.8951 0.4076 0.6577 0.5193 0.7526 0.4694
SISBLIM 0.3976 0.2776 0.6240 0.5449 0.7216 0.5419 0.7592 0.6047 0.5596 0.4098 0.6916 0.5748
metricQ 0.2596 0.1657 0.2792 0.6709 0.5066 0.3701 0.5227 0.7791 0.3831 0.2679 0.4010 0.7250
BPRI 0.2412 0.1890 0.4785 0.5756 0.1317 0.0973 0.4928 0.7883 0.1865 0.1432 0.4857 0.6820
SINDEX 0.2939 0.2112 0.3243 0.7034 0.2673 0.1933 0.3185 0.8874 0.2806 0.2023 0.3214 0.7954
NFERM 0.5073 0.4091 0.7662 0.4491 0.8833 0.7087 0.9157 0.3872 0.6953 0.5589 0.8410 0.4182
SEER 0.4776 0.3574 0.7108 0.5267 0.8938 0.7335 0.9196 0.3594 0.6857 0.5455 0.8152 0.4431
MEON 0.2518 0.1879 0.3439 0.6428 0.5851 0.4001 0.6194 0.7426 0.4185 0.2940 0.4817 0.6927
DEEPIQ 0.1133 0.0827 0.5902 0.5707 0.2837 0.2078 0.5393 0.7822 0.1985 0.1453 0.5648 0.6765
SNRTOI * 0.1321 0.0728 0.4094 0.6784 0.1016 0.0720 0.3169 0.8930 0.1169 0.0724 0.3632 0.7857
ENMIQA * 0.3630 0.2479 0.5093 0.5873 0.7941 0.6119 0.8313 0.5130 0.5786 0.4299 0.6703 0.5502
R18GR50M * 0.6299 0.5012 0.7999 0.4381 0.8998 0.7398 0.9270 0.3465 0.7649 0.6205 0.8635 0.3923
R50GR18 * 0.7423 0.6039 0.8206 0.4238 0.9083 0.7490 0.9294 0.3479 0.8253 0.6765 0.8750 0.3859
MR50 * 0.7036 0.5740 0.8576 0.3865 0.8919 0.7176 0.9241 0.3560 0.7978 0.6458 0.8909 0.3712
Note: * denotes the approach designed for the evaluation of MR images. The best three results for each criterion are written in bold, the names of fusion architectures
introduced in this paper are written in italics.
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For the database introduced in this paper, DB2, the R18GR50M, and R50GR18 present
superior performance, followed by the SEER and MR50. Here, more techniques obtain
better results in comparison to those obtained for the DB1 due to the larger representation
of distorted images in the dataset. The methods designed for MR images—ENMIQA
and NOMRIQA—are outperformed by well-established learning methods devoted to
natural images (SEER, HOSA, GM-LOG, or NFERM). Deep learning models—MEON
and DEEPIQ—were pretrained by their authors and do not capture characteristics of MR
images, leading to inferior prediction accuracy. The overall results, averaging criteria over
both databases, indicate the superiority of introduced fusion approaches. In this case,
the NOMRIQA is fourth in terms of the SRCC values, followed by NFERM and GWHGLBP
after a large performance gap.

To compare relative differences between methods and determine whether they are
statistically significant, the Wilcoxon rank-sum test is used. The test measures the equiv-
alence of the median values of independent samples with a 5% significance level [20].
Here, the SRCC values are taken into consideration. In the experiment, the method with
a significantly greater SRCC median obtained the score of “1”. Consequently, the worse
and indistinguishable method obtained “−1” and “0”, respectively. Finally, scores were
added and displayed in cells in Figure 6 to characterize methods in rows. The figure also
contains sums of scores to indicate globally best approaches. As reported, all three intro-
duced fusion architectures offer promising and stable performance across both datasets,
outperforming the remaining approaches. Other learning-based methods designed for the
MRIQA, i.e., ENMIQA or NOMRIQA, exhibit inferior relative performance in comparison
to the proposed models and methods with rich image representations (GM-LOG, SEER,
or NFERM).

Figure 6. Summary of statistical significance tests on both databases. The approach designed for the
evaluation of MR images is indicated with *. The names of the best three methods and sums of their
scores are written in bold.

4.4. Computational Complexity

The computational complexity of methods, reflected by the average time taken to
assess an image from DB2, was also investigated (Table 2). The time spent on extracting and
predicting the quality by a method based on the fusion of networks depends on the number
of networks. However, the proposed models are of moderate complexity, being on par with
the fastest and more reliable approaches. Further reduction of the computation time can
be achieved by a parallel feature extraction process or providing a native implementation
(e.g., C++).
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Table 2. Run-time comparison. The approach designed for the evaluation of MR images is denoted
by *. The names of fusion architectures introduced in this paper are written in italics.

Method Time (s)

NOMRIQA * 0.1564
HOSA 0.2992

NOREQI 0.1315
IL-NIQE 4.4956
GM-LOG 0.0138

GWHGLBP 0.0336
BRISQUE 0.0232
SISBLIM 0.7821
metricQ 0.1994

BPRI 0.1473
SINDEX 0.0141
NFERM 9.5449

SEER 0.3473
MEON 0.0775

DEEPIQ 1.2746
SNRTOI * 0.0018

ENMIQA * 0.0737
R18GR50M * 0.0293
R50GR18 * 0.0237

MR50 * 0.0226

4.5. Cross—Database Experiments

The performances of R18GR50M, R50GR18, and MR50 are compared with those of
related IQA methods in the cross-database experiment. In the experiment, learning-based
methods are trained on one database and tested on another. The methods that do not
require training are only tested on the second database. The obtained results are shown in
Table 3. As reported, the introduced fusion models outperform other techniques and exhibit
stable prediction accuracy. Here, the method for IQA of MR images, NOMRIQA, is close to
the proposed architectures. The values of performance indices of fusion models trained on
the small DB1 and tested on much larger DB2 are only several percent lower than values
reported for the DB2 in the first experiment (see Table 1). This confirms their capability of
successful extraction of MR image characteristics needed for the quality prediction. Overall,
all three introduced architectures provide superior performance, followed by NOMRIQA
and SEER.

Table 3. Cross-database performance of twenty evaluated NR approaches.

Method

Training on Database 1 Training on Database 2 OverallTesting on Database 2 Testing on Database 1

SRCC KRCC PLCC RMSE SRCC KRCC PLCC RMSE SRCC KRCC PLCC RMSE

NOMRIQA * 0.7348 0.5280 0.7861 0.5979 0.6116 0.4436 0.7113 0.5116 0.6732 0.4858 0.7487 0.5548
HOSA 0.7625 0.5612 0.7968 0.5845 0.4550 0.3311 0.6428 0.5574 0.6088 0.4462 0.7198 0.5710

NOREQI 0.7259 0.5312 0.7436 0.6468 0.5082 0.3719 0.7019 0.5183 0.6171 0.4516 0.7228 0.5826
IL-NIQE 0.0050 0.0044 0.1773 0.9520 0.1796 0.1162 0.3465 0.6826 0.0923 0.0603 0.2619 0.8173
GM-LOG 0.7064 0.5134 0.7420 0.6486 0.2721 0.1774 0.1379 0.7207 0.4893 0.3454 0.4400 0.6847

GWHGLBP 0.6247 0.4315 0.6656 0.7220 0.5207 0.3694 0.6189 0.5716 0.5727 0.4005 0.6423 0.6468
BRISQUE 0.6528 0.4640 0.7294 0.6618 0.4895 0.3353 0.6172 0.5725 0.5712 0.3997 0.6733 0.6172
SISBLIM 0.6836 0.5037 0.6746 0.7140 0.2885 0.1820 0.5733 0.5962 0.4861 0.3429 0.6240 0.6551
metricQ 0.4642 0.3271 0.3931 0.8942 0.2300 0.1520 0.2243 0.7091 0.3471 0.2396 0.3087 0.8017

BPRI 0.0747 0.0558 0.4592 0.8593 0.1515 0.1120 0.3440 0.6832 0.1131 0.0839 0.4016 0.7713
SINDEX 0.2807 0.1935 0.3604 0.9024 0.2802 0.1962 0.3307 0.6869 0.2805 0.1949 0.3456 0.7947
NFERM 0.6718 0.4856 0.7240 0.6672 0.4660 0.3536 0.4637 0.6447 0.5689 0.4196 0.5939 0.6560

SEER 0.7855 0.5960 0.8356 0.5314 0.5397 0.4053 0.7341 0.4941 0.6626 0.5007 0.7849 0.5128
MEON 0.5314 0.3701 0.5148 0.8293 0.1247 0.0771 0.1401 0.7205 0.3281 0.2236 0.3275 0.7749

DEEPIQ 0.3620 0.2528 0.5778 0.7895 0.3030 0.2037 0.4041 0.6656 0.3325 0.2283 0.4910 0.7276
SNRTOI * 0.0681 0.0443 0.1033 0.9622 0.1828 0.1245 0.2262 0.7088 0.1255 0.0844 0.1648 0.8355

ENMIQA * 0.7631 0.5736 0.8040 0.5753 0.3540 0.2428 0.6741 0.5375 0.5586 0.4082 0.7391 0.5564
R18GR50M * 0.8451 0.6574 0.8911 0.4390 0.6098 0.4402 0.7231 0.5026 0.7275 0.5488 0.8071 0.4708
R50GR18 * 0.8638 0.6684 0.8930 0.4354 0.6163 0.4502 0.7306 0.4968 0.7401 0.5593 0.8118 0.4661

MR50 * 0.8568 0.6709 0.8941 0.4332 0.6299 0.4686 0.7345 0.4938 0.7434 0.5697 0.8143 0.4635
Note: * denotes the approach designed for the evaluation of MR images. The best three results for each criterion are written in bold, the names of fusion
architectures introduced in this paper are written in italics.

4.6. Ablation Tests

As in the literature many different network architectures have been introduced,
in this section, several proposing fusion approaches are reported and discussed. Fur-
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thermore, the inclusion of the SVR method is also supported experimentally to show
that it improves the results of the networks. In experiments, single deep learning net-
works or their fusions were considered. The following fusions took part in the study:
ResNet-50_GoogLeNet_MobileNet-V2 (R18GR50M), GoogLeNet_DenseNet-201 (GD201),
GoogLeNet_MobileNet-V2 (GM), GoogLeNet_ResNet-101 (GR101), GoogLeNet_ResNet-18
(GR18), GoogLeNet_ResNet-50 (GR50), MobileNet-V2_ResNet-101 (MR101), MobileNet-
V2_ResNet-18 (MR18), MobileNet-V2_ResNet-50 (MR50), ResNet-50_GoogLeNet_ResNet-
18 (R50GR18), ResNet-50_Inception-V3 (R50Iv3), ResNet-50_ResNet-101 (R50R101), and
ResNet-50_ResNet-18 (R50R18).

The results presented in Figure 7 reveal that the usage of the SVR module improves
the results of the half networks for the DB1 and in all cases for the DB2. Interestingly, most
network architectures outperform other state-of-the-art IQA methods on both databases
(see Table 1), showing that they can be successfully used for the quality prediction of MR
images. However, network architectures that are based on the proposed fusion of single
models offer better performance than it can be seen for single networks. Among single
architectures, ResNet-50, MobileNet-V2, and DenseNet-201 yield promising results. There-
fore, two of them—ResNet-50 and MobileNet-V2—were fused together with ResNet-18 and
GoogLeNet obtaining the best performing fusion architectures: (R18GR50M, R18GR50M,
and MR50). Here, the fusion with the worst-performing GoogLeNet seems beneficial as its
features turned out to be complementary with those of other networks.

(a)

(b)

Figure 7. Spearman rank-order correlation coefficient (SRCC) performance of compared single and fused networks for the
DB1 (a) and DB2 (b) databases. The results involve quality prediction performed by networks or support vector machine
regression (SVR) modules.

5. Conclusions

In this study, a novel no-reference image quality assessment approach for automatic
quality prediction of MR images has been presented. In the approach, deep learning archi-
tectures are fused, suited to the regression problem, and, after joint transfer learning, their
concatenated feature maps are used for quality prediction with the SVR technique. The us-
age of two or more network architectures, the way they are fused, and their application to
the no-reference IQA of MR images are among contributions of this work. Furthermore,
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several promising fusion models are proposed and investigated as well as a novel dataset
for the development and evaluation of NR methods. The dataset contains 240 distorted
images assessed by a large number of experienced radiologists. The comprehensive experi-
mental evaluation of fusion models against 17 state-of-the-art NR techniques, including
methods designed for NR IQA of MR images, reveals the superiority of the presented
approach in terms of typical performance criteria.

Future work will focus on the investigation of alternative network fusion approaches
or developing NR measures for IQA of medical images with different specificity, e.g.,
CT or RTG.
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