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Abstract: In this paper, we present HOMER, a cloud-based system for video highlight generation
which enables the automated, relevant, and flexible segmentation of videos. Our system outperforms
state-of-the-art solutions by fusing internal video content-based features with the user’s emotion
data. While current research mainly focuses on creating video summaries without the use of affective
data, our solution achieves the subjective task of detecting highlights by leveraging human emotions.
In two separate experiments, including videos filmed with a dual camera setup, and home videos
randomly picked from Microsoft’s Video Titles in the Wild (VTW) dataset, HOMER demonstrates an
improvement of up to 38% in F1-score from baseline, while not requiring any external hardware. We
demonstrated both the portability and scalability of HOMER through the implementation of two
smartphone applications.

Keywords: mobile computing; emotion recognition; image processing; signal processing algorithms

1. Introduction

Several years ago, the limits of digital storage compelled people to only keep their
best photos and video highlights. Today, the improvement of digital storage capacity, the
emergence of the cloud, the advancements in compression standards, and the prevalence
of social networks have allowed users to increase their generation and consumption of
pictures and videos. According to Cisco, videos are responsible for 75% of global IP traffic,
and this proportion is anticipated to increase to 82% in 2022 [1]. The large amount of stored
images and videos makes compiling a digital photo album or creating a montage a greater
challenge. Creating a montage represents a significant time investment, requiring selection
of segments to keep only the highlight moments. Furthermore, abundant storage capacities
encourage the recording of longer videos, thus increasing the proportion of non-highlight
segments in a video. Finally, home editing software such as Adobe Premiere, Apple iMovie,
or CyberLink are only accessible to users with prior editing knowledge and computer
skills [2], considerably narrowing down the targeted market.

The focus of this work is to automate the generation of video highlights, thus saving
time for people manually developing their own montages and scanning through hundreds
of media files to find video highlights. Besides home users, automatic video highlight gener-
ation can also lead to a wide range of other applications such as interactive browsing [3,4],
searching systems [4], and sports match summaries [5–8].

Facebook, Apple and Google have developed similar technology, with limited success.
Facebook’s “One year in review”, a feature summarizing the user’s year based only on
uploaded photos and videos, considerably constrains the available content. This automatic
and unsupervised generative feature also raised ethical questions due to the Al-Qaeda
scandal [9], where “One year in review” produced terrorism propaganda. Both Google’s
“Creations” and Apple’s “For you” features attempt to piece together videos and photos
to represent the happiest memories, but often uses content with low relevance. These
feature algorithms appear erratic, often drowning short video segments amongst photos,
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fancy transitions, and background music. No interface exists for the user himself to enter
any input.

In the field of video summarization, external webcams are utilized to detect user’s
facial expressions [2,10,11], eye blinks, eye movements, and head motion [2]. These works
require the use of fixed cameras and suffer from immobility, significantly restricting the
range of potential applications. The requirement of using obtrusive and non-wearable
sensors to extract a user’s emotions has encouraged most research to focus on direct
affective content utilizing video frames [12–15], video segments [16–19], audio and text
features [14]. The present results remained poor on average due to the semantic gap
problem [10] of detected objects or events.

As opposed to video summarization, where the aim is to summarize an entire
video, this work focuses on extracting video highlights based on affective content, which
might not be present in emotionally neutral videos where no stimulating event occurs.
Wang et al. [20] describe affective content as either direct content, corresponding to data
extracted from the original video stream, or implicit content, corresponding to the user’s
spontaneous response when watching the video. As video highlights tend to be subjective,
implicit content is a relevant feature for automatic extraction. Previous research has lever-
aged different physiological signals to detect a user’s emotions for video emotion tagging,
such as EEG signals [21–23], electrodermal activity [24], pupil response [22], and head
motion [25]. The limitation of these approaches is the use of external hardware such as
obtrusive and non-mobile sensors. This work’s approach does not require any additional
hardware other than a smartphone.

This work addresses the lack of high-quality video highlights generation with HOMER
(illustrated in Figure 1), a system that automatically extracts video highlights using a
combination of emotional features of the user and audio-visual features in the video.
The user is able to specify personal preferences through a web API and customizable
parameters. The algorithms that we developed outperform state-of-the-art solutions by
utilizing a user’s facial expressions, video frames, and video audio.

Figure 1. HOMER: a multi-modal video highlight generator based on emotion recognition.

Our paper presents the following key contributions:

• A novel multi-modal system combining human emotion and audio-visual features to
achieve an intelligent, personalized, and user-oriented highlight extraction.

• The design of a scalable event timeline to coherently fuse extracted features and enable
the synchronisation of heterogeneous input streams.

• A novel algorithm mapping event timeline features into two inter-dependant score
functions for optimal highlight cuts.

• The usage of video frame similarity to detect dynamic variations in a video for
enhancing the generalization of highlight content.

• A high detection accuracy of sound events by utilizing the wavelet transform and a
bottom-up peaks clustering algorithm.
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2. Background

Money and Agius [26] divided video summarization techniques (which applies anal-
ogously to video highlight extraction) into three categories: internal techniques utilizing
data directly sourced from the video stream, external techniques utilizing data not directly
sourced from the video stream, and hybrid techniques (both internal and external).

2.1. Internal Content Techniques

Internal content video summarization is the broadest and most visited category be-
cause of its high scalability and easy implementation. No sensor or any other source of
information is required; only the video itself is used as input. Internal content highlight
detection was performed extensively in the context of sports because of the high user de-
mand, the diversity of video features (slow-motions, shots pace, ball and players tracking,
etc.), and the relevance of audio (energy strongly correlated to excitement, extraction of
keywords, etc.) [5–7,27,28].

Early research extracted audio-visual features and used self-designed algorithms to
transform them into segment boundaries, often derived from a resulting score function [26].
The self-designed algorithms progressively led to classifiers [20] and a recent emergence of
full deep learning implementations. Supervised deep learning techniques use human-set
annotations, which correspond to a limited resource and are often subjective, making the
task non-trivial [13,15,16,29–34]. Unsupervised techniques do not require any complemen-
tary annotations. They can be trained on larger amounts of data, which often improve
the reliability and the generality of the model [17,18,35–40]. Although these works have
shown good results in video summarization and highlight generation, these works rely
on features from audio and video. Due to this restriction, personal highlight generation is
not possible.

2.2. External Content Techniques

Although most of the works such as [41] use external affective content for focused
applications such as emotion tagging in video, Joho et al. [10,11] utilized the viewer’s facial
expressions for video summarization. Despite the low performance of their model, they
are able to use an unobtrusive sensor to retrieve affective content. On the other hand,
Chênes et al. [42] proposed a solution based on different physiological signals such as
electromyogram (EMG), blood volume pulse (BVP), electrodermal activity (EDA), and
skin temperature. Their positive results are overshadowed by the necessity of obtrusive
senors, which remains a significant limitation. Overall, very few applications using external
affective content exist in the field of video summarisation and highlight extraction.

2.3. Hybrid Content Techniques

Hybrid content techniques must deal with the constraints of external content sensing
and the fusion of external and internal information. A hybrid affective approach was
driven by Peng et al. [2], who proposed to model both the user’s attention and the user’s
emotions in addition to video shot detection. The user’s attention was inferred by detecting
head motion, eye blinks, and eye saccades, while the user’s emotions were derived from
facial expressions. As in [10], video segments are extracted directly by maximizing a user
emotional score function. This is a limited approach in cases where emotional response
to a stimulus shifts in time. Their score is only based on user satisfaction, making the
comparison difficult. Fiao et al. [43] also uses emotions along with video to generate
highlights; however, they focus on sports videos, and requires external hardware and
human interaction to gather emotion data. Ringer et al. [44] used deep learning to measure
emotion of a face camera during streaming of video games; this work is restricted to
highlight the generation of video games, which similarly to sports, is strongly correlated
with audio energy. Kaklauskas et al. [45,46] study specifically video ads, and require a
plethora of hardware and human interaction to gather various physiological signals.
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State-of-the-art solutions are a significant improvement in the field of internal video
summarisation, largely due to deep learning breakthroughs. However, the absence of user
emotion perception makes the existing models well-adapted for video summarization, but
irrelevant for the extraction of highlights. The high subjectivity of the highlight semantic
makes external content-based techniques more suitable for the task. The ideal case of
hybrid solutions is rarely visited, pushing us to develop a hybrid solution.

In summary, we identified four types of limitations present in current literature in
automated highlight generation. The first limitation is the scope of videos analyzed; focus
on a specific type of video, such as sports or video games, limits the generalizability of
these works to a specific setting, and may not work well for videos outside of that setting.
The second limitation is a reliance on audio or visual features; relying solely on the video
content can reduce the personalization of highlights which can be different between people.
The third limitation is the usage of external hardware, which can be cumbersome to setup
or requires human interaction with the system. Finally, this is the first system developed
on a mobile platform, which is not only a popular medium for capturing video, but also
has the potential for more widespread dual camera video capture in future generations of
mobile technology. The limitations of relevant existing works in highlight generation are
shown in Tables 1 and 2.

Table 1. Keys of limitations for Table 2.

Key Limitation

1 Videos Scope
2 Audio/Visual Features Only
3 External Hardware
4 Not Mobile Platform

Table 2. Limitations of existing studies in highlight generation.

Source Year Sensing Inputs Summarization
Category Limitations

Fiao et al. [43] 2016 Emotions, Audio, Video Hybrid 1 (sports), 3, 4
Yang et al. [17] 2015 Audio, Video Internal 2, 4

Shukla et al. [27] 2018 Audio, Video Internal 1 (sports), 2, 4

Kaklauskas et al. [45,46] 2018,
2019

Audio, Video, Eye tracking, Facial
Video, IR Camera, Personalized

Questionnaire
Hybrid 1 (video ads), 3, 4

Gunawardena et al. [47] 2020 Video Internal 2, 4

Zhang et al. [48] 2020 Video Internal 2, 4

Moses and
Balachandran [49] 2018 Video Internal 1 (surveillance), 2, 4

Ringer and Nicolaou [44] 2018 Emotions, Audio, Video Hybrid 1 (video games), 4

Joho et al. [10] 2009 Emotion External 3, 4

Chênes et al. [42] 2012 Skin Temperature EMG, EDA, BVP External 1 (Movies), 3, 4

3. System Design

In this section, an overview of the overall system architecture is presented, followed
by a detailed stage-wise analysis of each component.

3.1. System Architecture

Due to a combination of computational requirements for video processing and our
desire to create a web service that can enable multiple third party applications, HOMER
is currently implemented on a cloud server rather than a mobile device. As there is no
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real-time requirement for our applications, a cloud server allows for significant energy
savings, as well as flexibility in development for future improvements. A major concern of
cloud-based solutions is data privacy, especially as sensitive data are sent to the server. We
address this concern in HOMER by storing data securely during highlight extraction, and
deleting all data immediately after. In future works, pre-processing (such as obfuscation or
feature extraction) of sensitive data can be performed on the mobile device to eliminate the
need to send sensitive data to the cloud.

As shown in Figure 2, the web-service API allows the client to provide an input stream
composed of input signals and parameters. The two required input signals are the original
video (scene video) and a synchronized video (facial video) of the user’s face. The facial
video is an important input, allowing for emotion recognition without requiring external
hardware. Firstly, the scene and facial video frames and scene video audio are extracted
and used as separate raw signals. Secondly, the three raw signals are pre-processed and
subjected to feature extraction. The features extracted are then fused and synchronized
using our events timeline (ET) concept. Next, an algorithm was specifically designed to
convert the ET features into two score functions, from which both highlight start and end
times are derived. Finally, the generated highlight (output stream) is sent back to the client
via the web service API.

Figure 2. HOMER System Architecture.

3.2. Input Stream

The input stream provided by the client is composed of the following signals
and parameters:

• Scene Video: video to be highlight-extracted. Both video frames and audio signals are
extracted as distinct raw signal inputs for the highlight extraction pipeline.

• Facial Video: video of the user’s face recorded in reaction to the recorded scene. Its
duration must be equal to the scene video duration.

• Tmin
HL : parameter indicating the desired highlight minimal duration. If set to −1, the

algorithm will automatically decide the highlight length.
• Tmax

HL : parameter indicating the desired highlight maximal duration. If set to −1, the
algorithm will automatically decide the highlight length.

• γmult: boolean indicating whether multiple highlights should be generated.

3.3. Signal Pre-Processing and Feature Extraction

The three input signals (facial video frames, scene video frames, scene video audio)
should be pre-processed before feature extraction to generate homogeneous data that can
be fused to make highlight decisions.

3.3.1. Emotion

As shown in previous works [23,42], a viewer’s emotions while watching a video help
indicate the location of emotional highlights. This was also demonstrated by Joho [10], who
achieved video highlight segmentation based exclusively on viewer’s facial expressions.
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In this work, we chose to utilize users’ facial expressions as a key feature and focused
on positive emotions only under the assumption that users are more willing to keep
positive moments of their lives. In this way, we can capture personalized highlights
while capturing important features from the scene video, which may not be indicated by
emotional responses alone as in [10]. To extract emotion probabilities from frames of the
user’s face, two computer vision steps were performed:

(a) Face Detection.
In some cases, the user’s full face may not be visible in the frame. HOMER utilizes

face detection to improve the emotion recognition model through data standardization.
Using the Haar-cascade open-source face detection algorithm, the user’s face is cropped
from the raw image in each frame (Figure 3a). In cases where no face is detected, the
unknown emotion probabilities are linearly interpolated.

Figure 3. Raw signals to features pipeline: (a) frames after face detection, (b) prediction probabilities
of happiness and surprise made by the neural network model (c) peak detection and characterization
performed on the predictions (d) extracted peak features.

(b) Emotion Recognition. Most state-of-the-art models achieve emotion recognition
through two different approaches: classifying extracted action units (AUs) of the human
face [50,51] or performing both feature extraction and classification using deep learn-
ing [52]. After comparing different available trained and open-source models, we opted for
piyush2896’s deep learning solution (https://github.com/piyush2896/Facial-Expression-
Recognition-Challenge) to the Facial Expression Recognition Challenge on Kaggle. The
model achieves a desirable compromise between computational time and performance,
with an accuracy of 69% over seven classes (fear, anger, sadness, disgust, neutral, happiness,
surprise) on the AffectNet dataset [53]. As shown in Figure 3b, we only detect positive
emotions and simplified the problem to only three classes: happiness, surprise and all
other emotions (≡ 1− phap − psurp).

(c) Peak Detection. From the two resulting signals (happiness and surprise), specific
event features had to be extracted. A peak detection algorithm was developed to extract
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peak sides and peak top (Figure 3c). As the model presented varying sensitivities to
emotions, different adapted thresholds were used for happiness and surprise.

(d) Feature Extraction. Each emotion peak represents an event and is described by five
features: the start of peak rise, the start of peak top, the end of peak top, the end of peak
fall and the average value of peak top. The resulting simplified signal from this feature
extraction is shown in Figure 3d.

3.3.2. Video

HOMER utilizes the frame similarity (FS) between consecutive frames of video to
improve highlight detection robustness. Frame similarity was used in order to detect
dynamic state changes throughout the recording, such as differentiating static camera and
camera pan. This feature improves the precision of the highlight boundary decisions by
enforcing the boundaries to correspond to the start and end of a camera dynamic mode.
For instance, if a camera pan occurs at some point in the video, the start and end of the
pan will be prioritized over other timestamps. Frame similarity also helps to increase
highlight content diversity by prioritizing instances where the camera moves between two
scenes, resulting in a highlight based on the first scene, content between both scenes, and
the second scene. An example of the corresponding frame similarity pattern is shown in
Figure 4e between the two purple dots.

Figure 4. Raw signal to features pipeline: (a) Frames extracted from the scene video, (b) Frame
similarity from Zhang et al. [54], (c) discontinuity removal, (d) 2.5Hz low-pass filter, (e) rule-based
feature extraction.
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To detect these dynamic changes as one-time point features, the following steps were
performed:

(a) Frame Extraction. The frames are extracted from the video with a higher rate than
emotion recognition due to the fast possible variations of the signal (Figure 4a).

(b) Frame Similarity Computation. Frame similarity was computed pixel-wise using
the work done by Zhang et al. [54]. This method focuses on pixel value changes every three
consecutive frames in the binned HSV domain (Figure 4b).

(c) Discontinuity Removal. As shown in Figure 4b, the computed signal may present
short and significant drops, which are barely visible in the original video. These artifacts
may be due to luminosity variations, which make the pixel values change enough to be
detected as proper changes. These discontinuities often present similar properties, which
facilitates removal with simple shape conditions (Figure 4c).

(d) Low-pass Filter. The signal is smoothed using a low-pass filter with a cutoff
frequency of 2.5Hz. The resulting signal provides an alternated succession of local maxima
and minima.

(e) Feature Extraction. We define the pre-processed frame similarity function as:

S(k), k ∈ K

where K is the total number of frames. We identified all the local maxima of S as follows:

Q = {k | S′(k) = 0, S′(k− 1) > 0, S′(k + 1) < 0}

To build the final set F of feature points, only the local maxima subject to high varia-
tions were kept with the following condition:

F = {qi ∈ Q | max(S(q)− S(xL), S(q)− S(xR)) > σ}

where xL is the frame index of the local minima on the left of qi, xR is the frame index of
the local minima on the right of qi, and σ is a threshold value.

Each feature point is associated with a score proportional to both the total amount of
local variation and the difference between right and left variations. Finally, we observed
that the main patterns of similarity have varying importance. The score is re-scaled
accordingly to these particular categories using fuzzy logic.

The three commonly encountered patterns are (Figure 5):

1. “Hills”: these frame similarity peaks translate either to brief camera stop-motions or
noise, and thus are assigned low importance.

2. “Plateau”: this pattern translates to an extended camera stop, often due to an event of
interest. This frame similarity shape also appears when a camera zoom-in/zoom-out
is performed. The medium level of importance was chosen instead of high because of
the lack of summarisation this pattern offers. Only one scene of the video would be
contained in the generated highlight, versus two for the “Valley” pattern (see below).

3. “Valley”: this pattern often translates to a camera pan or tilt, from one motion stop to
another. This pattern was assigned high importance for its semantic generalization.
This pattern contains information from the first motion stop scene, information from
the second motion stop scene and information between both scenes. Furthermore,
the in-between content often presents important information, due to the constant low
similarity value. As an example, this pattern occurs when the user is performing a
constant pan/tilt to show an area or a beautiful landscape.
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Figure 5. Three main frame similarity (FS) patterns encountered and their importance: (a) Single
peaks, (b) High similarity plateau ≡ static camera, (c) Low similarity valley ≡ camera pan.

Each frame similarity feature point is now fully described by two parameters: its
frame number fi and its adjusted score C′fi

. An example is shown in Figure 4e.

3.3.3. Audio

The sound of a video is a meaningful indicator of events and can deliver additional
information about the video semantics and affective content. Many state-of-the-art tech-
niques combine event detection and event recognition into deep learning models, sorting
out polyphonic sound event classes [55–57]. These models are usually complex, com-
putationally heavy and often intended to solve high multi-class problems, that lead to
poor results and non-trivial processing for our highlight extraction model. After watching
numerous user videos, we note a strong correlation between the relative energy of sound
events and the emotional level. In addition to sound energy, the nature of the sound itself
is meaningful information. For example, a car door slamming should be considered as less
important than a scene where an actor suddenly starts laughing. All these considerations
lead us to perform both monophonic sound event detection and low multi-class sound
event recognition, which are later combined into final feature events.

(a) Event Detection: The sound signal of a video can be segmented into different
events based on amplitude. The higher the sound energy is, the more likely that the content
will be important or affective. To detect and segment high-energy events relative to the
rest of the signal, we pre-processed the signal accordingly and designed a bottom-up
unsupervised event extraction (Figure 6).

Figure 6. Diagram of the overall sound events detection algorithm.
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Pre-processing: Firstly, sound samples which only contain high amplitude noise are
discarded. To detect such cases, the energy density of the whole sound sample is computed.
This metric is independent from the sample size:

W =
1
T

∫ T

0
|s(t)|2 dt, 0 ≤ t ≤ T

Any sound sample having W above the threshold σ of 0.7 is considered as containing
no event and is discarded. Squaring the signal generates positive values and allows
differentiation between low-interest and high-interest events.

After normalization, we use the wavelet transform to transform the signal u(t) into
a lower frequency signal u0(t), with a similar shape to the envelope of u(t). This new
signal u0(t) is better suited for handling the detection of events. The one-dimensional fast
wavelet transform (FWT) was decomposed using 7 levels (J = 7) and derived using the
Daubechies-4 mother wavelet. After a second normalization, the signal is adjusted by its
median, removing any remaining offset caused by background sounds. The result of the
pre-processed sound signal is shown in Figure 7b.

Figure 7. Representation of the sound signal at three main stages during the sound event detection
process: (a) raw sound signal, (b) pre-processed signal, (c) sound event features after event extraction.

Event extraction: Sound event extraction is performed using an unsupervised bottom-
up approach. After pre-processing, the sound wave is transformed into a succession of peak-
shaped sub-events. To extract events, relevant sub-events are clustered into meaningful
high-level events using a threshold Θ on the pre-processed signal. We use a flexible and
adaptive approach to determine Θ, as shown in Algorithm 1. The number of crosses per
second is first computed between a sweep of Θ (from 0 to 0.5) and the pre-processed
sound signal (Figure 7b), resulting in Figure 8. As a first step, we ensure that the signal
is non-null. A second check determines whether an elbow shape (defined with specific
criteria) appears when increasing the value of Θ (teal circle). The presence of an elbow
represents a large group of sound sub-events sharing a similar amplitude. The sub-events
likely to be background sounds are discarded by setting Θ at the elbow. In the absence of
an elbow, if the maximal number of crosses remains under a certain threshold value (red
dashed line), Θ is set to the lowest possible value above zero, otherwise we increase Θ until
the number of crosses is below the threshold. Sub-events are determined by considering
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the signal above threshold Θ. The boundaries of each sub-event are determined when the
signal crosses the Theta, as in Figure 7b.

Algorithm 1 Adaptive threshold computation

Require: sound signal of n values
Ensure: adaptive threshold value Θ

1: Carr ← Nb of crosses between S and Θ, Θ ranging from 0.01 to 0.5
2: Cmax = max(Carr)
3: Θmax = argmaxΘ(Carr)
4: if Cmax == 0 then
5: return 0
6: end if
7: if elbow present in Carr then
8: return Θ at the elbow
9: end if

10: if max(Carr) > 2 then
11: return min(Θ) s.t. Carr < 2, Θmax < Θ
12: else
13: return lowest Θ (0.01)
14: end if

The sub-events are subsequently clustered into high level events by Algorithm 2. The
algorithm takes three primary inputs: the maximal time gap allowed one to merge two
sub-events (∆tth), the maximal score difference allowed to merge two sub-events (∆Sth),
and the maximal quiet event duration allowed to be merged with a louder event (Tmax).

Figure 8. Adaptive threshold search: number of crosses of the threshold Θ by the sound signal.

The algorithm is divided into two loops:
The first loop (lines 3–10) progressively merges sub-events by comparing sub-event

di with the current growing cluster of sub-events (Figure 7b). Once a stop condition is
reached (line 4), the current cluster is closed and a new cluster is opened with sub-event di.

The second loop (lines 11–16) considers every two consecutive cluster events. The
two clusters merge into a bigger event if they meet the time distance condition and either
meet the score distance condition or if the event with lower score has a duration below
the threshold Tmax. Finally, a safety check ensures that the duration of all extracted sound
events does not exceed a percentage of the total video duration. As sound events are
features used in the inference of a highlight, important events may be overshadowed by
less important ones if the percentage is too high. The reliability of the sound feature for
highlight extraction is then diminished. In the case of high coverage (>0.7), the process
returns to the search of sub-events (Figure 6) by increasing the adaptive threshold Θ.
Each final event feature is fully described by three parameters: event start, end and score
(corresponding to the event energy density).
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Algorithm 2 Sound events clustering

Require: sub_events D, ∆tth, ∆yth, Tmax
Ensure: events E

1: y = amplitude of a sub-event/event
2: X← first cluster to be grown, initialized with d0
3: for each sub_event di of D do
4: if (tX − tdi

< ∆tth) & (|yX − ydi
| < ∆yth) then

5: X← X + d1
6: y← new weighted amplitude of X
7: else
8: insert di into E as a new cluster to be grown
9: end if

10: end for
11: for each pair (Ei, Ei+1) in E do
12: Elow ← event of (Ei, Ei+1) with lowest score
13: if (tEi − tEi+1 < ∆tth) & (|yEi − yEi+1 | < ∆yth || TElow < Tmax) then
14: Merge Ei with Ei+1, the new y being weighted with respect to events widths
15: end if
16: end for

(b) Event Recognition: To provide more information on the segmented events, a sound
event classifier was used to label each event with one of three labels: speech, laughter, or
miscellaneous (Figure 9). Speech and laughter were identified as relevant sound events
that were often associated with important, highlight-worthy moments.

A speech versus non-speech binary classifier and a laughter versus non-laughter
binary classifier were combined to form the three-class classifier in a one-versus-all strat-
egy. Each binary classifier includes two parts, adapted from Wagner et al. [58]: first, a
three-layer convolutional network, and second, a two-layer gated recurrent units (GRU)
network, where the convolutional layers served the role of feature extraction from the raw
audio spectrogram.

Figure 9. Sound event classification performed on the whole sound sample with three classes: speech,
laughter and miscellaneous.

This approach was chosen over conventional feature sets such as the mel frequency
cepstral coefficients (MFCCs), because the feature representation learned by the convolu-
tional network demonstrated greater robustness with real-world noisy audio data, corrobo-
rating work done by Choi et al. [59].

(c) Segmentation and Recognition Fusion: Event detection and event recognition are
combined under the assumption that a detected event is homogeneous, containing one
class only. Based on majority vote, a segmented event is labelled with the predominant
class, as shown in Figure 10. An event is now described by start/end times, score and label
(speech, laughter or miscellaneous).
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Figure 10. Fusion between event segmentation and event recognition.

3.4. Feature Fusion

In existing research, fusion of multi-modal features is performed on non-time depen-
dant features extracted from time-dependant signals. These approaches do not require
synchronization between features, and are typically thrown into classifiers, such as support
vector machines (SVM) [60,61], Bayesian networks (BN) [21,62], hidden Markov models
(HMM) [28,63], or neural networks (NN) [64]. HOMER performs time dependent feature
fusion to retain important information about the timing of certain events.

3.4.1. Events Timeline

To provide a precise highlight detection using time dependent features, we extract
features in the time domain, requiring synchronization in time. We designed the events
timeline (ET) to facilitate the synchronization of the three input signals (emotion, video
and audio). As presented in Figure 11, the ET is a matrix of size M× N, where M is the
total number of features derived from sound, frame similarity and emotion and N the
number of timestamps (N = fps × duration). Every extracted feature from each of the
signals (Section 3.3) is projected onto the ET, as either a class or a score (from 0 to 1). For
instance, emotion boundary classes are divided into ”rise start”, “top start”, “top end” and
“fall end”. The score represents the importance of an event for highlight extraction. The
standardized matrix form of the ET is highly convenient for further computations. The
ET facilitates two different approaches to highlight extraction, which will be discussed in
Section 3.5.

Figure 11. Representation of the events timeline built upon the extracted features.
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3.5. Highlight Extraction

The event timeline is used to decide the start and end times for highlights. We
implemented two different approaches in HOMER: a machine learning approach and a
hand-designed approach.

3.5.1. Machine Learning Approach

We present the model design, analyze the results obtained, and discuss the limitations
of machine learning in this application.

(a) Model Design: A machine learning solution is a convenient option, as a deep
understanding of the causality between features and output is not required. Especially in
the case of highlight extraction using multi-modal inputs, constructing a hand-designed
model is a non-trivial task. The main challenge is to manually annotate video highlights
to supervise the model training. Each video may contain one or more highlights, labelled
with start and end timestamps. A sliding window of 5 s is used to build fixed-size inputs
from the ET, each containing exactly one ground truth label (either highlight start or end).

In contrast to previous works, where video highlight/summaries are generated with
a single score function representing frame-level importance [2,10,12–15,18,19], we trained
two independent classifiers on highlight start and end times. This divide-and-conquer
approach simplifies the task for each classifier by specializing in only one classification
(Figure 12).

Figure 12. Diagram illustrating the input and output of the machine learning (ML) classifier: highlight
start score function (orange) and highlight end score function (blue).

The classification is multi-class (20 classes), each class being a time-stamp within the
window input but with a lower fps. Fewer output classes than input points allows for easier
learning and decreases the required model capacity. During testing, each classifier outputs
a start/end probability score for each class, resulting in two score functions (Figure 12).

(b) Classification Results: Each classifier was trained using 2000 input samples de-
rived from 300 labelled videos. Different models were used initially to determine whether
machine learning was an appropriate approach: logistic regression (LR), support vector
machine (SVM), k-nearest neighbors (kNN), random forest (RF) and adaboost. The results
of the highlight start classifiers are presented in Table 3; the highlight end classification pro-
duces similar results. The results were also computed with slack, allowing a classification
error of ±0.5 s.

Table 3. Results of highlight start/classification for different models using accuracy.

Rand. LR SVM kNN RF Adaboost

Acc. 0.05 0.13 0.10 0.10 0.12 0.12
Acc. (±0.5 s) 0.20 0.35 0.27 0.35 0.31 0.32

The results are globally poor and perform slightly better than a dummy classifier.
(c) Machine Learning vs. Hand Designed Algorithm: Supervised machine learning

models are able to learn complex nonlinear problems, with the only requirement being
sufficient training data and their associated ground truth labels. To the human operator, a
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deep understanding of the input/output causality is not required, as long as the causality
exists and the operator is able to derive the output of a given input. Nevertheless, the
function learned by the model, which tends to describe the reality as faithfully as pos-
sible, is a series of deterministic computations. The ground truth labels of the classifier,
start/end of highlights, were manually set by looking at the original scene video. Given
that highlight labelling is a subjective task, the labels significantly differed from one subject
to another. This low input/output causality led to the poor performance of the machine
learning classifiers.

3.5.2. Hand-Designed Algorithm

Similar to the machine learning model, the empirical hand-designed algorithm extracts
highlights by computing two start and end score functions respectively called fα and fβ.
To take the contribution of each feature into account (Figure 13a), specific functions were
designed for each and linearly combined into the final score functions. The optimal
highlight in the set of highlight candidates H has its start/end (αopt, βopt) at times (tαopt ,
tβopt ) found as follows:

max
tα ,tβ

fα(tβ − tα) + fβ(tβ)

(a) fβ computation (see Figure 13b): in the majority of scenarios, emotions are trig-
gered in response to a stimulus event, rather than in anticipation of an event. Hence, a
user’s emotions constitute a strong indication of a highlight end and is the basis for the
highlight end score function. The end score function (blue curve on Figure 13d) is a linear
combination of the feature scores:

fβ(t) = f β
sound(t) + f β

FS(t) + f β
emo(t) (1)

We define the set of sound events E = {S ,L,M}, where S = speech events, L =
laughter events,M = miscellaneous events. The sound function fsound is then decomposed
as follows:

f β
sound(t) = gβ

S (t) + gβ
L(t) + gβ

M(t) (2)

where both gβ
S and gβ

M sum the pattern shown by the blue line of Figure 13b for each S/M
sound event; laughter was treated differently. The expression of gβ

L for L events Ei with
ti
a/ti

b as start/end times:

gβ
L(t) =

L

∑
i

hi(t),

where hi(t) =


2C t−ti

a
ti
b−ti

a
− C ti

a ≤ t < ti
b

−C
τ (t− ti

b) + C ti
b ≤ t ≤ ti

b + τ

0 otherwise

(3)

where τ is a time constant and C ∝ score(Ei).
Intuitively, the score functions are set to low values while the sound event is occurring

and are set to high values after the event’s end. The rationale is that highlights should not
be cut during a S orM event (constant < 0 value), but a L event can be more easily cut
before the end, justifying the linearly increasing the curve of Equation (3).

The frame similarity function f β
FS (Equation (1)) was designed by setting high values

in a short time interval around each similarity event. The higher the FS event score is, the
more influence it will have in f β

FS.
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Figure 13. Score functions computation processes to derive both start and end highlight cuts: (a)
events timeline signals, (b) sub-functions to compute end cut score function, (c) sub-functions to
compute start cut score function, (d) resulting start and end score functions for highlight classification

The function pattern associated with an emotional event is represented in Figure 13b.
Just like for sound events, the score remains high for a certain time after the event occur-
rence. This setting was chosen after having encountered many scenarios in which the
highlight was still running after the emotional peak. Happiness and surprise emotions are
treated analogously for the whole highlight extraction.

(b) fα Computation: (see Figure 13c): Considering the relationship between α and β,
fα is computed by searching backwards from tβ. We want to maximize both fα(α) and
fβ(β), so fα is computed for all βs fulfilling fβ(β) > 0. fα also incorporates a time feature
as a penalty to constraint highlight duration and to integrate feature events.

The start function (orange curve in Figure 13d) is computed as follows:

fα(t) = f α
sound(t

′) + f α
FS(t

′) + f α
emo(t

′)− λt′2 (4)

where t′ = tβ − t and λ = time penalty.
A quadratic time penalty was chosen to outweigh the first order functions, appearing

when integrating a sound or emotional event (Equation (5)). This penalty avoids extended
highlights in the case of long sound/emotional events, and allows autonomous highlight
extraction without pre-specifying any highlight length requirement. The definition of
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f α
sound differs from f β

sound in Equation (2), by integrating events through time. Considering
L events, gα

S (t), gα
L(t) and gα

M(t) are computed analogously:

∀t < tβ, gα
S ,L,M(t′) =

L

∑
i

hi(t),

with hi(t) =


−C1 ti

a ≤ t < ti
b∫ tb

ta
C2 dt ti

b ≤ t
0 otherwise

(5)

where C1, C2 ∝ score(Eventi).
N.B.: because of the variable change t’= tβ-t in Equation (4), increasing t here (from left to

right) results later in decreasing t (from right to left), starting from tβ.
We chose the integration of sound events to promote successive close events in the

timeline. Close events usually belong to the same semantic scene and integrating allows
the combination of the whole semantic scene. The score function would then linearly
grow for each new event, pushing α in front of the whole group. Otherwise, given that
a time penalty is applied, the algorithm would preferably always put α before the first
event encountered. The computation of f α

FS is similar to f β
FS. No integration is done for

this time-punctual feature; the score of an FS event increases each time a pattern is formed
(Figure 5).

The pattern used for the emotional events is represented by the teal line in Figure 13c.
As emotion changes are usually triggered in response to a stimulus, the probability of
a stimulus is higher at the start than at the end of an emotional peak. This relationship
explains the choice of a linear increasing function during the emotional peak. A time
margin is also added before the emotional peak to account for delayed emotional reaction.
The integration over an emotional event extends the region of interest before the event
occurrence by maintaining a constant positive score from the event start until the beginning
of the video. The optimal pair (αopt, βopt) determines the highlight by trimming the video
between tα and tβ (Figure 13d).

As explained in Section 3.2, the user can set the minimal and maximal highlight
duration Tmin

HL and Tmax
HL as input parameters. In this case, the time penalty λ value will

change accordingly to Tmax
HL , with λ ∝ 1

Tmax
HL

to better account for highlights with duration
up to Tmax

HL .
Another input parameter explained in Section 3.2, σcover defines whether multiple

highlights exist. In this case, the algorithm is run multiple times. Each new generated
highlight Hi+1 is retained only if the overlap with each previous highlights {H0, H1, . . . , Hi}
does not exceed 25%. Highlights are generated until a stop condition is met:

– The score of Hi+1 is lower than a threshold value
– i + 1 exceeds a user-specified maximum number of highlights

The output of the highlight extraction algorithm is either (tαopt , tβopt) in case of a single
highlight or {(t0

αopt , t0
βopt

), . . . , (tn
αopt , tn

βopt
)} in case of multiple highlights.

3.6. Output Stream

The timestamps (ti
αopt , ti

βopt
) of the extracted highlight(s) are used to trim the original

scene video on the server. The generated .mp4 files are sent back via the API to the client,
as shown in Figure 2.

4. Applications

HOMER supports a large range of new applications, as demonstrated through the
implementation of two novel applications on an Android mobile device.
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4.1. Application 1: Automated Highlight Generation Using Dual Camera

A primary application of HOMER is the use of both the front and back camera of
a mobile device simultaneously (Figure 14). When a user records a video through this
application using the back camera, a synchronised video of the user’s face is recorded using
the front camera. Although simultaneous recording from both cameras is only available on
a few commercial smartphones, this feature does exist and may become more prevalent if
desirable use cases are developed. For HOMER, the authors developed applications on the
HTC One M8, which is one of the smartphones with the dual camera feature.

Both videos are sent to the web service and fed as inputs to the highlight generation
algorithm. Once generated, the highlight(s) are sent back and stored locally on the phone
for later browsing in the Android application. A user interface (Figure 15) allows the
user to specify highlight duration preferences by setting the parameters Tm

HLin and Tm
HLax

mentioned in Section 3.2.

Figure 14. Block-diagrams of Application 1 (left) and Application 2 (right).

Figure 15. Application 1: photo of the application in use (up) and screenshot of the application
settings menu (down).

4.2. Application 2: Highlights Montage Creation for Library Videos

The second application, also implemented as an Android application, aims to use the
highlight generation service to create memorial video albums (Figure 14). Similar to the
services proposed by Facebook, Google Photos, or Apple, the idea is to assemble a series of
short sequences cut from the user’s original videos into a “Best of” video. The novelty of
this implementation is the use of the user’s emotions fused with other features to select
video highlights when creating the final montage video.
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In order to take advantage of HOMER’s functionalities, the user is asked to choose a
time range corresponding to the start and end times of the memory period (Figure 16). The
videos from the user’s library matching this time range are loaded into the application ready
to be played sequentially so that the user’s face can be simultaneously recorded by the front
camera of the phone. After each video is watched, the video and the corresponding facial
recording are sent to the web service where the algorithm converts them into highlights.
The resulting highlights are shuffled and concatenated into a “Best of” montage video,
which is sent back and stored on the user’s mobile device.

Figure 16. Application 2: photo of the application in use (up) and screenshot of the application
settings menu (down).

Even though applications 1 and 2 harvest the scene video in two different ways (one
directly recorded, the other one in a digital library), the videos are handled in the same
way, and are sent with the corresponding facial video to the server. When a user rewatches
a video, the user is still predisposed to show emotions.

4.3. Future Applications

We outline two other applications that can leverage the highlight generation service.

• With the emergence of the streaming platform Twitch, watching gamers play video
games live is a rapidly growing source of entertainment [65]. Often, streamers include
a camera preview of their face in their stream alongside the live recording of the
game that they are playing, providing both a facial video and a scene video that can
together be processed by the web service to generate highlights. Indeed, a 2016 survey
found that Twitch viewers watch streams for approximately 11.0 h per week [66],
and currently, Twitch only provides a manual highlight annotation interface. Thus,
bringing automatic highlight generation to a streaming platform like Twitch can save
significant time on both the streamer’s end when making highlight videos and the
viewer’s end when wanting to watch a missed stream. This application would make
the frame similarity an irrelevant feature for the system, and would rely on audio and
emotional features only.

• Video calling applications such as FaceTime and Skype canonically involve two facial
videos, but one can be treated as the scene video as well. In that case, highlights of a
video call can be generated, for example capturing funny jokes or exciting parts of
the conversation.
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5. Evaluation and Discussion

As explained in Section 3.5.1, the ground truth for video highlights is subjective, differs
between people, and depends on the presence of a disruptive semantic event. To ensure
an objective evaluation of HOMER, we enlisted focus groups composed of people with
different backgrounds to help evaluate the system.

5.1. Experimental Setup

To validate HOMER’s performance, we conducted an experiment to validate HOMER’s
performance against baseline algorithms.

5.1.1. Data Acquisition

For evaluation, we uploaded the automated highlight generation application on an
HTC One M8 smartphone, which supports the simultaneous recording of front and back
cameras. While this capability is not enabled in some versions of Android and iOS, it is not
a limitation of the smartphone hardware, and can be activated by software updates.

In this experiment, a set of 20 videos was randomly chosen from the Video Titles in the
Wild (VTW) dataset supported by Microsoft Research [67]. The set constituted personal,
non-professional videos taken in everyday contexts, including those that trigger laughter
and excitement, as well as those that are more emotionally uniform.

5.1.2. Participants

A set of 20 videos was randomly chosen from the Video Titles in the Wild (VTW)
dataset supported by Microsoft Research [67]. The dataset includes non-professional videos
taken in everyday contexts, including videos that trigger laughter and excitement, and
videos that are emotionally uniform.

Moreover, 10 subjects were recruited for the experiments to promote reliable statistics
and human diversity, since emotional responses to a video can vary significantly from
person to person. Subjects were aged between 19 and 30, three female and seven male,
with varying educational backgrounds (from arts to engineering). Subjects were recruited
with IRB approval. In the first experiment, after recording a video from the front and
back cameras, subjects were asked to label the video highlights by start and end time. In
the second experiment, subjects were asked to watch the set of VTW videos in a fixed
randomized order on a mobile device, with their facial reactions being recorded and the
video highlights labeled. In addition, subjects were shown the output of HOMER and asked
to rate their satisfaction with the generated highlights as “satisfied”, “partially satisfied”,
or “not satisfied”.

5.2. Results
5.2.1. Metric

The generated highlights were evaluated frame-wise using F1 score, which represents
the normalized harmonic mean of precision (P) and recall (R):

F1 =
2 P R
P + R

, where : P =
Nb of frames in A ∩ G

Nb of frames in G
, R =

Nb of frames in A ∩ G
Nb of frames in A

where A = Annotated highlights, G = Generated highlights.

5.2.2. Baseline

The Pronounce level model presented by Joho et al. [10], which represents an affective
external summarisation technique, was used to establish a baseline for comparison. In their
paper, the generated highlight’s duration is a fixed ratio of the overall video length. Across
different ratios of 10%, 25%, 50%, and 75%, the Pronounce level model performs similarly
to other affective models discussed in Section 2, achieving an F1 score within 0.03 of the
best model for each ratio. At a high level, the model categorizes emotions into three groups:
no, representing neutral emotions; low, representing angry, disgust, fear, and sad emotions;
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and high, representing happy and surprise emotions. The three groups are given scores of
0, 0.5, and 1 respectively, and the most prominent emotion for a given frame determines
the score at that point. A Kaiser window is applied to smooth the score function, and for a
fixed highlight ratio, the segment that maximizes the score function is chosen.

In addition to the Pronounce level model, we also implemented variants of HOMER
which only utilize frame similarity or audio extraction for highlight extraction. For these
two baselines, the implementations are identical to HOMER, except for the inclusion of only
a single input source. For example, the frame similarity pipeline calculates the begin/end
of highlights as fα(t) = f α

FS(t)− λt′2 and fβ(t) = f β
FS(t), as in Equations (1) and (4).

5.2.3. Highlight Generation

To evaluate highlight generation, 20 videos were taken from the VTW dataset. The
video duration ranged from 13.3 to 37.7 s with a mean duration of 21.9 s and a standard
deviation of 6.5 s. The 20 videos were classified into three categories—“funny”, “exciting”,
and “other”—where the “funny” and “exciting” videos tended to evoke high arousal, while
the “other” videos evoked low arousal but high valence. The videos were categorized
manually. For example, one “funny” video involved a girl trying to surf in a wave pool but
ends up slipping and falling, one “exciting” video captured a man doing a back-flip off a
cliff into a pond, and one “other” video showed a baby cuddled up with a dog.

In the evaluation experiment, subjects annotated 26.6% of each video as highlight
on average, and our highlight generation algorithm predicted 20.9% of each video as
highlight. To bolster the closeness of comparison, the Pronounce level model was tested on
the evaluation videos with the fixed ratio of 25%, resulting in an F1 score of 0.339. HOMER
demonstrates an improvement of 38% with an F1 score of 0.469, as shown in Figure 17.
As explained in Section 3.5.2, a change of emotional state often occurs in response to a
stimulus event, which is a key component in identifying a highlight. By only basing the
highlight segmentation on the Pronounce level, it is likely that the Pronounce model will
miss the stimulus. In our case, we use audio-visual features to decide how long before the
emotional response we should go to optimally capture the stimulus. Audio-visual features
also allowed us to detect more precisely the highlight end, which does not necessarily
correspond to the end of the emotional response.

Figure 17. The mean F1 scores of 20 VTW videos for different video categories.

Figure 17 displays the mean F1 scores for all 20 videos, as well as for each of the three
video categories. The generated highlights best matched the labels for the “funny” videos,
while they performed worst on the “other” videos. However, this difference in F1 score was
not completely unexpected. Videos that typically evoke high arousal, e.g. funny videos,
tend to retain their potency even when viewed vicariously. In other words, whether a
funny video is a personal video or not minimally affects whether someone actually finds it
funny. On the other hand, videos that evoke lower arousal but higher valence often require
being in the moment to feel the entirety of the emotion. Watching your own dog play with
the garden hose is very different from watching a different dog play with a garden hose.
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5.2.4. Satisfaction

Finally, we present the cumulative satisfaction ratings for the generated highlights in
Figure 18 to provide an alternative angle to evaluate our algorithm. This additional data
were collected to account for the flexibility and subjectivity involved in highlight labeling.

Figure 18. Proportions of the three highlight generation performance categories: satisfied, partially
satisfied, and not satisfied.

Intuitively, the priority is that the generated highlight is satisfactory to the user,
as opposed to precisely capturing exactly the highlight that the user has in mind. For
example, some users might prefer more context, desiring additional frames to precede the
true “highlight event”, but they are satisfied as long as the “highlight event” is captured.
Thus, F1 score does not provide a complete picture, and supplementing the metric with
satisfaction ratings may be beneficial. In the cases where subjects believed that there was
at least one highlight, only 25% of generated highlights were not satisfactory, and for the
majority of videos, subjects were satisfied with the highlights generated by HOMER.

5.2.5. Discussion

As mentioned in Section 2, there are a number of recent works which have attempted
to utilize emotion in addition to video features to generate highlights. Works such as [43,44]
produce high quality highlights on football videos and video game streams, but may not
perform well on more varied videos, as selected in this work. In addition, [43] requires
human input to record emotion, and [44] is designed specifically for streaming setups.

Other works, such as [45,46], require significant amounts of external hardware to
gather various physiological signals. Furthermore, their focus is on video ads, which may
not be similar to videos captured using a smartphone. Lastly, we compared our work
with Joho et al. [10] and showed an improvement in F1-score, which can be attributed to
incorporating audio and video features, along with emotion.

Machine learning methods for internal highlight generation have been widely ex-
plored and have shown good results. In this work, we explored using deep learning to
generate start and end timestamps for highlights, as in Section 3.5.1; however, we were
able to achieve a better performance using a hand-designed algorithm. One possibility for
improving this method is to incorporate additional training data to improve the perfor-
mance of the classifiers. In future works, machine learning methods will be an important
future direction towards achieving even better performance for personalized highlight
generation using emotion, audio, and video features.

6. Conclusions

We present HOMER, a cloud-based system for video highlight generation. Our
hybrid approach achieves high performances and outperforms state-of-the-art solutions
by fusing internal video content-based features with user’s emotion data. Our perception-
based solution makes it possible to detect user relevant video highlights. In two separate
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experiments, including videos filmed with a dual camera setup, and home videos randomly
picked from Microsoft’s VTW dataset, HOMER demonstrates an improvement of up to
38% in F1-score from baseline, while not requiring any external hardware. Both the design
of the events timeline, synchronizing multi-modal features, and the highlight detection
algorithm makes our model expandable and enables the possibility of adding new features.
Our platform, available as a web service, provides an API with parameters for highlight
generation. These settings allow the user to either specify highlight duration constraints
or let HOMER automatically find an optimal duration. Another parameter enables the
capture of multiple highlights from a single video, increasing the adaptability of the system
and the range of potential applications. The ubiquity of smartphones with front-facing
cameras makes our system accessible for future applications, as we demonstrated through
the implementation of two smartphone applications. HOMER addresses the challenge of
video overload by intelligently filtering and creating shorter highlights that are enjoyable
for the user.
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