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Abstract: This paper aims to present a method for quantitative damage identification of a simply
supported beam, which integrates the frequency response function (FRF) and model updating.
The objective function is established using the cross-signature assurance criterion (CSAC) indices
of the FRFs between the measurement points and the natural frequency. The CSAC index in the
frequency range between the first two frequencies is found to be sensitive to damage. The pro-
posed identification procedure is tried to identify the single and multiple damages. To verify the
effectiveness of the method, numerical simulation and laboratory testing were conducted on some
model steel beams with simulated damage by cross-cut sections, and the identification results were
compared with the real ones. The analysis results show that the proposed damage evaluation method
is insensitive to the systematic test errors and is able to locate and quantify the damage within the
beam structures step by step.

Keywords: structural health monitoring; damage identification; frequency response function (FRF);
model updating; simply supported beam; cross-signature assurance criterion (CSAC)

1. Introduction

Bridges constitute a large portion of civil structures located on highways and rail-
ways. These structures should be frequently inspected for potential damage arising from
overloading, environmental effects, fatigue, age, and dynamic impacts. Thus, developing
new damage identification methods is necessary. Over the years, many researchers have
developed various bridge structural health-monitoring methods [1–3]. Bridge health as-
sessment is usually conducted using static and/or dynamic methods. However, dynamic
methods are always preferred over static ones. The static methods are time-consuming and
require complicated platforms and traffic blocking. Therefore, to assess a large number of
bridges, it is better to use dynamic methods, especially from time and resource optimization
perspectives. Thus, bridge structural damage assessment methods based on dynamic tests
have become more and more popular [4].

There are many different types of dynamic methods available in the literature. These
methods include but not limited to the following: using incomplete modal data by Bayesian
approach and model reduction technique [5], a mode shape component-specific damage
index [6], plots of variation of model parameters [7], frequency-based method versus mode-
shape-based method [8], modal strain energy change method [9], the frequency-response
function (FRF) curvature method [10], and other methods using vibration-based structural
damage detection [11].

Natural frequencies, mode shapes, mode shape curvatures, modal strain energy,
and other mode-based dynamic characteristic data are usually obtained from the measured
FRF data, at dominant frequencies around the resonances. De Roeck et al. [12] used the
finite element method (FEM) modeling to validate the model-based damage identification
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method. The component of dynamic methods that use FRF to identify damage is very
effective in theory and has a proven historical record of detecting, locating, and quantifying
the severity of the damage. In practical applications, however, it is difficult to measure
high-order modes due to the limitation of vibration measurement technology. It has been
concluded that the number of identification parameters is mostly limited by the order
of the test modes and that the detection accuracy is influenced by the modal errors [13].
Mousavi et al. [14] located and quantified the bridge damage using an Artificial Neural
Network based on complete ensemble empirical mode decomposition with adaptive noise
technique. Kildashti et al. [15] monitored bridge health using a drive-by-bridge inspection
method. It is concluded that the vehicle vibration response identified the bridge damage,
and the damage location and its severity were also identified. However, this method needs
more investigation in the case of vehicle parameters optimization because this method
highly depends on certain vehicle parameters. Zhan et al. [16] discussed using a model
updating method for box-beam bridges. In this research, the frequency responses of the
bridge were obtained under passing vehicles, and the objective function was constructed,
accordingly. The model was updated based on damage indices and the damage location
and severity were detected.

In order to detect damage within the structure, particularly irregular shapes and
complicated structures, a mechanism called “global vibration-based structural damage
detection” [17,18] is proposed. This methodological approach is based on the principle
that any structure can be taken as a dynamic system with stiffness, mass, and damping
properties. Once there are some damages to the structure, the structural parameters
will be changed, along with the FRF and modal parameters of that structural system.
Thus, the change in the modal parameters can be theoretically considered as a sign of
physical damage to the structure [19–23]. FRF reflects the inherent characteristics of the
structure, which can easily be computed using the bridge acceleration spectrum analysis.
Esfandiari et al. [24] proved that using FRF data, instead of modal data, has the benefit of
avoiding analysis errors, especially when the extracted modes of the structure are close
to each other. Dascotte et al. [25] proposed the similarity of the FRF in the pre-damage
and post-damage frequency domain and tried to use the model modification method for
damage identification. Lin et al. [26] corrected the model through amplification of the
FRF to identify structural damage. Ting et al. [27] proposed a method to improve the FRF
sensitivity. In general, the basic idea of these methods is to evaluate the amplitude of FRF by
comparing the theoretical and the measured values. From these literature reviews [20–28],
it can be inferred that FRF has the potential to be used in the detection of structural behavior
and damage.

Using FRF is often accompanied by physical uncertainties due to inaccuracies in the
measurement, difficulties in the field measurements, and human errors [28,29]. Model
updating-based methods can therefore be explored to overcome some of these problems.
Some studies that have successfully used model updating methods for damage identifica-
tion based on FRF are discussed below.

Esfandiari [29] studied the model-updating method using FRF of incomplete strain
data. A sensitivity-based algorithm was proposed for finite element model updating. It was
used to select the measurement frequency points for model updating and evaluating the
weighting of the sensitivity equations. Sipple et al. [30] assessed a FEM updating model
using FRFs and numerical sensitivity analysis. Cheung et al. [31] proposed a hybrid Monte
Carlo simulation (HMCS) that could be used to solve higher-dimensional Bayesian model
updating problems. Lin et al. [26] investigated model updating of damped structures
using FRF data. To solve the problem of complexity of the measured FRF and modal
data, FRF data were used to identify the damping coefficients for the cases of proportional
damping and general non-proportional damping. Imregun et al. [32] used FRF data
to prove that consistent with many other updating techniques, the incompleteness of
the experimental model remains a major obstacle while correcting the analytical model.
The main challenge is that noise on the FRF data has an adverse effect on locating the
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errors. Additionally, complex FRF data with noise, either simulated or measured, make the
convergence process very slow and often numerically unstable.

Various studies have been conducted to reduce these errors and the complexity of the
FRF data. The complex measurement process, needing high accuracy and slow convergence
process, inevitably calls for modifying this method (using FRF data) and subsequently,
simplify the damage identification method. Considering the conditions referred above, this
paper targets to improve the theory of model modification based on the modal parameters
and FRF. An objective function is constructed using the cross-signature assurance criterion
(CSAC) of the FRF between the adjacent measurement points and the natural frequency.
The constraint conditions and identification parameters can then be effectively increased by
increasing the number of measurement points. In the case of unknown damage location and
limited accelerometer sensors, a step-by-step damage identification method is proposed.
Thus, in this paper, a new step-by-step damage identification method based on FRF is
proposed to identify the damage location and quantify the severity of damage in simply
supported beams. This method of damage identification using CSAC can be used for
other types of beams such as continuous beam, cantilever, etc., in addition to different
load patterns such as concentrated, uniform, and multiplied loads. Once the FRF response
can be captured, this method has the capability to be used, although it is expected that
the chosen frequency band changes considering the different RFR shapes of the above-
mentioned beams rather than simply supported beams. Simply supported beam in this
study has been selected due to the number of simply supported deck bridges that exist
in China.

2. Theory

The paper mainly adopts the method of model updating, the objective function is
obtained using frequency and the CSAC of the FRF between the adjacent measurement
points of the structure. This can reduce the influence of the vibration-related amplitude
measurement error on the FRF, and subsequently, increase the number of constraint equa-
tions and identified variables. Consequently, the damage location and damage severity
can be determined. The key step of the structural damage identification method is the
updating of the finite element model, which includes three aspects, namely, cross-signature
assurance criterion, damage index (DI), and objective function construction.

2.1. Cross-Signature Assurance Criterion

The dynamic motion equation for a simply supported beam with n degrees of freedom
(DOFs) under external loading is shown in Figure 1. The FRFs between the excitation
impact force at point p and the measurement point k of the acceleration responses in the
frequency domain are expressed as shown in Equation (1),

Ha
pk(ω) =

n

∑
r=1

−ω2φprφkr

−Mrω2 + jCrω + Kr
(1)

where [Mr], [Cr], and [Kr] are the rth (r = 1, . . . , n) modal mass, damping, and stiffness
matrices, φpr and φkr are the rth regular vibration modes of the system at point p and k,
and ω is the dominant frequency.
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The CSAC reflects the shape similarity of the FRF between adjacent measurement
points. Since the shape of an FRF is determined by the number of resonant peaks, the CSAC
function is relative to changes in mass and stiffness values. So CSAC can be used to identify
the change of structural stiffness. For example, the CSAC index between the adjacent
measurement Points p and q under the excitation impact force k is calculated as follows [25]:

CSAC(p, q) =
(
∣∣∣{Hpk

}∗{
Hqk

}∣∣∣)2

(
{

Hpk

}∗{
Hpk

}
)(
{

Hqk

}∗{
Hqk

}
)

(2)

where {
Hpk

}∗
=
{

Hpk(ω1), · · · , Hpk(ωl), · · · , Hpk(ωm)
}

(3){
Hqk

}∗
=
{

Hqk(ω1), · · · , Hqk(ωl), · · · , Hqk(ωm)
}

(4)

where: ωl(l = 1, 2, . . . , m) is the dominant frequency in the selected frequency range, and m
is the number of frequency points. In this paper, it is assumed that the frequency band is
between first and second natural frequencies. Detailed numerical analysis is presented in
Section 3.2 of this paper.

Assuming that there are systematic scaling errors in measuring the beam vibration
responses, then the whole amplitudes of FRF spectrums at measurement points p and q
become a and b times that of the true value, respectively. Then, the contaminated CSAC
index becomes

CSAC(p, q) =
(
∣∣∣{aHpk

}∗{
bHqk

}∣∣∣)2

(
{

aHpk

}∗{
aHpk

}
)(
{

bHqk

}∗{
bHqk

}
)
= CSAC0(p, q) (5)

From Equation (5), it can be seen that the CSAC index is not affected by the systematic
scaling errors and is equal to the initial value. The results of the CSAC index calculation are
related to the frequency range. Generally, Equation (5) is used for matching the measured
and the theoretical FRF spectrum in a specific frequency range. The CSAC index is typically
between 0 and 1. The limit value of zero (0) indicates that there is no similarity between
the two FRFs, while the limit value (1) indicates that the two FRFs are identical.

2.2. Damage Index (DI) Formulation

Damage directly affects the stiffness of the structure. The stiffness change is usually
simulated by reducing the elastic modulus E [33,34] while keeping the moment of inertia I
of the structural section constant. Assuming that E0j is the initial elastic modulus of the jth
element of the beam and Edj represents the elastic modulus of the element with damage,
then the DI αj

(
0 ≤ αj < 1

)
of the jth element can be defined as follows:

αj = 1−
Edj I
E0j I

= 1−
Edj

E0j
(6)

where j = 1, 2, . . . , n, while n is the total number of bridge elements. The DI of each element
can be used to describe the deterioration severity of a simply supported beam as follows:

α = {α1, α2, · · · , αn} (7)
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2.3. Objective Function Formulation

The objective function is usually defined as the summation of the square of residuals.
In this paper, the objective function is formulated using the CSAC index vector residuals
(δ(α)) and frequency residuals (ϕ(α)) as follows:

F(α) = λCSAC

m

∑
i=1

δ2
i (α) +

2

∑
j=1

λj ϕ
2
j (α) (8)

where δ(α) is the CSAC index vector residual between the adjacent measurement points in
the beam as subsequently illustrated in Equation (9), and ϕj(α) = f d

j − f 0
j is the difference

between the jth measured frequency f d
j and the theoretically calculated frequency f 0

j of
the beam. Superscripts d and 0 are used to denote the measured and theoretical values,
respectively. λCSAC and λj are the weight coefficients of the CSAC index and the jth
frequency, respectively. Figure 2 illustrates the schematic layout of the CSAC index between
the adjacent measurement points. When the impact force (P) is applied to the beam, it is
assumed that CSAC0 and CSACd are the theoretical and measured value between the
measurement points, respectively, as illustrated in Equation (10),

δi(α) = CSACd
i (i, i + 1)−CSAC0

i (i, i + 1) (9)

CSACd =
{

CSACd
1
(1, 2), · · · , CSACd

i (i, i + 1), · · · , CSACd
m(m, m + 1)

}
CSAC0 =

{
CSAC0

1(1, 2), · · · , CSAC0
i (i, i + 1), · · · , CSAC0

m(m, m + 1)
} (10)

where CSACd
i (i, i + 1) and CSAC0

i (i, i + 1) are the measured and theoretical CSAC indices
calculated using Equation (2) between the measurement points i and i + 1, respectively.
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Compared with the objective function from the literature, the current objective function
has the following characteristics:

(1) The shape similarity of the FRF spectrum in the frequency domain can be directly used
to reduce the influence of the systematic test errors in the specified frequency range;

(2) When the objective function is constructed using the CSAC index between the adja-
cent measurement points of the structures, the total number of constraint equations
can be increased by increasing the number of measurement points. The model is thus
modified to effectively accommodate the number of parameters. When m + 1 mea-
surement points are arranged, the number of CSAC exponents between the adjacent
points is m, which is much higher than that of the constraint equations constructed
using low order modes.

2.4. Optimization and Convergence Criteria

After the DI is selected and the objective function assembled, further research needs
to be conducted for optimization, which is primarily aimed at extracting the exact value of
stiffness of the beam. In this paper, the Lsqonlin function in the MATLAB toolbox is used to
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solve the constrained nonlinear least-squares optimization problem. The objective function
F(α) is minimized by optimizing the identification index vector α. The convergence criteria
are set as follows:

F(α) < µ; |F(αn−1)− F(αn)|/F(αn−1) < ε; αL < α < αU; n < Nmax (11)

where µ is the allowable residual, n is the number of iterations, ε is the allowable dif-
ference, αL and αU are the limits of the vector α, and Nmax is the maximum number of
iterations, respectively.

2.5. Damage Identification Process

Generally, identifying the location and severity of damage in bridges requires using
some detection methods. In this paper, a damage identification process is executed based on
the model updating and modified FRF-based objective function (see Figure 3). On the same
basis, a step-by-step method is proposed for evaluating the bridge damage, with conditions
of using the minimum number of available sensors. It should be mentioned that more
sensors in the first step of damage detection will result in a narrower damage zone for the
next steps and consequently sooner damage detection, however, with a minimum number
of sensors also damage detection can be done. This is a method of evaluation accomplished
through gradual measurements and refining elements. The damage identification process
comprises of the following steps:

(1) Dividing the beam into sections and determining the sensor installation location.
Thereafter, develop a FEM model of the beam for further analysis, which is denoted
Section (A) in the flow chart in Figure 3.

(2) Measuring the dynamic responses of the bridge during experimentation and quanti-
tative estimations using theoretical methods with the FEM model. Thereafter, calcu-
lating the FRF and the corresponding CSAC indices, which is denoted as Section (B)
in the flow chart.

(3) Using the model updating method proposed in this paper to determine the DI for
constructing the objective function, with respect to both the results obtained from the
actual measurement and theoretical analysis, which is denoted as Section (C) in the
flow chart.

(4) The measurement elements and sensors are arranged uniformly as done in Step 1,
although, the damaged element is refined into smaller elements and more sensors are
used in this zone. If the objective function does not converge, then the DI α will be
modified and consequently, the structural stiffness will be changed. This step can be
iteratively repeated to approach the actual damage, which is denoted as Section (D)
in Figure 3.

(5) Correcting the finite element model and presenting the damage indices with respect
to the analysis location and severity of the damage, as denoted in Section (E) of the
flow chart in Figure 3.
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Figure 3. Flowchart of the step-by-step damage identification method.

3. Model Testing and Numerical Simulations
3.1. Beam Characteristics

The simply supported beam shown in Figure 4 is used for model demo and testing
in this study. The span of the simply supported beam is 1900 mm. The thickness and
width are 20 mm and 150 mm, respectively. The material of the beam is steel with an
elastic modulus and density of 2.06 × 105 MPa and 7850 kg/m3, respectively. The beam
is evenly divided into 10 elemental structures and 11 nodes. To effectively stimulate the
vibration of the bridge and reduce noise in the low-order mode of the simply supported
beam, an impact load was applied on Node 8. The damage was simulated by reducing the
stiffness of the beam elements using four damage case scenarios listed in Table 1. The first
two natural frequencies of the intact beam are 12.87 Hz and 51.48 Hz, respectively.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 22 
 

 

 
Figure 3. Flowchart of the step-by-step damage identification method. 

3. Model Testing and Numerical Simulations  
3.1. Beam Characteristics 

The simply supported beam shown in Figure 4 is used for model demo and testing 
in this study. The span of the simply supported beam is 1900 mm. The thickness and width 
are 20 mm and 150 mm, respectively. The material of the beam is steel with an elastic 
modulus and density of 2.06 × 105 MPa and 7850 kg/m3, respectively. The beam is evenly 
divided into 10 elemental structures and 11 nodes. To effectively stimulate the vibration 
of the bridge and reduce noise in the low-order mode of the simply supported beam, an 
impact load was applied on Node 8. The damage was simulated by reducing the stiffness 
of the beam elements using four damage case scenarios listed in Table 1. The first two 
natural frequencies of the intact beam are 12.87 Hz and 51.48 Hz, respectively. 

1900 mm

20 mm

150 mm

①

Measurement point No.
Element No.

21 3 4 5 6 7 8 9
②① ③ ④ ⑤ ⑦ ⑧ ⑨ ⑩⑥

21 3 4 5 6 7 8 9 10 11

1 Node No.

1

 
Figure 4. Finite element model of the simply supported steel beam. 

  

Figure 4. Finite element model of the simply supported steel beam.



Sensors 2021, 21, 1029 8 of 22

Table 1. Damage cases for simply supported steel beam.

Damage Cases Damage Elements DI

Case 1 No. 6 0.1
Case 2 No. 6 0.3
Case 3 No. 6 0.5
Case 4 No. 3, No. 6 0.2, 0.5

3.2. Sensitivity Analysis of the CSAC Index Versus Frequency

It can be seen in Equation (2) that the calculated results from the CSAC index rely
on the frequency range. Thus, it is necessary to analyze the sensitivity of the CSAC
index to the damage of the adjacent measurement points with different frequency ranges.
The acceleration responses of the measurement points are recorded, and the FRFs for
different damage cases are computed. From the FRF comparison between undamaged and
damaged conditions, i.e., Case 3 shown in Figure 5, it can be seen from the FRF spectrum
that the first two natural frequencies of the beam are reduced due to the damage. These
first two mode shapes are sensitive to the damage; therefore, they are used to calculate
CSAC. These are minimum modes that are needed for CSAC calculation, and if other
modes can be detected sensitive to damage, they can be used as well. As shown in Table 2,
four different frequency ranges near the first two frequencies are selected to calculate the
CSAC. This is because, for most simply supported beams, the first two natural frequencies
are relatively easy to measure.
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Table 2. Division of the frequency range.

Frequency Range Number Selection of Frequency Frequency Range (Hz)

1 Contains first two natural frequency 0~60

2 Contains only first natural frequency 0~15

3 between first and second natural
frequencies 15~45

4 Contains only second natural frequency 45~60

It can be seen from Figure 5 that the FRF spectrum of the measurement points on
both sides of the element without damage is highly consistent. At the same time, the FRF
(δ(α)) are in different frequency ranges. Figure 6a shows that the calculated δ(α) using
the frequency range including the first two frequencies will change with the occurrence of
damage, but this change is very small and does not have a positive correlation with damage.
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range 2; (c) frequency range 3; and (d) frequency range 4.

Figure 6b shows δ(α), calculated using the frequency range including the first fre-
quency, which is almost zero (0). This is because the FRF amplitude has a maximum value
at the first natural frequency. When the CSAC in this frequency range is calculated, the am-
plitude at the predominant natural frequency occupies a high proportion, i.e., a condition
where the CSAC values approach to 1. Therefore, δ(α) values are small in the nominated
frequency range. Figure 6c shows the calculated δ(α) using the frequency range between
the first and second natural frequencies will increase with the damage. Because there is no
first-order frequency, the calculation result of this frequency range will not be affected by
the high similarity of the first-order frequency.

Figure 6d shows the calculated δ(α) using the frequency range including the second-
order frequency will change with damage, but it is mainly occurring in the mid-span rather
than on both sides of the damaged element. The amplitude of the second mode shape
at the mid-span is close to zero (0), thus the δ(α) between measurement points near the
mid-span is much bigger, which will cover the real difference due to damage.

Based on the above-mentioned analysis, the frequency range between the first and
second natural frequencies is chosen to calculate the CSAC indices between the measure-
ment points.

3.3. Quantitative Analysis of the Beam Damage

The CSAC index of the adjacent measurement points is calculated using the principle
mentioned in Figure 3 and thereafter combined with the first two natural frequencies
to construct the objective function. The CSAC index and the frequency of the adjacent
measurement points in the damaged beam are taken as the “measured value” and then the
finite element (FE) model is modified to identify the induced damage. As shown in Figure
7, both single and double damage occurring in Elements 3 and 6 are correctly identified.
Although there is some unrealistic damage in some elements, which mainly comes from
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the model and iterative errors, their damage indices are negligibly much lower and can be
ignored. As shown in Figure 8, the objective function converges after about 20 iterative
steps and the DI of Element 6 is effectively/correctly identified.
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3.4. Influence of Noise on Damage Identification

To analyze the influence of the test errors, a certain level of random noise is added
to the test acceleration responses. The damage identification process is then conducted
with the acceleration data after noise “pollution.” Using the acceleration response with
5% random noise, the damage for Case 4 is identified as shown in Figure 9. Although
some unreal ignorable damage occurs at some elements under the influence of test noise,
the damage at Elements 3 and 6 could still be accurately identified and quantified. This
indicates that the damage identification method proposed in this paper has adequate
robustness and noise immunity. Furthermore, the results suggest that synchronization
identification of multiple damages can also be achieved.
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3.5. Step-by-Step Damage Identification Process

The simply supported steel beam shown in Figure 4 is adopted on the assumption
that damage occurred concurrently within 1/4 span and mid-span of the beam. Figure 10a
shows these damage locations. The lengths of the damage of the two locations are both
60 mm, with DI values of 0.6 and 0.8, respectively. The first two frequencies of the damaged
beam are 11.2 Hz and 48.7 Hz, respectively. The test equipment has only eight channels,
with seven channels measuring the acceleration response of the measurement points,
and one channel measuring the input impact force. The step-by-step method is used to
identify and pinpoint the damage.
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Figure 10. The first layout of the load, beam elements, and sensors (a) with a gradual subdivision of elements as (b–
d), respectively.

3.5.1. Initial Identification of the Damage Location

As shown in Figure 10a, the beam is subdivided into eight elements, seven accelerome-
ter sensors are mounted on the beam considered as measuring points, and an impact load is
applied at 400 mm from the right support. Two damage with a width of 60 mm and depth
of 5 mm (Elements 2 and 3) and 10 mm (Elements 4 and 5) are induced/marked on the
beam. From the identification results shown in Figure 11a, it can be seen that the damage
indices of Elements 2, 3, 4, and 5 are quantitatively much higher than other elements.
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Figure 11. Identified values of damage in each element based on Figure 10; (a) damage indices of Figure 10a, (b) damage
indices of Figure 10b, and (c) damage indices of Figure 10c.
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3.5.2. Damage Identification after Subdivision of the Elements

To confirm the location accuracy of damage, the initial identified Elements 2, 3, 4,
5 are each subdivided into two elements of equal lengths (Figure 10b). This is on the
assumption that the other elements are undamaged. Thereafter, the damage indices of
the Elements 2-1, 2-2, 3-1, 3-2, 4-1, 4-2, 5-1, and 5-2 are used as the identification variables
and the model correction is repeated. The identification results shown in Figure 11b
indicate that Elements 2-1, 2-2, 4-2, and 5-1 significantly have larger damage indices
than other elements. These elements can be further be subdivided to locate the changes.
As shown in Figure 10c, the identified damaged elements are further subdivided again on
the assumption that the remaining elements are undamaged. The identification results after
refining the elements are shown in Figure 11c. It is clear from the figure that the damage
locations are Elements 2-2b, 4-2b, and 5-1a and that the damaged elements’ lengths are
65 mm, 50 mm, and 50 mm, respectively.

3.5.3. Identification of Damage Location and Severity

Because Elements 4-2b and 5-1a are adjacent, two sensors are arranged at both ends
of the damaged elements at 100 mm apart to completely cover the identified damaged
element. For ease of comparison, the distance between the two ends of Element 2-2b is also
changed to 100 mm. As shown in Figure 10d, the locations of the other sensors are adjusted
according to the location of Elements 3 and 5. The beam is accordingly divided into eight
elements. The identified damage indices of the eight elements are shown in Figure 12.
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Based on Figure 12, it can be easily determined that Elements 3 and 5 are damaged.
The damage indices of these two elements are 0.48 and 0.73, respectively, which differs from
the real values of 0.6 and 0.8. The lengths of the damaged elements are taken as 100 mm,
which is larger than the real damage length of 60 mm. The identified DI is the average value
along with the whole element, and thus, it is a little smaller than the actual value. These
results from the above analysis demonstrate that the step-by-step identification method
can be used simultaneously to locate and quantify damage in simply supported beams.

4. Laboratory Experimentation and Model Verification
4.1. Beam Fabrication

The fabricated simply supported steel beam model shown in Figure 13 was used to
validate the proposed methodology. The beam material was Q235 steel with an elastic
modulus of E = 2.06 × 105 MPa. The span length, width, and height of the model beam
were 1900 mm, 150 mm, and 20 mm, respectively. To simulate a simply supported beam’s
supports, the procedure shown in Figure 14 was followed, in which triangle and roller
joints were positioned at two sides of the beam (Figure 14a,b).
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Three samples of the model beams of the same size were fabricated, with damage
simulated by cross-cutting sections in two locations. Due to limitation in applied load, it is
considered all damages happen in the elastic zone. The cutting location and depth are
shown in Table 3.

Table 3. Damage simulation cases.

Damage Cases Damage Location Cross-Cut Sectional Depth (∆h) DI (α)

Case 1 middle of the beam 10 mm 0.875
Case 2 1/4, 1/2 span of the beam 5 mm, 10 mm 0.578, 0.875
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The DI α listed in Table 3 are calculated as follows:

α = 1−

(
b(h− ∆h)3

)
/12

bh3/12
= 1−

(
1− ∆h

h

)3
(12)

where b and h are the width and depth of the beam, and ∆h is the cross-cut sectional depth.

4.2. Test Equipment and Laboratory Setup

The test equipment consisted of an impact hammer, acceleration sensors, and a data
acquisition system. The impact hammer was an MSC-1 small-scale model with a force
capacity of 0~5 kN (China Orient Institute of Noise & Vibration, Beijing, China). The in-
tegrated circuits piezoelectric (ICP) acceleration sensors used had a measurement range
of 0~10 m/s2 with a frequency response range of 0.05 Hz~500 Hz. The data acquisition
system was comprised of an INV3018A 24-bit (China Orient Institute of Noise & Vibration,
Beijing, China) with eight channels. The accelerometers were directly mounted on the
beams. The typical test equipment and laboratory setup are shown in Figure 14a,d.

4.3. Damage Identification Using the Step-by-Step Method
4.3.1. Parameter Setting

The typical setup and arrangement of accelerometers on the beam are shown in
Figure 14. The sampling frequency was 1024 Hz. The complete sampling time and fre-
quency resolution were 120 s and 1/120 Hz, respectively. Figures 15 and 16 show the time
history of the applied impact load and the FRF spectrums on the beams, respectively. Based
on the FRF spectrums shown in Figure 16, the first two natural frequencies of the steel
beam can be determined to be 12.63 Hz and 49.75 Hz using the peak-picking method [13].
As discussed previously in Section 3.2, the section between the first-order and the second-
order frequency of 15 Hz~45 Hz was selected as the analysis frequency range to calculate
the CSAC indices between the measurement points on the beam.
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4.3.2. Single Damage Identification (Case 1)

For the single damage Case 1 in Table 3, a 60 mm cross-cut section was produced in
the middle of the beam with a depth of 10 mm. The location of damage and division of the
model elements are shown in Figure 17a.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 22 
 

 

0 10 20 30 40 50 60
0

2

4

6

8

10
49.75Hz

M
ag

ni
tu

de
 (d

B)

Frequency (Hz)

12.63Hz

 

Figure 16. FRF spectrum of the undamaged beam in measurement Point 6. 

4.3.2. Single Damage Identification (Case 1) 
For the single damage Case 1 in Table 3, a 60 mm cross-cut section was produced in 

the middle of the beam with a depth of 10 mm. The location of damage and division of 
the model elements are shown in Figure 17a. 

8×50

1 2 3 6 7 8

250 250 250 250 250250
① ② ③ ④ ⑤ ⑥ ⑦

25 25

4-
1

4-
2

4-
3

4-
4

5-
1

5-
2

5-
3

5-
4

b)

1 2 3 4 5 6 7 8

250 250 200 200 250 250 250250
① ② ③ ④ ⑤ ⑥ ⑦

P
400

10

25 25

920 60 920
1 2 3 4 5 6 7 8

280 310 155 155 100 310 310 2525 280
① ② ③ ④ ⑥ ⑦⑤

Accelerometer Sensor Units: mm

a)

c)

 
Figure 17. First layout of load, elements, and sensors; (a) with the gradual subdivision of elements as (b,c). 

Initial Identification of Damage Location: Seven sensors were arranged evenly along 
the span of the beam. The beam was impacted at 400 mm from the right side of the beam, 
i.e., roller support end (Figure 17a). The FRF spectrum of the measurement Point 6 be-
tween the undamaged and single damage beam is shown in Figure 18. The first two natural 
frequencies of the steel beam after damage were determined to be 10.50 Hz and 50.13 Hz, 
respectively. 

Figure 17. First layout of load, elements, and sensors; (a) with the gradual subdivision of elements as (b,c).

Initial Identification of Damage Location: Seven sensors were arranged evenly along
the span of the beam. The beam was impacted at 400 mm from the right side of the
beam, i.e., roller support end (Figure 17a). The FRF spectrum of the measurement Point
6 between the undamaged and single damage beam is shown in Figure 18. The first two
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natural frequencies of the steel beam after damage were determined to be 10.50 Hz and
50.13 Hz, respectively.
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Figure 18. FRF spectrum of measurement Point 6 between the undamaged and damaged
beam (Case 1).

By comparing the results from initial identification, i.e., between the single damage
beam (Case 1) and the undamaged beam, it was found that the first-order frequency
decreases whilst the second-order frequency remained unchanged. The damage location
is near the zero point of the second-order modal shape and approaches the maximum
point of the first-order modal shape. This phenomenon causes the two frequencies to
decay differently, i.e., a difference in the extent of reduction. The first two frequencies and
six CSAC indices between the adjacent measurement points were used to construct the
objective function and update the FE model. The identified damage indices of the eight
elements are shown in Figure 19a. From the figure, it is seen that the damage indices of
Elements 4 and 5 are 0.523 and 0.525, respectively, while the damage indices for the other
elements are negligibly close to zero (0).
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Figure 19. Identified values of damage (a) damage indices for Figure 17a, (b) damage indices for Figure 17b, and (c) damage
indices for Figure 17c.

Refining the Damage Location: To pinpoint the location of damage further, Elements
4 and 5 were subdivided into four sub-elements each, with sequential numbering of 4-1,
4-2, 4-3, 4-4, 5-1, 5-2, 5-3, and 5-4, respectively. The subdivided FE model is shown in
Figure 17b. Because other elements are undamaged, only the eight sub-elements were used
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as identification elements in the test. The measured impulse response and FRF data were
used to update the model. The corresponding damage indices were determined as shown
in Figure 19b. Evidently, the damage indices of Elements 4-4 and 5-1 are the largest in
magnitude. In this step of the damage identification process, it was assumed that damage
occurred on Elements 4-4 and 5-1 only, while the remaining elements were considered to
be undamaged.

Quantification of Damage Severity: To confirm the damage location further, Elements
4-4 and 5-1 were merged into Element 5 and the sensors were rearranged on both sides of
the element (Figure 17c). The distance between the two ends of the element with damage
was 100 mm. The damage indices were determined and shown in Figure 19c. Based on
this analysis, damage exists only in Element 5 whilst the other elements remained almost
undamaged. This proves that the assumption that only Elements 4-4 and 5-1 were damaged
is reasonable. The DI of Element 5 is 0.81, which is lower than the theoretical DI of 0.875.
The assumed element length of 100 mm is larger than the actual damage length of 60 mm.
This 40 mm length difference between the damaged elements partially contributed to the
smaller DI than the theoretical value. Thus, if the model and the actual test errors are
considered, then the preset damage would be judged to have been satisfactorily identified.

4.3.3. Double Damage Identification (Case 2)

Initial Identification of Damage Location: As shown in Figure 10a, two points of
damage were set at the quarter span and mid-span of the beam, respectively. For this
case, the theoretical damage indices of the quarter span and mid-span were 0.578 and
0.875, respectively. Based on the FRF spectrum of Point 6 in Figure 20, the first two natural
frequencies of the damaged steel beam were determined to be 10.38 Hz and 48.13 Hz,
respectively. Figure 21a shows the identification results of damage indices for Case 2. It can
be seen from Figure 21a that the damage indices of Elements 4 and 5 have maximum values
of 0.53 and 0.56, respectively. The damage indices of Elements 2 and 3 are about 0.13.
The damage indices of the other elements are all close to zero (0). Therefore, it is possible
to deduce that Elements 2, 3, 4, and 5 are damaged.
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Figure 20. FRF spectrum of measurement Point 6 between the undamaged and damaged
beam (Case 2).



Sensors 2021, 21, 1029 19 of 22

Sensors 2021, 21, x FOR PEER REVIEW 18 of 22 
 

 

Quantification of Damage Severity: To confirm the damage location further, Ele-
ments 4-4 and 5-1 were merged into Element 5 and the sensors were rearranged on both 
sides of the element (Figure 17c). The distance between the two ends of the element with 
damage was 100 mm. The damage indices were determined and shown in Figure 19c. 
Based on this analysis, damage exists only in Element 5 whilst the other elements re-
mained almost undamaged. This proves that the assumption that only Elements 4-4 and 
5-1 were damaged is reasonable. The DI of Element 5 is 0.81, which is lower than the the-
oretical DI of 0.875. The assumed element length of 100 mm is larger than the actual dam-
age length of 60 mm. This 40 mm length difference between the damaged elements par-
tially contributed to the smaller DI than the theoretical value. Thus, if the model and the 
actual test errors are considered, then the preset damage would be judged to have been 
satisfactorily identified. 

4.3.3. Double Damage Identification (Case 2) 
Initial Identification of Damage Location: As shown in Figure 10a, two points of dam-

age were set at the quarter span and mid-span of the beam, respectively. For this case, the 
theoretical damage indices of the quarter span and mid-span were 0.578 and 0.875, respec-
tively. Based on the FRF spectrum of Point 6 in Figure 20, the first two natural frequencies 
of the damaged steel beam were determined to be 10.38 Hz and 48.13 Hz, respectively. 
Figure 21a shows the identification results of damage indices for Case 2. It can be seen 
from Figure 21a that the damage indices of Elements 4 and 5 have maximum values of 
0.53 and 0.56, respectively. The damage indices of Elements 2 and 3 are about 0.13. The 
damage indices of the other elements are all close to zero (0). Therefore, it is possible to 
deduce that Elements 2, 3, 4, and 5 are damaged.  

0 10 20 30 40 50 60
0

2

4

6

8

10

49.75Hz
48.13Hz

12.63HzM
ag

ni
tu

de
 (d

B)

Frequency (Hz)

 Undamaged beam
 Double damage beam

10.38Hz

 
Figure 20. FRF spectrum of measurement Point 6 between the undamaged and damaged beam 
(Case 2). 

 
(a) 

 
(b) 

 
(c) 

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8

D
am

ag
e 

in
de

x

Element No.

Identified value

0

0.2

0.4

0.6

0.8

2-1 2-2 3-1 3-2 4-1 4-2 5-1 5-2
Element No.

Identified value

0

0.2

0.4

0.6

0.8

2-2a 2-2b 4-2a 4-2b 5-1a 5-1b
Element No.

Identified value

Figure 21. Identified values of damages in each element based on Figure 10. (a) damage indices of Figure 10a, (b) damage
indices of Figure 10b, and (c) damage indices of Figure 10c.

Refining the Damage Location: The next step is to pinpoint and refine the damage
location. As shown in Figure 21b, in order to pinpoint the damage location, the four
damaged elements were subdivided into two elements. The damage indices of Elements
2-2, 4-2, and 5-1 have higher values than the other elements (Figure 10a). Furthermore,
it is assumed that damage exists only in Elements 2-2, 4-2, and 5-1. The three elements
were subdivided again into two elements (Figure 10c), while the remaining elements were
considered as undamaged. The identified damage indices are shown in Figure 21c, in which
the damage indices of Elements 2-2b, 4-2b, and 5-1a are much larger than those of the
other elements. Therefore, it was concluded that damage is located in these three elements.
Finally, the last step is to locate and quantify the severity of the damage, which is discussed
in the subsequent text.

Quantification of Damage Severity: As shown in Figure 10d, Elements 4-2b and 5-1a
were merged into Element 5, while Element 2-2b was merged into Element 3. The mea-
surement points on both sides of the new refined elements were accordingly rearranged.
The identified damage indices of the eight elements are shown in Figure 22. The damages
on Elements 3 and 5 were well defined and quantified with damage severities of 0.49
and 0.81, respectively. However, the identification damage indices are a little smaller in
magnitude than the actual values when averaging them. The iterative curve of the DI in
Figure 23 indicates that due to the test and model errors, the convergence efficiency of the
damage indices in the experiment is slower than that of numerical simulation.

A comparison between the damage detection results of references [35–39] and the
current method shows that the maximum difference between real and identified values for
single and double damages are almost 8.2% and 15%, respectively, for the current research
method. In contrast, these percentages for other studies such as Esfandiari et al. [38] with
a model updating damage detection method using experimental FRF are 8% and 3.5%,
respectively. This paper shows higher accuracy, however, the FRF response of the damaged
structure is approximated based on the measured natural frequency of the damaged
structure and the mode shapes of the intact structures that may result in a lot of errors.
Sanayei et al. [39] developed a finite element model for bridges and calibrated it using
strain data installed during the construction of the bridge. The developed detailed 3D finite
element modeling of highway bridge was feasible with a high degree of accuracy, therefore,
a tool for structural health monitoring and assistance for planning of bridge inspections,
routine maintenance decisions, bridge load rating, damage assessment, and rehabilitation
throughout the service life of the bridge. However, their method cannot quantify and locate
damage within the bridge. Zhang et al. [35] combined the data-driven and physics-based
structural health monitoring methods via physics-guided machine learning to improve
the damage identification performance. This method shows better performance for severe
damages with a maximum difference of real and identified values of 1% rather than a
maximum difference of real and identified values for slight damages as 25%. In contrast,
our proposed method is suitable for both slight and severe damages. In another study,
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Zhang et al. [36] studied a new method to locate multi-site structural damage using a
data-driven multi-label classification (MLC) method with about 90% accuracy, which is not
so practical for real bridges due to high parameters estimation in this method.
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5. Conclusions

In this study, a new FRF-based step-by-step damage identification method is proposed
to identify the damage location and quantify the severity of the damage. For method
verification and effectiveness check, numerical simulation and laboratory testing on three
model steel beams were conducted. The method used a cross-signature assurance criterion
(CSAC) for correlating the frequency response function between the adjacent measurement
points of the beams. The stiffness of the damaged beam elements is updated to converge,
and the objective function is constructed by summing up the square of the CSAC index
vector and the frequency residuals. The sensitivity of the CSAC index to a specific frequency
range is proved through a comparison of the CSAC index difference values between the
adjacent measurement points in different frequency ranges. The results showed that both
the location and severity of damage on the beam are satisfactorily quantified. Overall,
the main highlights from this paper’s findings are summarized as follows:

(1) When compared to traditional model updating methods, the results obtained with
the proposed CSAC index exhibited satisfactory damage identification competence.
The literature reviewed so far is limited in terms of integrating the CSAC index
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with FRF and model updating for better identification capability as demonstrated in
this paper;

(2) The CSAC index in the frequency range between the first two frequencies is found to
be sensitive to damage. Thus, this frequency range can be used to identify the damage
location and severity in simply supported beams;

(3) The objective function can be constructed using CSAC indices of the FRFs between
adjacent measurement points. The number of the constraint equations and the identi-
fication parameters can be effectively improved by increasing the number of measure-
ment points;

(4) The damage identification method proposed in this paper exhibits insensitivity to
the systematic test error. Damage, both at single and multiple locations, can be well
located and quantified in the presence of noise;

(5) The step-by-step identification procedure can be used to accurately identify the
damage location and determine the damage severity in simply supported beams.
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