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Abstract: Chemical and biological sensors have attracted great interest due to their importance in
applications of healthcare, food quality monitoring, environmental monitoring, etc. Carbon nanotube
(CNT)-based field-effect transistors (FETs) are novel sensing device configurations and are very
promising for their potential to drive many technological advancements in this field due to the
extraordinary electrical properties of CNTs. This review focuses on the implementation of CNT-based
FETs (CNTFETs) in chemical and biological sensors. It begins with the introduction of properties,
and surface functionalization of CNTs for sensing. Then, configurations and sensing mechanisms for
CNT FETs are introduced. Next, recent progresses of CNTFET-based chemical sensors, and biological
sensors are summarized. Finally, we end the review with an overview about the current application
status and the remaining challenges for the CNTFET-based chemical and biological sensors.

Keywords: carbon nanotube; field-effect transistors; sensors; chemical; biological

1. Introduction

Chemical and biological sensors have attracted great attention recently, and have a
wide range of applications in healthcare, environmental monitoring, food quality, and
defense. These sensors can respond to specific chemical or biological compounds and
convert this information into electrical signals. Many materials have been studied as the
sensitive materials in the chemical/biological sensors, such as SnO2 [1,2], ZnO2 [3], Ag [4],
and graphene [5]. Generally speaking, the ideal material in chemical and biological sensors
should have a high chemical reactivity, a large surface to volume ratio or an easy fabrication
at low cost.

Carbon nanotubes (CNTs) are seamless nanotubes made of single or multiple layers
of graphene sheets rolled around a central axis with the advantages of being lightweight
and having a perfect hexagonal connection structure. The unique electronic transport
properties of CNTs make them potentially useful in nanodevices [6,7]. For example, CNTs
are atomically thin in order to provide ideal electrostatic control over the channel, which is
quite important when the device is scaled down. This unique atomically thin structure of
CNTs also gives them many advantages when serving as the sensitive materials in sensors,
and the electrical performance superiority of CNT-based field effect transistors (CNTFETs)
has been extended in various chemical and biological sensors. Compared with other
detecting technologies, CNTFET-based sensors have the advantages of high sensitivity,
high selectivity, simple operation, low operating temperature, fast response speed, short
recovery time, label-free detection, and good stability. Referring to the detection capability
of various substances and the exceptional performance, CNTFETs are expected to play an
increasing role in the field of sensing. In this review, the properties of CNTs, configurations
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and sensing mechanisms based on CNTFETs, recent progresses of the implementation of
CNTFETs in chemical sensors and biological sensors, and the perspective of this technology
are introduced.

2. Surface Functionalization of CNTs for Sensing
2.1. Covaelent Modification

Covalent modification mainly involves chemical destruction of C-C bonds of the
CNTs ports or sidewalls to generate more polar carboxyl groups or hydroxyl groups on
the surfaces. Then, various functional groups can be introduced on the CNT surfaces
to further attach the derivative reaction of the target product to the CNTs—for example,
chemical groups, fluorescently labeled molecules, DNA, anticancer drugs, etc. The oxidants
used for covalently modification include nitric acid, mixed acid (concentrated sulfuric
acid/nitric acid), neutral hydrogen peroxide, and sodium hydroxide, as shown in Figure
1. The disadvantage of covalent modification is that it may destroy the integrity of CNTs,
which will affect its mechanical and electrical properties to some extent.
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As shown in Figure 1a, Ni et al. [8] introduced the -COOH derivative group on the 
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phthalocyanine (VE-H). As shown in Figure 1b, Rezaie et al. [9] also introduced -COOH 
to the surface of CNTs by oxidation reaction, then formed a dendrimer with poly(citric 
acid), and then attached a divalent platinum metal catalyst to the surface of CNTs. Finally, 
a magnetic catalyst was obtained. The catalyst can selectively reduce nitro and nitrile. 
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Figure 1. Surface functionalization of carbon nanotubes (CNTs). (a) The introduction of the -COOH group to the surface
of the CNT [8]. (b) The introduction of-COOH on the surface of CNTs by the oxidation reaction [9]. (c) A metal iridium
complex catalyst was coated on the surface of CNTs through non-covalent bond accumulation [10]. (d) TEM image which
shows the nominal chemical structure of the polymer backbone [11]. (e) The atomic force microscopy image of the waxy
corn amylopectin-single-walled CNT (SWCNT) film [12]. (f) Schematic representation of surfactants adsorb onto the CNT
surfaces [13].

As shown in Figure 1a, Ni et al. [8] introduced the -COOH derivative group on the
surface of the CNT by the oxidation reaction, and two different ligands are introduced on
the CNT surface, including aminopyridine and aminoethyl mercaptan curing catalyst iron
phthalocyanine (VE-H). As shown in Figure 1b, Rezaie et al. [9] also introduced -COOH
to the surface of CNTs by oxidation reaction, then formed a dendrimer with poly(citric
acid), and then attached a divalent platinum metal catalyst to the surface of CNTs. Finally,
a magnetic catalyst was obtained. The catalyst can selectively reduce nitro and nitrile.
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2.2. Non-Covalent Modification

Non-covalent modification means that covalent chemical bonds are not introduced
for modification on the surface of CNTs, but are achieved through non-covalent bonding,
including physical adsorption and surface coating. The non-covalent modification is
mainly formed by the hybridization of carbon atoms sp2 in the graphene structure of the
sidewall to form highly delocalized electrons and electrons of other compounds to generate
non-covalent bonds. The non-covalent interactions include dispersion forces, hydrogen
bonds, dipole-dipole forces, π-π stacking effects, and hydrophobic effects. Carbon atoms
in CNTs are all SP2 hybrids, forming highly delocalized electrons, which can be modified
with other π electron-rich compounds through π-π stacking. The non-covalently modified
CNTs are structurally complete and can retain their original properties. The molecules for
the non-covalent modification mainly include the surfactants, the molecules containing
aromatic groups, and the polymers. For biological sensors, the non-covalent modification
of the CNTs can not only improve their water solubility in biological systems, but also can
avoid the non-specific adsorption of the biomolecules.

As shown in Figure 1c, Liu et al. [10] coated the metal iridium complex catalyst on
the surface of CNTs through non-covalent bond accumulation, and the coating efficiency
reached over 94%. The metal iridium complex catalyst is coated on CNT to make the
catalytic dehydrogenation reaction of indole from organics such as methanol, ethanol,
tetrahydrofuran, trifluoroethanol, etc. The transfer of solvents to water makes this organic
reaction more environmentally friendly. The surfactant contains two parts, which are
the lipophilic end and the hydrophilic end. When they are adsorbed on the surface by
the CNTs, the charge repulsion disperses them. Under thermodynamics, water-soluble
polymers such as sodium polystyrene sulfonate entangle CNTs, thereby exerting the role
of surfactants and making them amphiphilic [14]. As shown in Figure 1d, Dalton et al. [11]
used conjugated poly-phenylene vinylene to surface-coat the CNTs, and found that the
CNTs were evenly dispersed in the polymer matrix. As shown in Figure 1e, Stobinski
et al. [12] modified CNTs with sodium lauryl sulfate and dispersed them by ultrasound.
It was found that increasing the ultrasonic time or decreasing the concentration of the
suspension can obtain CNT solutions with better dispersion properties. As shown in
Figure 1f, coating CNTs with sodium benzoate and sodium dodecyl benzenesulfonate can
also increase their water solubility [13].

3. Configuration and Sensing Mechanism
3.1. General CNTFETs

CNTFETs have a variety of structures [15], but share similar characteristics: the
conductive channel, source and drain electrodes, a gate electrode on the top or bottom of
the channel, and a dielectric layer between the channel and the gate to separate the gate
electrode from the CNTs. The operating principles of these CNTFETs are similar: the gate
electrode uses a vertical electric field to control the amount of charge in the channel; the
horizontal electric field between the source and drain electrodes provides driving force, and
a current is made to flow from one electrode through the CNT to the other electrode [16].

Figure 2a shows a typical configuration of a CNTFET for sensing purpose. In general,
the transport of carriers in a CNTFET can be attributed to four states, which are independent
of the device structure [17]. The classification of these states depends on the comparison
of the CNT length and the mean free path length of the CNT, and the type of contact
between the CNT and the source and drain [18]. For example, an ohmic contact ballistic
CNTFET means that carriers are injected into the CNTs from the source and the drain
through an ohmic contact, and the carrier transport process in the CNT is not subjected to
any scattering. In contrast, Schottky-type diffused CNTFETs mean that the carrier injection
is affected by a Schottky barrier derived from the heterojunction of the electrode and
the CNT, and the carriers are constantly scattered during transmission in the conductive
channel. There are two kinds of carriers: holes and electrons. If the type of carriers is
mainly electrons, then the FET is an n-type transistor; on the other hand, if the carriers are



Sensors 2021, 21, 995 4 of 18

mainly holes, then the FET is a p-type transistor. In theory, the type of metal-CNT contact
depends on the difference in work function between the metal electrode and the CNTs.
However, due to the physical and chemical properties of the electrodes in contact with
CNTs [19], p-type CNTFETs are more common.
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CNTs have the characteristics of nanometer size, huge specific surface area, and
surface effects. When a specific molecule is adsorbed on the surface of a CNTs, it causes the
energy band of the CNTs to bend and affect its electronic structure, which would further
cause the change of transport characteristics of CNTs. The change provides the possibility
of CNTs to work as sensitive materials.

The FET-based chemical sensor and biosensor use the basic characteristics of the tran-
sistor to convert difficult-to-detect high-resistance changes into easily-detectable changes
in current. The sensitivity of the sensor can be adjusted by appropriately selecting the gate
operating voltage of the device. The single-walled CNTs (SWCNTs) can be divided into
metal type and semiconductor type, and the FET-based chemical sensor and biosensor are
prepared by using the resistance response characteristic of semiconductor SWCNTs to the
adsorbed chemical.

When the chemical molecules or biological material are adsorbed on the surface of
semiconductor-type CNTs, electron transfer occurs, which changes their electrical con-
ductivity, which provides a theoretical basis for CNTs as good sensor materials. The
multi-walled CNTs (MWCNTs) have a multi-layered tubular structure, so the MWCNTs
have a more complex chemical adsorption mechanism than the SWCNTs. In addition, the
MWCNTs lack carbon band gaps or have narrow band gaps; the tube is mainly metallic so
that the adsorption of the chemical molecules has little effect on the electrical conductivity.
Therefore, the conductivity of the MWCNTs is not as sensitive as that of SWCNTs, but it
has been shown that the MWCNTs still have excellent sensing characteristics to substances
such as water vapor [21], NH3 [22,23], NO2 [18], and O2 [24,25].

The SWCNTs have shown great advantages in FET-based nanosensors. Paolo et al. [26]
reported the application of CNTFETs in gas sensors. Whether for a single CNT FET or a
CNT-thin film FET, the main sensing mechanism is derived from gas adsorption on the
carbon tubes/metals—the modulation of the Schottky barrier at the electrodes.

3.2. Electrolyte-Gated CNTFETs

The biosensors based on electrolyte-gated FETs, also known as liquid gate FETs, have
attracted increasing attention due to their advantages of easy processing [27], low cost [28],
good flexibility [29], good biocompatibility, and low operating voltage. Figure 2b shows
a typical configuration of a electrolyte-gated CNTFET [20], in which the electrolyte is
used instead of the dielectric layer material to directly contact the gate electrode and the
channel. The biggest difference between the working principle of the electrolyte-gated FET
and the conventional FET is that the gate electrode regulates the channel current through
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the electrolyte solution. The biggest advantage of electrolyte-gated FETs is the huge two-
electron layer effect of the electrolyte [30,31], which enables the sensor to obtain the same
current with a smaller gate voltage and usually can work at a rather low voltage (1V). This
can avoid undesired electrochemical reactions, such as decomposition of water, damage
to biological activity, etc.; thus, it can be used to detect important biological samples in a
solution environment [32,33].

According to whether the ions in the electrolyte can penetrate the semiconductor chan-
nel layer, the electrolyte-gated FET can be divided into an electrostatically coupled FET and
an electrochemically doped FET. Taken the p-type electrolyte-gated FET as an example, we
explain these two different working mechanisms as follows. (1) Electrostatically coupled
FETs. Under negative gate bias, cations in the electrolyte migrate to the gate/electrolyte
interface, while the anions move to the electrolyte/channel interface, and an electric double
layer is formed at the respective interface. The capacitance of the entire sensor can be
equivalent to two electric double-layer capacitors connected in series. Usually, the capaci-
tance at the electrolyte/channel interface is small, so this capacitance determines the total
capacitance. Under negative bias, anions accumulated at the electrolyte/channel interface
in the electrolyte induce holes of equal charge amount in the p-type channel. Under the
action of the source-drain voltage, holes move in the channel to form a source-drain current.
In this process, the anions in the electrolyte are always at the electrolyte/channel interface
and do not penetrate the semiconductor channel layer. The holes in the channel are com-
pletely generated by the electrostatic coupling of the electric double-layer capacitance. (2)
Electrochemically doped FETs. Under negative bias, cations in the electrolyte migrate to the
gate/electrolyte interface, while anions migrate to the electrolyte/channel and penetrate
the interface into the semiconductor channel layer. The entering anions would cancel or
compensate some of the holes. This process is called electrochemical doping and occurs
mostly at the electrolyte–polymer semiconductor interface. Both these two methods are
often used in CNTFETs.

According to different analytes, the application of electrolyte-gated CNTFETs in chem-
ical and biological sensors mainly includes ion sensors, small molecule sensors, protein
sensors, DNA sensors, bacterial sensors, cell sensors, etc. Because the electrolyte-gated
FET sensor works in a solution environment, it is particularly important to investigate the
interaction between ions and CNTs. According to the interaction between ions and CNTs,
ion redox, chloride ion detection, nucleic acid aptamers, and ion-selective membranes can
be used for electrolyte-gated CNTFET for ion detection. For example, electrolyte-gated
FET with single-walled CNTs could be used to detect redox ions [34]. It was found that
ions with redox ability affect the conductivity of CNT channels mainly by adjusting the
electrochemical potential of the solution. Boussaad et al. [35] prepared electrolyte-gated
CNTFET sensors and studied their response to K3Fe(CN)6/K4Fe(CN)6, K2IrCl6/K3IrCl6.
It was found that redox ions can not only regulate the electrochemical potential of the
solution, but also directly conduct a redox reaction with the CNT, thereby regulating the
conductivity of the CNT channel.

4. CNTFET-Based Chemical Sensors
4.1. Gas Sensors

The CNTFET-based sensor can provide a high specific surface area for gas adsorption
because almost all atoms are exposed to the gas environment, which is helpful in improving
the response sensitivity. No matter as a single CNT FET or a CNT thin film FET, the main
sensing mechanism is derived from gas adsorption on CNTs/metals. Unlike polycrystal
line materials such as metal oxides, CNTs can avoid sensor poisoning and improve the
long-term stability of the device. CNTFET-based gas sensors can detect gas molecules
such as water vapor, NO2, NH3, H2, H2S, C2H5OH and methanol vapor, with very good
detection limits and detection ranges, and their anti-noise capabilities and detection accu-
racy are significantly better than traditional gas sensors, and even can detect a single gas
molecule [36]. Some recent works are summarized in Table 1.
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The research on carbon nanotube gas sensors began with the work published by
Kong [37]. Gas-sensitivity characteristics of CNTFET to NH3 and NO2 were investigated
by Tans [38]. The research found that, when exposed to NH3, the Fermi level in the p-type
CNTFET shifts to the conduction band, which results in a decreased hole concentration and
thus a decreased conductance; when exposed to NO2, the Fermi level shifts to the valence
band, and the hole concentration and the conductance increases. In addition, the transfer
curve would show a relative difference when exposed to different concentrations of the
same gas.

Table 1. The research on CNTFET for gas detection.

Analytes Detection Limit Response Time Author References

NO2 200 ppm 2–10 s Kong [37]
NO2 ppb level Not reported Sacco [18]
NO2 10 ppb Not reported L. Valentini [39]
NO2 125 ppt Not reported Kumar [40]
NH3 1% 1–2 min Kong [37]

Carbonyl Chloride 630 nm/refractive
index unit Not reported Ghodrati [41]

Methanol 1.3% Not reported Badhulika [42]
Ethanol 5.95% Not reported Badhulika [42]
Ethanol 50 ppm Nor reported Sean Brahim [43]
Ethanol 1.67% Not reported S. J. Young [44]

Methyl ethyl ketone 3% Not reported Badhulika [42]
Nitrogen dioxide 1 ppm Not reported Radouane [45]
Carbon monoxide 20 ppm Not reported Radouane [45]

Ammonia 1% 0.1 s panelF.Villalpando-
Páez [46]

Ammonia 100 ppb 15 min Qifei Chang [47]

Figure 3 shows several representative works of gas sensing with a CNTFET. Slobo-
dian [48] reported the detection of methanol gas by using MWCNTs. The reaction of
MWCNT FETs to methanol after treatment in acidic KMnO4 increased by about 12–46%,
as shown in Figure 3a. Sattari [48] spin-coated a composite of MWCNTs and polyaniline
(PANI) on glass and silicon substrates and performed sensor measurements on methane
gas. The MWCNT–PANI membrane presents greatly enhanced sensitivity to methane
gas compared to the pure PANI membrane, [49] as shown in Figure 3b. Badhulika [42]
used SWCNTs with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)
coating to make volatile organic compounds (VOCs) gas sensors. For saturated vapors of
methanol (Figure 3c), ethanol and methyl ethyl ketone, the detection limits are 1.3%, 5.95%
and 3%, respectively. Zhao [50] pointed out that NO2 and NH3 gases have strong enough
interactions with CNTs (chemical adsorption), while other gases with low adsorption
energy only bind to CNTs by Van der Waals force (physical adsorption). Woods [51] points
out that the molecules of volatile organic compounds (VOCs) interact weakly with CNTs.
The weaker interaction between VOCs and CNTs reduces the performance of their gas
sensors. Therefore, in monitoring VOCs, increasing the reactivity of CNTs is a key point.

Different approaches have been studied for the modification of CNTs to improve
the sensing performances, including using Au nanoparticles, certain solutions, polymers,
metals, or impurities.

CNTFET [52] gas sensors pretreated with Au nanoparticles prepared by electrophoretic
deposition method have high sensitivity and selectivity to NO2 and H2S, as shown in
Figure 3d. In S. J. Young’s study [44], a 10-nm thick Fe layer was sputtered followed by
synthesizing CNTs, and the fabricated CNT ethanol gas sensors can reach a sensitivity
of 1.67% under 800 ppm ethanol vapor concentration at room temperature, as shown
in Figure 3e. Radouane [45] used MWCNTs decorated with tin oxide for sensing 1 ppm
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nitrogen and 20 ppm monoxide. This hybrid sensor has an excellent sensitivity and
significantly eliminates the moisture cross-sensitivity.
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Impurity atoms have been incorporated into CNTs to improve their gas sensing
performance, such as pyridine-like sites, boron, and nitrogen atoms. F.Villalpando-Páez [46]
reported aligned CNx nanotubes sensors that are capable of sensing the toxic species
because of the presence of highly reactive pyridine-like sites on the tube surface which can
strongly bind to ammonia, acetone and OH groups (Figure 3f) and further change their
density of states. This type of sensor is both responsive and reusable at the same time. To
overcome the reliability problem owing to the weak van der Waals interaction between the
SWCNTs and the doped materials, Shu Peng [53] reports a concept of a brand new type
of CNT-based gas sensor by doping the impurity atoms (such as boron, nitrogen atoms)
into SWCNTs.

4.2. H2O2 Detection

H2O2 is a by-product of most enzyme-catalyzed reactions and is closely related to the
occurrence of many metabolites in the body, such as glucose, lactate, cholesterol. Thus,
the detection of H2O2 can be correlated to the concentration of these metabolites through
specific enzymatic reactions. Figure 4a shows the schematic of a CNTFET sensor for H2O2
with the bioreceptor of concavalin A, in which H2O2 is intermediate of glucose reaction,
and the concentration of H2O2 and thus the concentration of glucose can be detected by
CNTFET sensor. [54] The calibrated curve in Figure 4b shows a good linear relationship
between the relative resistance change of the sensor and the glucose concentration, which
is tested in human plasma, revealing the potential application of the sensor for blood
glucose measurements. Saumya [55] used CNTFET sensors to detect lactate (Figure 4c) and
glucose (Figure 4d) via the enzymatic reaction catalyzed by glucose oxidase and lactate
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oxidase, respectively, with H2O2 as a product of the reaction. This method possesses a
good monitoring sensitivity, and a decent detection limit of pico molar (pM) levels.
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via enzymatic reactions with H2O2 as a by-product [55].

5. CNTFET-Based Biological Sensors

Label-free biosensors are very attractive due to their simple procedure, high sen-
sitivity, rapid detection, easy of miniaturization and integration. The CNT with a 1-D
nanostructure has shown a strong sensitivity to the surface adsorption of many chemicals
and biomolecules. This enables the CNT to be an ideal material for constructing label-free
biosensors to detect proteins [56,57], nucleic acids, cells, and viruses [58–60].

5.1. Protein Detection

CNTs can be functionalized with specific antibodies to detect different proteins. When
proteins are bound onto CNTs by receptors on the surface, it leads to a change of source and
drain current and voltage. Some recent works are summarized in Table 2. Boussaad [61]
detected the non-covalent adsorption amount of cytochrome c in situ by monitoring the
conductance change in semiconductor CNTs. The basic structure of a SWCNT device is
shown in Figure 5a. The detection sensitivity is high, up to 20 protein molecules/carbon
tubes, as shown in Figure 5b. The possible reason for the change is that the positively-
charged cytochrome c reduces the electronic load of the p-type semiconductor CNTs,
resulting in a decrease in conductance. Figure 5c shows the illustration of the CNTFET
sensor for prostate-specific antigen (PSA) detection [62]. PSA monoclonal antibody was
immobilized on the SWCNT surface and PSA can be bound to the antibody for recognition.
When the device was exposed to 1.4-nM PSA, the current was changed about 2% as shown
in Figure 5d. Wang [63] used an antibody-functionalized CNTFET biosensor to detect in situ
chromogranins (CgA) released from neurons, as shown in Figure 5e,f, where small current
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increase was observed when neurons were attached onto the CgA antibody-modified
SWCNT FET. Marcin [64] fabricated sorted CNT networks with a nanobody receptor for
protein detection up to 1 pM.

Table 2. The research on CNTFET for protein detection.

Analytes Detection Limit Sensitivity Author References

Dopamine 0.062 µM Not reported Haiyan Cheng [65]
Dopamine 15 nM Not reported Jinyan Cheng [66]
Dopamine 0.87 nM Not reported Qitong Huang [67]

Specific protein detection 0.1 pM Not reported Marcin [64]
Non-structural protein 1 of the

dengue virus 2 ng/mL Not reported sAna Carolina M.S.Dias [68]

Prostate specific antigen 1 pg/mL Not reported Naimish P. Sardesai [69]
IL-6 0.25 pg/ mL Not reported Naimish P. Sardesai [69]

Hexahistidine-tagged capture
proteins 10 pM 600 s Jin-Ho Ahn [70]

Pig serum albumin 2.06 µmol/L Not reported Atsuhiko Kojima [71]
Urokinase plasminogen activator 25 nM Not reported Ryan M. Williams [72]
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Figure 5. CNTFET-based sensors for protein detection. (a) Schematic illustration of a SWCNT
device for cytochrome c detection [61]. (b) Conductance of the CNTFET as a function of the elec-
trochemical potential in phosphate buffer and 200 µM cytochrome c in buffer. (c) Schematic device
diagram and (d) current change of CNT nanosensors for prostate-specific antigen (PSA) detec-
tion [62]. (e) Schematic illustration of chromogranin (CgA) released from neurons and (f) its detection
by monitoring the current change of a CgA antibody-modified CNTFET [63].
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5.2. Cell Detection

The CNTs can be functionalized with the specific antibodies to detect different cells,
such as bacterial, pathogenic yeast, or mammalian cells. The living cell could also be
absorbed on the CNT surface because of physical or chemical reasons, which could lead to
the change of transfer curve, make it possible for detection.

Villamizar [73] reported a study using Salmonella antibodies to functionalize CNT-
FETs for Salmonella detection at a minimum concentration of 100 colony-forming units
(cfu)/mL, as shown in Figure 6a. In addition, a similar method has been used to construct
biosensors by functionalizing CNTFETs with Escherichia coli aptamer for Escherichia coli
detection [74]. The conductivity of the device is reduced by more than 50% after the
Escherichia coli is captured (Figure 6b).
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Figure 6. CNTFET-based sensors for cell detection. (a) From top to bottom, transfer curves before
and after exposure to Salmonella with concentrations of 100 cfu/mL, 300 cfu/mL and 500 cfu/mL,
respectively [73]. (b) Current change of the CNTFET for Escherichia coli detection [74]. (c) Prostate-
specific antigen PSA-ACT complex detection on the CNTFETs modified with a 1:3 linker to spacer
ratio [75].
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Kim [75] proposed a label-free protein biosensor based on a functionalized CNTFET
for detecting the prostate cancer marker, PSA-α1-antichymotrypsin (PSA-ACT complex),
as shown in Figure 6c. They functionalized the CNTFET with a 1:3 ratio of linker-to-spacer.
Owing to addition of spacers on the CNT surface, this approach could widen the distance
between the receptors. Thus, the negatively charged proteins can approach the channel
within the distance of the Debye length to further affect the conductance of the CNTFET
more easily. This results in a sensitive detection of 1.0 ng/mL.

5.3. Nucleic Acid Detection

Nucleic acid analytes, such as DNA and RNA, can be effectively combined with CNT-
FET biosensors. The detection of DNA by sequence-specific hybridization is a common
detection strategy to ensure the specificity of biosensors. The FET biosensor can functional-
ize complementary DNA/RNA/peptide nucleic acid (PNA) strands to the sensor surface,
so that the complementary binding target strand can produce the specific binding to ensure
its selectivity and produce a detectable electrical response. Some recent work has been
summarized in Table 3.

Table 3. The research on CNTFET for Nucleic acid-based analyte detection.

Analytes Receptors Detection
Limit Author References

12-mer ssRNA 12-mer PNA Not Reported Martínez [76]

10-mer ssDNA 10-mer ssDNA probe Single
molecule Sorgenfrei [77]

microRNA-122a p19 protein 1 aM Ramnani [78]

DNA Amino-functionalized
probe DNA

Attomolar
level Tetiana Kurkina [79]

ssDNA ssDNA probe 2 nM Stine [80]
ssDNA Peptide nucleic acid probe 100 fM Cai [81]
ssDNA ssDNA probe <1 attomole. ShunWang [82]
ssDNA ssDNA probe <1 attomole. ShunWang [82]
ssDNA ssDNA probe 2.4 nM Yin [83]

ssDNA ssDNA probe 0.5 nM Phuong
DinhTam [84]

ssDNA ssDNA probe 0.7 fM B Zribi [85]

ssDNA Amine-modified DNA
detection probe 0.1 nM Wanwei Qiu [86]

ssDNA ssDNA 1 pM Alexander Star [87]
ssDNA ssDNA 100 fM Xiaochen Dong [88]
ssDNA Amino modified PNA 6.8 fM Kenzo Maehashi [89]
ssDNA Peptide nucleic acid probe 10 fM Zheng [90]

As shown in Figure 7a, the sensing of DNA relies on the binding of DNA double-
strand which has an effect on the CNTFET transfer curve [91]. The concentration of DNA
will be detected by the shift degree of the transfer curves. Star [87] reported a CNT network
FET for the detection of a specific DNA sequence.

A sequence. This kind of sensor showed the ability to recognize the target DNA
sequences by immobilizing the synthetic oligonucleotides. It was further approved that
ssDNA was successfully immobilized and hybridized with the target subsequent DNA by
utilizing fluorescence-labeled oligonucleotides. The sensor had a detection limit of 1 nM
(Figure 7b), and was both highly sensitive and low-cost. Dong [88] further improved the
CNTFET DNA sensor by labeling a reporter DNA probe with Au nanoparticles in the
hybridization step, and the detection process is illustrated in Figure 7c. MAEHASHI [89]
demonstrated a CNTFET-based DNA sensor which covalently immobilized amino modi-
fied PNA oligonucleotides at 5′ onto the Au surface of the back gate. The sensor can detect
DNA as low as 6.89 fM.



Sensors 2021, 21, 995 12 of 18Sensors 2021, 21, x FOR PEER REVIEW 12 of 18 

 

 
Figure 7. CNTFET-based sensors for DNA detection. (a) Working principle of CNTFET-based DNA 
sensors [91]. (b) Normalized conductance as a function of target DNA concentrations [87]. (c) Sche-
matic illustration of DNA detection with reporter DNA conjugated with Au nanoparticles [88]. 

5.4. Virus Detection 
CNTFET-based biosensors can be used for the monitoring of a variety of viruses. The 

virus sensing is usually based on detecting the DNA of the virus through the immobiliza-
tion of DNA or PNA, or directly detecting the virus through the immobilization of the 
antibody or peptide. Some recent works are summarized in Table 4. Dastagir [92] con-
structed an FET sensor using functional CNT as the channel material to monitor the se-
quence of the hepatitis c virus (HCV) (Figure 8a). They used PNA, which possesses high 
affinity and stability for RNA hybridization, to perform CNT functionalization, and a sen-
sor that could carry on an unlabeled detection with a detection limit of 0.5 pM, as shown 
in Figure 8b.  

Thu [93] reports on a CNTFET for the selective detection of H5N1. In this sensor, the 
CNT network acts as a conductor channel, producing signal changes when the virus binds 
to specific receptors on the CNT surface. The specific DNA sequence was a receptor bound 
to the H5N1 virus, with a detection limit of up to 1.25 pM and a sensitivity of 0.28 nM/nA, 
as shown in Figure 8c. Tran [91] reported a CNTFET-based sensor for the detection of 
influenza type A virus DNA. They used an immobilized single DNA strand on the CNT 
network as the probe which would hybridize with the analyte DNA to further alter the 

Figure 7. CNTFET-based sensors for DNA detection. (a) Working principle of CNTFET-based
DNA sensors [91]. (b) Normalized conductance as a function of target DNA concentrations [87].
(c) Schematic illustration of DNA detection with reporter DNA conjugated with Au nanoparticles [88].

5.4. Virus Detection

CNTFET-based biosensors can be used for the monitoring of a variety of viruses. The
virus sensing is usually based on detecting the DNA of the virus through the immobilization
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of DNA or PNA, or directly detecting the virus through the immobilization of the antibody
or peptide. Some recent works are summarized in Table 4. Dastagir [92] constructed an
FET sensor using functional CNT as the channel material to monitor the sequence of the
hepatitis c virus (HCV) (Figure 8a). They used PNA, which possesses high affinity and
stability for RNA hybridization, to perform CNT functionalization, and a sensor that could
carry on an unlabeled detection with a detection limit of 0.5 pM, as shown in Figure 8b.
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Figure 8. CNTFET-based sensors for virus detection. (a) The experimental setup and (b) transcon-
ductance change vs. RNA concentrations of the hepatitis c virus (HCV) sensor [92]. (c) Detection of
H5N1 at different concentrations [93]. (d) Response to influenza type A virus DNA within 1 min [91].

Thu [93] reports on a CNTFET for the selective detection of H5N1. In this sensor, the
CNT network acts as a conductor channel, producing signal changes when the virus binds
to specific receptors on the CNT surface. The specific DNA sequence was a receptor bound
to the H5N1 virus, with a detection limit of up to 1.25 pM and a sensitivity of 0.28 nM/nA,
as shown in Figure 8c. Tran [91] reported a CNTFET-based sensor for the detection of
influenza type A virus DNA. They used an immobilized single DNA strand on the CNT
network as the probe which would hybridize with the analyte DNA to further alter the ion
concentration on the surface. As the ion concentration changes, the transfer curve of the
CNTFET changes. This sensor has a detection limit of 1 pM within a linear detection range
from 1 pM to 10 nM and also shows superior responsiveness in less than one minute, the
response time is shown in Figure 8d. Fatin [94] demonstrates a MWCNT-based sensor for
HIV-1 virus which utilized a split RNA aptamer as the detection probe. The sensor has a
detection limit of 600 pM.
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Table 4. The research on CNTFET for virus detection.

Analytes Detection Limit Sensitivity Author References

H5N1 virus 1.25 pM 0.28 nM/nA Vu [93]
Influenza A virus 10 µM Not reported Thi [87]

Avian influenza virus 1 EID50 (50% embryo infectious doses)/mL Not reported Yin-Ting Yeh [95]

H1N1 180 TCID50 (50% tissue culture infective
dose)/mL Not reported Dongjin Lee [96]

Hepatitis C virus pM level Not reported Tawab Dastagir [92]

Dengue virus 2 ng mL−1 Not reported Naimish P.
Sardesai [68]

M13-bacteriophage 0.5 pM Not reported HS Mandal [97]
Dengue virus 0.1 µg mL−1 Not reported Mízia M. S. Silva [98]

Hepatitis B 0.03 ng mL−1 Not reported Diego G.A.Cabral [99]
Hepatitis B <1 attomole Not reported ShunWang [6]

SARS-CoV-2 35 mg/L Not reported Rebecca L. Pinals [100]
Hepatitis C 0.7 fM Not reported B Zribi [85]

Papilloma virus <1 attomole Not reported ShunWang [82]
Human papilloma virus 130 µA/V Not reported Gopinath [101]

6. Conclusions

The CNTs have shown the extraordinary electrical and sensing properties, and we
here review the recent progress of the CNTFET-based chemical and biological sensors. The
CNTs generally go through covalent or non-covalent surface functionalization, in order to
generate sufficient or selective sensing signals. The configurations include the general FET
structure and electrolyte-gated FETs. The CNTFET-based sensors have been applied for
the effective chemical sensing of various gases or H2O2. The bioreceptor functionalization
of the CNTFET enables the construction of various biological sensors for detecting a
variety of proteins, cells, nucleic acids, and viruses. Due to the nanoscale channel with a
large surface to volume ratio and an atomically thin body to provide ideal electrostatic
control, a small change of the surrounding environment can significantly modify CNTFETs’
electrical characteristics, and, thus, a small concentration of the target analyte that can
bind to the surface of the channel can result in a detectable change of the electrical signal.
So, these sensors generally exhibit a highly sensitive detection of the target analyte. We
expect the CNT transistor-based sensors to deepen the fundamental understanding of the
interaction of the analyte with the CNTFET, as well as explore a wide range of applications
in healthcare, environmental, and food. Although the progress for the CNTFET-based
chemical and biological sensors is promising, the field still faces the critical challenges
for practical applications, and these include (1) the unstable electrical performance of the
CNTFET over time; (2) the fluctuation of the sensing performance by small variation of
the surroundings, such as the buffer condition; and (3) the non-linear calibration curve
between the electrical signal and the concentration of the analyte. These issues hamper the
realization of portable and miniaturized systems using FET transduction and significant
lowering of the manufacturing cost will also be critical to allow CNTFET-based sensors to
be marketed.
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