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Abstract: A SiC Schottky dual-diode temperature-sensing element, suitable for both complemen-
tary variation of VF with absolute temperature (CTAT) and differential proportional to absolute
temperature (PTAT) sensors, is demonstrated over 60–700 K, currently the widest range reported.
The structure’s layout places the two identical diodes in close, symmetrical proximity. A stable and
high-barrier Schottky contact based on Ni, annealed at 750 ◦C, is used. XRD analysis evinced the even
distribution of Ni2Si over the entire Schottky contact area. Forward measurements in the 60–700 K
range indicate nearly identical characteristics for the dual-diodes, with only minor inhomogeneity.
Our parallel diode (p-diode) model is used to parameterize experimental curves and evaluate sensing
performances over this far-reaching domain. High sensitivity, upwards of 2.32 mV/K, is obtained,
with satisfactory linearity (R2 reaching 99.80%) for the CTAT sensor, even down to 60 K. The PTAT
differential version boasts increased linearity, up to 99.95%. The lower sensitivity is, in this case,
compensated by using a high-performing, low-cost readout circuit, leading to a peak 14.91 mV/K,
without influencing linearity.

Keywords: wide-range temperature sensor; SiC-Schottky diode; sensitivity; linearity; readout circuit

1. Introduction

Space missions, automotive, and various industries involve applications with a wide
thermal variation and a large temperature range for detection. Here, temperature sensing
plays a major role in ensuring safe operation or quality control capabilities. However, when
working in such hostile environments, the performances of conventional sensing solutions
can be affected by accuracy degradation or worse, general failure [1,2]. Usually, these
detection systems include a series of commercial temperature sensors, which are based on
thermocouples [3] or resistive temperature detectors [4,5]. Their accuracy and reliability
are comparable, but neither are competitive with semiconductor-based temperature sen-
sors [6,7], especially those fabricated on robust materials [8–10]. The increased request for
high temperature-capable applications makes research in this domain constantly strive to
find alternative solutions, which can satisfy specifications. However, electronic devices
and systems based on conventional semiconductors, such as Si, are limited to operate at
temperatures below 400 K [11]. On the other hand, wide-bandgap semiconductors have
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attracted much attention due to their electrical properties, together with their superior me-
chanical and chemical resilience. In particular, silicon carbide (SiC) has emerged as a viable
alternative to replace Si in power and harsh-environment applications. SiC technology
is very similar with that of Si and, in the last decade, its manufacturing processes have
matured considerably, especially regarding the improvement in fabricated material defect
density [12–18] and reliability of SiC-based devices [19–26]. In this regard, the simplest
and most technologically mature device is the Schottky diode (SBD). When working as
a temperature sensor [27], the key performances are linearity of the voltage-temperature
dependence and long-term stability. The Schottky metal is also crucial, as the resulting
contact’s barrier height (SBH) needs to be sufficient in order to ensure exponential current-
voltage dependence for the forward characteristics over several orders of magnitude, at all
temperatures of interest. In this sense, many literature contributions report metals such as
Ti/Al [28], Ni [29], Pt [30] being used to achieve stable Schottky contacts on SiC. The most
promising candidate for high temperature SiC Schottky diode-based sensors is Ni, due to
its high work function and the capability to form very stable nickel silicide compounds
on SiC after rapid post-metallization annealing in inert atmospheres [31]. It ensures a
reasonably constant SBH, with values upwards of 1.73 V, for wide temperature ranges [25].
However, because of the detrimental effect of Schottky contact inhomogeneity [25,32–38],
these indicators of merit degrade significantly for large temperature variations. As such,
there are no reports of SiC-Schottky diodes working predictably over vast temperature
ranges, much less so sensors. However, with the proposal of differential measurement
techniques for SiC-Schottky diode temperature sensors [28,39], which considerably increase
sensing linearity, as well as the recent introduction of a practical inhomogeneity modeling
technique [40], the premises are set for investigating the potential performances of these
devices over ranges spanning from cryogenic levels to high-temperature domains.

In this paper, we present wide-temperature sensing performances of a dual Schottky
diode structure capable of working in either single or differential configurations. The
structure is designed to operate at temperatures in the 60–700 K range. In order to increase
sensitivity while maintaining linearity levels at an optimum, a simple and cost-effective
readout circuit architecture is proposed and simulated for the differential topology.

2. Materials and Methods
2.1. Temperature Detection Methods Based on SiC Schottky Diodes

The forward voltage of Schottky diodes, biased at constant current, is given by the
thermionic emission equation (neglecting the impact of the series resistance) [8,25]:

VF ≈ nΦBn,T + nVth ln
(

IF

AnAST2

)
(1)

where An is Richardson’s constant, AS is the contact area, Vth is the thermal voltage, n is
the ideality factor, and ΦBn,T is the conventional barrier. From Equation (1), a quasi-linear
complementary variation of VF with absolute temperature (CTAT) can be expressed, in
respect to a reference (T0), thus:

VF(T) = nΦBn,T −
[

nΦBn,T + 2nVth0 ln
(

T
T0

)
−VF(T0)

]
T
T0

(2)

Vth0 is the thermal voltage associated with T0. From Equation (2), using Schottky
diodes as CTAT sensors over moderate domains yields high sensitivities (in excess of
2 mV/K, depending on bias current levels, which determine VF(T0)) and reasonable linear-
ity [24,28], while using simple and cost-effective readout circuits [8]. However, extending
the operating temperature range evinces two significant causes for linearity degradation
and sensitivity inconsistency:
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I. The innate variation of VF. Equation (2) contains a non-linearly temperature-
dependent logarithmic term, which becomes significant when extending the
T domain.

II. Contact inhomogeneity. Analyzing Equation (2), it can be seen that Schottky diodes
used for temperature sensing need to have constant barrier height and ideality
factor values over the entire range of interest. Fluctuations in these parameters,
primarily due to Schottky contact inhomogeneity, have been, however, ubiquitously
reported [36,41–45]. The domain of variation for n and ΦBn,T is proportional with
temperature range.

These sources of performance degradation can be mitigated using sensing methods
based on differential forward voltage (∆VF) [39,46]. In contrast to the standard technique,
∆VF can either increase (PTAT) or decrease (CTAT) with absolute temperature. Three ways
of obtaining ∆VF are discussed:

The single diode, dual current levels (SDDC) approach utilizes the voltage differential
from a single diode, biased sequentially at two current levels, IFh > IFl (for the PTAT case):

∆VF(T) = VFh −VFl
(1)⇒ ∆VF(T) = n·Vth· ln

(
IFh
IFl

)
= n·k

q
·T· ln

(
IFh
IFl

)
(3)

This expression for ∆VF(T) is directly proportional with temperature. The impact of
contact inhomogeneity can also be alleviated by carefully tuning the IFh and IFl levels. Thus,
SDDC is the technique that ensures best linearity. Sensitivity magnitude is proportional
to the IFh/IFl ratio. The downside is that the sequential biasing involves a readout circuit
with a significantly more complex control loop. Acquiring the differential voltage requires
either digital memory blocks or sample-and-hold cells, thereby delaying signal processing
and increasing response times.

For the dual diode, single current level (DDSC) approach, the voltage difference is
obtained from two diodes with different active areas (ASh > ASl), biased at the same current:

∆VF = VFh −VFl
(1)⇒ ∆VF(T) = n·Vth· ln

(
ASeffh
ASeffl

)
(4)

This technique needs both diodes to have identical, temperature-invariable n and
ΦBn,T. In Equation (4), it is mandatory to use the effective contact areas (ASeffh,l), which
generally differ greatly from their nominal values (ASh,l). We presented procedures to
evaluate ASeff for Schottky diodes with non-uniform contacts (like Ni/SiC) [25,40]. While
this technique requires readout circuits which are comparable in complexity and cost with
the standard temperature detection method, its performances are much more susceptible
to the quality of the Schottky interface. Inhomogeneities present on the contact surface,
for either or both diodes, can significantly increase local current flow, leading to apparent
effective area modifications, which then affect linearity and sensitivity consistency.

Finally, the dual diode, dual current levels (DDDC) approach finds a suitable compro-
mise between the previous techniques by employing two identically-sized diodes, each
biased at a different current. In this case, the differential voltage expression is identical
to Equation (3). This method inherits the SDDC technique’s robustness to contact inho-
mogeneity influence through tuning of IFh and IFl values, while also allowing for the use
of a simple and cost-effective readout circuit architecture. Sensor system performances
are only noticeably affected by mismatches between either the dual diodes or their bias
current sources.

Considering the advantages and drawbacks of the aforementioned temperature detec-
tion techniques, the DDDC method (with PTAT variation) was selected for implementation
and comparison with the standard approach (single diode, biased at constant current,
CTAT dependence), in the context of temperature sensing in a very wide range.
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2.2. Sample Preparation

The sensor structures consist of two SiC Schottky devices placed in close proximity
(dual-diodes), with diagonal reverse symmetry, as is evinced in the Figure 1.
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Figure 1. Dual-diode sensing element: (a) schematic illustration and (b) encapsulated structure.

The fabrication process started from an n-type 4H-SiC substrate with 8 µm epitaxial
layer, having~1016 cm−3 doping concentration. After a standard RCA [47] chemical clean-
ing, an initial dense layer of SiO2 (500 nm) was grown by Low Pressure Chemical Vapor
Deposition (LPCVD), followed by a thermal annealing in O2 atmosphere at a temperature
of 950 ◦C, for 30 min. Another SiO2 layer was subsequently deposited, without annealing,
resulting in a less compact film. Next, circular active windows, with 400 µm diameters,
were etched (using NH4F/CH3-COOH (180 mL/200 mL) solution in the oxide layers,
resulting in a ramp profile termination [8,10]. This oxide ramp ensures a smooth current
density distribution. After the active areas defining, the ohmic contact on the backside was
obtained by deposition of a thin film of Ni (100 nm), followed by a rapid post-metallization
annealing at a temperature of 1050 ◦C for 3 min in Ar atmosphere. Another thin film depo-
sition of Ni (100 nm), in the active windows, was performed. A rapid post-metallization
annealing at a temperature of 750 ◦C for 3 min in Ar atmosphere was carried out in order to
obtain the Schottky contacts. Contact pads and the final back contact were finally defined
after a deposition of (Cr (20 nm)/Au (300 nm)) on both sides of wafers. The test structures
were diced into dual-diode chips and encapsulated in compact TO-39 packages using
wire-bonding technology, as shown in Figure 1b.

2.3. Readout Circuit Architecture

The readout circuit is used to acquire and amplify the forward voltage difference given
by the aforementioned dual-diode sensing element. It also biases the two identical diodes
at different constant currents (the DDDC approach). Figure 2 represents the schematic of
the proposed circuit. It includes a cost-effective, top-linearity instrumentation amplifier,
comprising two low-noise, high-reliability OP07 [48] operational amplifiers, four resistors,
and a potentiometer (P1-Figure 2) for output span tuning. The dual SiC Schottky diode
structure is biased by an I:nI Bias block, based on the high-precision REF200 [49] current
reference produced by Texas Instruments.

In order to greatly simplify the transfer function of the instrumentation amplifier,
R1 = R2 and R3 = R4 is usually considered:

VO =

(
1 +

R3

R1
+ 2·R3

P1

)
·(VFh −VFl) (5)
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Figure 2. Schematic of the differential temperature measurement circuit.

For an optimum common-mode rejection, all resistors (R1–4) should be equal. As a result:

VO = 2·
(

1 +
R1

P1

)
·(VFh −VFl) (6)

The value of 10 kΩ was selected for these components in order to obtain a suitable
compromise between power consumption, phase margin, and thermal noise. Because
sensing diode voltages can reach low values at high operation temperatures, the circuit is
powered by a ±15 V supply, which ensures good linearity over the entire output swing.
This is the only noticeable difference between this topology, suitable for differential PTAT
sensing, and the one described in [8], used for CTAT sensors. Otherwise, the two readout
circuits are similar in complexity, cost, and gain tuning flexibility, offering high versatility
over a wide array of temperature monitoring applications.

3. Results
3.1. X-ray Diffraction Analysis

In order to preliminarily assess the Schottky and ohmic contacts’ homogeneity, X-ray
diffraction measurements were performed in grazing incidence geometry. The X-ray source
was kept at 0.5◦, while the detector scanned from 2θ = 20◦ up to 70◦. A scan step of 0.01◦ at
4◦/min was used for these investigations. Figure 3 presents the Grazing Incidence X-ray
Diffraction (GI-XRD) patterns for both contacts.

As can be observed in Figure 3, both contacts present multiple diffraction peaks. These
were assigned unambiguously as the Ni2Si phase, according to International Center for
Diffraction Data (ICDD) database with card no. 900–9210 that belongs to the orthorhombic
62: Pbnm spatial group. Thus, the thermal treatment led to the formation of only the Ni2Si
phase, without any additional phases. La Via et al. [50] report that a reaction between Ni
and Si gives only the formation of the Ni2Si phase over a large annealing temperature
range, between 600 ◦C and 950 ◦C. Later, the existence of a combination between Ni31Si12
and Ni2Si phases at 600 ◦C with an increase in Ni2Si percentage at 950 ◦C was also observed
by XRD [51]. Kuchuk et al. [52] reported the formation of the Ni2Si phase as a result of
a thermal treatment at 600 ◦C for 15 min. Increasing the annealing temperature further
improved the occurrence rate of the NiSi2 phase. In our X-ray patterns, there are no traces
of Ni or Si peaks, indicating that the thermally activated interaction between Ni and SiC
had occurred. Moreover, taking into account the large area of the X-ray spot, namely
1 cm2, we conclude that there is no residual Ni on either contact. Regarding the crystal
quality, the diffraction peak position of the Schottky contact, indicated with blue dashed
line in Figure 3, was attributed to different Miller indices. There is a preferential orientation
along the (311) direction. The increase in annealing temperature led to more pronounced
polycrystalline features for the ohmic contact, which does not present a clear preferential
orientation. The mean crystalline size was evaluated from a Williamson-Hall plot [53], with
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values of 20.1 nm (Schottky contact) and 19.6 nm (ohmic contact). Comparable crystalline
domain sizes indicate that the thermal treatment did not induce the formation of additional
structural defects. The XRD findings suggest that the thermal treatment led to Ni2Si phase
formation on the entire Schottky and ohmic contact areas, for each of the dual-diodes.
Additional dislocations were not generated.
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Figure 3. Grazing Incidence X-ray Diffraction (GI-XRD) patterns for the Schottky contact annealed at
750◦ (black line) and for the ohmic contact annealed at 1050 ◦C (red line), respectively. The dashed
lines indicate the diffraction peaks position of the Schottky contact besides to the ohmic one.

3.2. Modeling and Sensing Performances

The test samples were electrically characterized over a wide range of temperatures,
starting from 60 K up to 700 K, with a step of 20 K. A Keithley 4200 Semiconductor Char-
acterization System coupled with a Janis closed cycle refrigerator (CCS-450), capable of
providing adequate means of cooling samples to temperatures below 77 K (liquid ni-
trogen), was used to perform measurements from 60 K to 500 K. For high-temperature
measurements (300–700 K), the system described in [8] was used, comprising a Varian
Chromatograph Oven and another Keithley 4200 SCS. Current-voltage (I-V) characteristics
were acquired with the two systems on different days and experimental results were com-
pared in the common 300–500 K interval to ensure reproducibility. The high-temperature
stability of structures obtained with similar technological processes was demonstrated
by thermal-cycling in [8]. Figure 4 depicts exemplary I-V-T characteristics for the dual
diodes (DA and DB). It can be seen that the devices have nearly identical forward electrical
behavior over the entire 60–700 K domain. The exponential portion of the curves can be
identified for each experimental characteristic, spanning at least five orders of magnitude,
even at 700 K. For these reasons, it was considered that DA and DB both have the same
Schottky contact parameters.

For the curves in Figure 4, the conventional barrier and ideality factor were extracted
at each temperature, using the conventional method [54]. ΦBn,T was found to increase with
temperature from 0.94 V to approx. 1.7 V, while n decreased from 1.85 to 1.01. These results
indicate the presence of contact surface inhomogeneity. Thus, our recently introduced
parallel-diode (p-diode) model was used in order to thoroughly characterize the sample,
according to [40]:

IF =
m

∑
i=1

IF,i = AnAST2
m

∑
i=1

exp
(
−ΦBn,i

Vth
− pe f f ,i

)[
exp

(
VF − RS,iIF,i

nVth

)
− 1

]
(7)
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The model assumes that an inhomogeneous contact comprises multiple regions which
behave like ideal, parallel-connected diodes, each with associated barrier height (ΦBn,i),
non-uniformity parameter (peff,i), near-unity ideality factor (n ∼= 1), and series resistance
(RS,i). Out of the entire number of regions, only a few (counted by the model parameter
m) contribute significantly to current conduction over the entire investigated temperature
range. The peff value is used to estimate the surface area for each of these essential re-
gions [25,40]. Note that the total area occupied by the m regions can only be equal to or
less than the nominal area (AS), with closer values indicating a better-quality diode.
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Figure 4. Forward I-V characteristic for the dual SiC Schottky diodes. Measurement data (symbols)
and their p-diode model-fitted counterparts (lines).

In order to fully replicate the characteristics in Figure 4, m = 4 parallel-connected diodes
(Dp1–Dp4) were necessary, with their model-parameters given in Table 1. ΦBn values are
constant throughout the entire temperature range and tend towards the theoretical barrier
height value for Ni2Si [25].

Table 1. Fitting parameters for sample S1.

Parallel Diode ΦBn [V] peff n

Dp1 1.56 8.75

1.01
Dp2 1.615 4.14
Dp3 1.665 1.84
Dp4 1.73 0.23

The values of peff (Table 1) were estimated using Richardson plots over various tem-
perature intervals and iteratively tuned, according to the technique proposed in [25,40].
Afterwards, they were used to determine occupied area percentages in respect to AS, for
each parallel diode, as depicted in Figure 5. Note that nearly the entire Schottky contact
surface is used for current conduction, especially at high bias and high temperatures.

Our model entails the evaluation of series resistance contributions [40]. Accordingly,
the variations with temperature for the parallel diodes’ series resistances are illustrated in
Figure 6. Because Dp3 and Dp4 have comparable current contributions at all temperatures,
their individual series resistances could not be deconvoluted. Their combined ohmic
behavior was determined, at each temperature, with Cheung’s method [54]. RS values
for Dp1 and Dp2 were adjusted to account for area differences, while keeping the same
variation trend as RS,Dp3 || RS,Dp4.
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Figure 5. Parallel diode area percentages in respect to total Schottky contact area.
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Figure 6. Series resistance temperature variation for the model parallel diodes (Dp1–Dp4).

The model-fitted forward curves, also depicted in Figure 4 (lines), are in good agree-
ment with measurements for the entire temperature span. The fitting used Equation (7)
with m = 4, the parameters from Table 1, and RS data from Figure 6. Notably, the ideality
factor, n = 1.01, was considered for each parallel diode, in the full 60–700 K domain. Dp3
and Dp4 significantly affect total current at all temperatures, especially in the high-bias
region. Dp1 and Dp2 only influence conduction in the low-bias, low-temperature portion
of the forward characteristics. Their impact becomes negligible past 200 K. For this investi-
gated sample, our model [40] was able to completely reflect experimental forward behavior
even at cryogenic temperatures (Figure 4). This is because, due to their area sizes which
add up to almost the entire nominal surface (Figure 5), none of the parallel diodes suffers
from the “pinch-off” effect [41]. This result attests to the high uniformity of the Schottky
metal (Ni2Si, see Figure 3).

Analyzing the modeled electrical behavior of the dual-diodes (Figures 4–6 and Table 1),
a few conclusions can be drawn about their usability as temperature sensors:

I. DA and DB may work over the entire domain of 60–700K, due to the localized
effects of the parallel diodes. Forward bias-current values can be tuned to higher
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levels in order to restrict inhomogeneity influences (having only two parallel
diodes dictate the majority current flow, rather than all of them).

II. The standard CTAT sensing technique (using a single diode, either DA or DB,
biased at constant current) will suffer from poor linearity. This is because both Dp3
and Dp4 significantly affect conduction in the high-bias domain, but with different
contributions depending on temperature.

III. Using PTAT sensing techniques based on voltage difference can greatly improve
linearity. As Dp3 and Dp4 have comparable barrier heights and effective areas,
their combined apparent barrier height will have a slow temperature variation,
which will be mitigated by forward voltage differentiation.

Following these conclusions, an assessment of DA and DB temperature sensing perfor-
mances was carried out. Their forward voltage variations with temperature, at different
constant current levels, are presented in Figure 7, for each diode.
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Figure 7. Forward voltage as a function of temperature for (a) DA and (b) DB at several bias currents.

As expected, a CTAT dependence is obtained. For each individual device, a linear
regression process on the characteristics in Figure 7 was performed. The slope of the
fitted curves yielded the sensitivity. In order to assess linearity, the adjusted coefficient of
determination (R2) was also determined. This parameter quantitatively evaluates how well
a proposed model (in this case, a linear dependence) predicts experimental measurements.
Additionally, for each current level, the fitting root mean squared error was divided by
associated sensitivity in order to determine the temperature error (eT) [55]. As expected, eT
varies complementarily to R2 [55]. Results are presented in Figure 8.
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The sensitivities are nearly identical for DA and DB at all current levels, with a peak of
2.32 mV/K at 100 nA. Conversely, there are noticeable differences in linearity, favoring DB.
Even so, the highest value for R2 is under 99.80%, below other reported results for such
CTAT SiC-Schottky diode sensing elements [24,56]. These results confirm that extending
the operation range to include both cryogenic and high-temperature levels, naturally
impacts linearity (because of innate VF variation, and contact inhomogeneity, as stated in
Section 2.1).

Temperature-sensing performances were also evaluated for differential setups corre-
sponding to the DDDC approach. Thus, Figure 9 presents the temperature variation of both
voltage differentiation possibilities (DA≡Dh, when ∆VF,AB = VF,A–VF,B and DB≡Dh, when
∆VF,BA = VF,B–VF,A) at several bias current ratios. A PTAT variation is observed. In this case,
temperature-sensitive electrical behavior could only be achieved in the 100–700 K interval.
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A linear regression process was also performed on the characteristics in Figure 9 in 

order to determine the sensitivity, linearity, and temperature error for the two DDDC con-

figurations, with results plotted in Figure 10, for each current ratio. 

Figure 9. (a) ∆VF,AB and (b) ∆VF,BA with temperature, for different bias current ratios.

A linear regression process was also performed on the characteristics in Figure 9 in
order to determine the sensitivity, linearity, and temperature error for the two DDDC
configurations, with results plotted in Figure 10, for each current ratio.
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Figure 10. Sensitivity, coefficient of determination, and temperature error vs. diode current ratios for both differe-
ntial configurations.

Sensitivity values increase with current ratio and are nearly identical between the
DA≡Dh and DB≡Dh cases. The maximum obtained was approx. 0.77 mV/K for the
1 mA/100 nA bias current ratio. On the other hand, linearity is affected by topology,
with a peak R2 ∼= 99.95 % achieved for the DA≡Dh setup, at a bias ratio of 1 mA/1 µA. This
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result, together with a temperature error roughly three times lower, represent significant
improvements over the CTAT variant (Figure 8b).

Overcoming the sensitivity loss of the DDDC approach can be achieved by using the
circuit presented in Section 2.3. Investigations were carried out for the best-performing
DA≡Dh configuration. In order to obtain the voltage-temperature dependence for the
entire system, comprising both dual-diode sensing element and readout circuit, VO as a
function of input voltage difference was first simulated. P1 (Figure 2) was set to 910 Ω,
resulting in a gain of approx. 24 (Equation (5)). The obtained transfer characteristics were
composed with the data in Figure 9b for the 1 mA/100 µA and 1 mA/1 µA bias currents.
The simulations were repeated for a higher gain of 76 (P1 set to 270 Ω) and again composed
with the Figure 9b data. The resulting VO (T) dependences are plotted in Figure 11, with
sensing performances given in Table 2.
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Table 2. Sensor system performances.

Bias Current Setup
Gain S [mV/K] R2.5 [%]

Mean Squared
Error [%]DA≡Dh DB≡Dl

1 mA 100 µA 24 4.7 99.79 0.15
1 mA 100 µA 76 14.91 99.78 1.54
1 mA 1 µA 24 14.01 99.95 0.3

In all cases, adding the readout circuit significantly increases sensitivity, while keeping
R2 virtually unchanged. Compared to the CTAT variant, using a gain of 24 is sufficient
in order to match and even exceed sensitivity performances, without affecting linearity.
Increasing the readout circuit’s gain further can compensate for S differences between bias
current ratios; however, the mean squared error increases considerably (Table 2). Hence,
only for the 1 mA/100 µA ratio, the gain could be increased to 76, which ensures maximum
output swing for the readout circuit, while still maintaining linearity. The 1 mA/100 µA
scenario was selected due to practical considerations. While it is obvious that the overall
top results are attained for the 1 mA/1 µA case, obtaining accurate matching between such
high-ratio current sources would notably increase the complexity and cost of the I:nI Bias
block (Figure 2).

Sensing performances are summarized, alongside results obtained in recent papers,
in Table 3. For a clear comparison, the sensing techniques are categorized separately.
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Sensitivity and linearity values are similar between considered contributions, with this
work covering over double the working temperature interval.

Table 3. Sensor system performance comparison.

This Work [39] [46] [55]

Sensing topology Single SBD (CTAT)/Differential
(PTAT) Differential (PTAT) Differential

SBD/JBS (PTAT) Single SBD (CTAT)

Temperature range 60–700 K (CTAT)
100–700 K (PTAT) 147–400 K 298–573 K 233–473 K

Sensitivity
2.32 mV/K (Single)

0.77 mV/K (Differential)
14.91 mV/K (Differential + Readout)

0.307 mV/K 4.32 mV/K (JBS)
2.85 mV/K (SBD) 3.425 mV/K

R2 99.8% (Single)
99.95% (Differential) 99.93% 99.96% 99.96%

4. Conclusions

This paper presented a dual-diode structure suitable for thermal sensing over very
wide intervals, from cryogenic to high-temperature. It comprises two SiC-Schottky diodes
with matched contact areas and symmetrical layout, placed in close proximity. These
devices have nearly identical forward current-voltage characteristics, making them suitable
for differential measurements. A highly uniform Schottky contact, covered with Ni2Si,
was observed by XRD analysis on fabricated samples. Forward I-V-T measurements in
the 60–700 K range evinced slight inhomogeneity. Thus, our p-diode technique was used
to model the electrical behavior over the entire temperature domain, the largest reported
so far. Two parallel diodes were sufficient in order to account for the majoritarian current
at temperatures above 200 K. An additional two diodes were necessary for fitting lower
temperature curves, at low-bias. The series resistance and effective surface of each parallel
diode were taken into account in the model. Due to the large values obtained for these
effective areas, the “pinch-off” effect was negligible, even at cryogenic temperatures.

The modeled dual-diodes proved suitable for CTAT and PTAT sensors over at least the
100–700 K range. For the CTAT variant, a high sensitivity was obtained (2.32 mV/K), with
satisfactory linearity (R2 upwards of 99.80%) down to 60 K. Significantly better linearity
was observed for the PTAT differential version, with R2 reaching 99.95%. In this case,
the low sensitivity was overcome by using a high-performing, low-cost readout circuit.
Simulations demonstrated sensitivities up to 14.91 mV/K, without affecting linearity.
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