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Abstract: Estimating the depth of image and egomotion of agent are important for autonomous
and robot in understanding the surrounding environment and avoiding collision. Most existing
unsupervised methods estimate depth and camera egomotion by minimizing photometric error
between adjacent frames. However, the photometric consistency sometimes does not meet the
real situation, such as brightness change, moving objects and occlusion. To reduce the influence
of brightness change, we propose a feature pyramid matching loss (FPML) which captures the
trainable feature error between a current and the adjacent frames and therefore it is more robust than
photometric error. In addition, we propose the occlusion-aware mask (OAM) network which can
indicate occlusion according to change of masks to improve estimation accuracy of depth and camera
pose. The experimental results verify that the proposed unsupervised approach is highly competitive
against the state-of-the-art methods, both qualitatively and quantitatively. Specifically, our method
reduces absolute relative error (Abs Rel) by 0.017–0.088.

Keywords: monocular depth estimation; single camera egomotion; occlusion-aware mask network;
feature pyramid matching loss

1. Introduction

Vision-based environment depth and egomotion estimation are essential for au-
tonomous vehicle perception and infrastructure-less robot navigation [1]. At present,
LiDAR and RGB-D cameras have been widely used in the depth measurement. LiDAR
has become more precise and cheaper, such as Livox mid-40, 100, but it is still not perfect,
like the small field of view, irregular scanning pattern, nonrepetitive scanning and motion
blur [2]. The application of RGB-D cameras in outdoor environments has also become more
extensive, but the measurement range is limited [3]. Therefore, in order to deal with the
complex outdoor environment, real outdoor robotic applications focus on multiple sensor
fusion. In this context, the better each individual sensor is, the better the final result is [4].
The monocular is attractive because it has the advantages of low price, high resolution,
rich information acquisition. More accurate monocular depth estimation is helpful for
depth estimation of multiple sensor fusion. Therefore, obtaining depth based on monocular
is a valuable study. Recent deep learning-based methods have shown great success on
monocular depth and egomotion estimation [5,6]. These methods can be divided into two
categories: supervised learning methods [5,7,8] and unsupervised learning methods [9–18].
Our work focuses on monocular unsupervised method of depth and egomotion estimation,
since supervised method requires time-consuming handicraft labels.

Most unsupervised learning methods estimate depth and camera egomotion by mini-
mizing a photometric error [10]. The photometric error is the sum of absolute differences
(SAD) between the warped frame and target frame, where the warped frame is obtained
from adjacent one, predicted depth and relative camera motion of the target frame [9,10].
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A common assumption used by current works is photometric consistency, that is, the
photometric error of corresponding pixel of the same object in different frames is zero. The
photometric consistency assumption is often not satisfied because of brightness change
and non-Lambertian surface [19]. To overcome these issues, GeoNet [11] added structural
similarity (SSIM) [20] to loss to mitigate the effects of brightness change. SSIM captures
more local information than SAD, but it does not capture global information. D3VO [19]
predicted the global transformation parameters a, b through a network, and adjusts the
image I to aI + b. However, D3VO only pays attention to the global brightness change,
which is often hard to be satisfied in the real scene. None of these methods consider both
local and global information.

In addition, the dynamic objects and occlusion also violate the photometric consistency.
To overcome the problem of dynamic objects, the unsupervised method struct2depth [13]
segmented all objects in the image and then estimated the 3D motion of each object. This
method is suitable for highly dynamic scenes, but the accuracy of the depth is affected by
3D motion estimation. Furthermore, SC-SfmLearner [6] proposed a self-discovery mask
for handling moving objects, which improves the accuracy of depth estimation. However,
its mask definition adopts relative error, and thus is not sensitive to depth changes in
areas with large depth, which causes inaccurate depth estimation. Regarding the occlusion
problem, as far as we know, there is no existing unsupervised method in literature.

Our contributions are as follows.
1. We propose feature pyramid matching loss (FPML) capturing local and global

information, which is more robust than SAD and SSIM and can solve the problem of
photometric inconsistency caused by brightness change.

2. The proposed occlusion-aware mask (OAM) addresses, for the first time, the
problem of photometric inconsistency causing by occluded pixels in the image with the
consideration of novel relationship between two adjacent masks.

3. Furthermore, OAM solves the problem of dynamic objects by balancing the photo-
metric error and the regularization term of the mask and improve the accuracy of depth
and camera egomotion.

2. Related Work

The development of deep learning has facilitated the application of supervised and
unsupervised methods. We briefly overview some supervised depth estimation methods
and introduce current SOTA unsupervised methods for single view depth and egomo-
tion estimation.

2.1. Supervised Depth Estimation Via Convolutional Neural Network (CNN)

The supervised learning methods establish the relationship between image and cor-
responding depth through CNN. Eigen et al. [7] first proposed using CNN to predict
monocular image depth in 2014. They proposed a multiscale method that uses two deep
network stacks: one makes a rough global prediction based on the whole image, and the
other optimizes the prediction locally. Eigen et al. [8] improved the previous method by
increasing the number of multiscale layers to obtain more image details. They used a single
multiscale CNN architecture to accomplish three different computer vision tasks: depth
prediction, surface normal estimation and semantic labeling. Li et al. [21] improved depth
estimation on the basis of Eigen et al. [7] and proposed a fast-to-train multiscale CNN
with skip connections between multiscale layers to speed up convergence during training.
Laina et al. [22] proposed a fully convolutional network, encompassing residual learning to
map monocular images to depth. They presented a novel upsampling method to improve
the output resolution and introduced the reverse Huber loss to improve the accuracy of
depth estimation. Xu et al. [23] proposed a deep model that fuses complementary informa-
tion derived from multiple CNN side outputs. They presented two fusion methods: one
is based on a cascade of multiple conditional random fields and the other is based on a
unified graphical model.
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The above-mentioned supervised methods need a large number of ground truths
during training, but acquiring ground truths is difficult in practice. Using synthetic data is
a good alternative, but these data cannot simulate the physical world accurately [24].

2.2. Unsupervised Depth and Egomotion Estimation

Compared with the supervised methods, the unsupervised learning methods do not
need labels; thus, the latter methods overcome the disadvantage of the supervised learning
relying on labels. Unsupervised depth and camera egomotion estimation only needs raw
video sequences. These methods refines the model from the video gathered from a new
scene [13]; thus, it can be rapidly deployed in practical applications.

Garg et al. [25] proposed an unsupervised depth estimation method using stereo pairs
for the first time. The autoencoder network predicts the depth of the left image, and a
reconstructed the left image is synthesized by epipolar geometry constraint [26] and the
right image. The photometric error between the left image and the synthesized left image
is used as a loss term to train the autoencoder network. Godard et al. [9] extended Garg’s
work and proposed the left-right depth consistent loss function to improve the accuracy of
depth estimation. Stereo unsupervised learning requires stereo image pairs and the known
pose between stereo cameras during training.

SfmLearner [10] only used the monocular video sequence while learning the monocu-
lar depth and egomotion in a coupled way. They used depth network to predict monocular
depth and pose network to predict the relative camera pose between consecutive frames.
The color inconsistency between target image and synthesized target images, which warped
from the reference image, was used as the supervision signal. SfmLearner proposed an ex-
plainability mask to alleviate the influence of moving objects and non-Lambertian surfaces
for making the system more robust. SFM-Net [12] outputted k motion objects’ mask and
their rigid motion through the motion network to overcome the influence of moving objects.
However, it is limited by the maximum number of moving objects. In contrast to SFM-Net,
Yin et al. [11] decomposed motion into rigid and nonrigid components and introduced a
residual flow learning module to deal with nonrigid scenes. Casser et al. [13] segmented
all possible moving objects by Mask R-CNN [27] before training and then estimated the
3D motion of each object to overcome the weakness of SFM-Net. However, masking all
possible moving objects prevents the network from learning the depth object and Mask
RCNN increases the amount of calculation. SC-SfMLearner [6] proposed a self-discovery
mask for dynamic scene in consideration of geometric consistency constraints, which
improves the accuracy of depth estimation. However, it has room for improvement in the
area of large depth, because the relative error decreases with the increase of depth in the
case of the same absolute error of depth. We propose OAM, which can not only address
the problem of occluded pixels but also reduce the depth blur caused by moving objects.

Most of these methods are based on photometric errors and assume constant bright-
ness and Lambertian surface of objects. However, meeting these conditions is difficult
in real scenes. To handle the problem, [9,11,13,28,29] added SSIM [20] as a loss term to
produce more robust matching and improve the performance of depth prediction. Unsu-
pervised optical flow [30] also used the photometric error as loss function. They adopted
robust kernel functions to deal with cases in which photometric consistency assumptions
are not met. In contrast to hand-craft feature, we propose a FPML that is inspired by
PWC-Net cost volume [31]. Instead of matching hand-craft features, a trainable feature
pyramid is constructed by CNN.

3. Method
3.1. Preliminaries

Our method uses single-view depth and multiview pose networks, with a loss based
on warping the adjacent frames to the current frame using the computed depth and pose.
In this work, we propose a framework containing three networks: a depth prediction
network (DepthNet), a camera egomotion network (MotionNet) and an occlusion-aware
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mask network (MaskNet). The networks will be trained together due to the loss function
but can be applied independently at test time. The framework of the networks and loss
functions are shown in Figure 1, in which the blue arrows represent the input and output
of the networks. DepthNet input is a frame, which can predict the corresponding depth.
The information of multiple frames is enough to estimate the camera egomotion [26], so
the input of MotionNet is the current frame It and the adjacent frames I f . The output of
MotionNet is the camera egomotion Tt→ f , including rotation Euler angle and 3D position,
where the adjacent frames include the past and next frames, I f ∈ {It−1, It+1}. In order to
predict occluded pixels and moving objects, the input of MaskNet is the current frame
and the adjacent frames, and the output is consistent mask M f and occlusion mask Vf .
The masks outputted by the MaskNet are only used in the training stage. It can exclude
pixels that do not conform to the static scene and are occluded, ensuring that DepthNet and
MotionNet can learn the correct depth and camera egomotion respectively. In the training
phase, DepthNet, MaskNet and MotionNet are trained at the same time. However, in the
testing phase, MaskNet is not needed, so it can be called an auxiliary network for auxiliary
training. The details of the networks are described in Section 3.5.

Feature pyramid 
matching error

Photometric 
error

𝑭෡𝒇

Warp

𝑰𝒇

DepthNet

𝑭𝒇

𝑭𝒕
Depth

DepthNet

𝑰𝒕

Warp

Depth 
smooth loss

𝑰෠𝒇

Mask

(a)
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MotionNet𝑰𝒇
𝑰𝒕

(b)

MaskNet
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regularization

mask smooth 
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𝑰𝒇
𝑰𝒕

(c)

Pose

Figure 1. System architecture. (a) DepthNet, loss function and warping; (b) MotionNet (c) MaskNet.
It consists of the DepthNet for predicting depth map of the current frame It, the MotionNet for
estimating egomotion from current frame It to adjacent frame I f , and the MaskNet for generating
occlusion-aware mask (OAM). The reconstructed current frame Î f and reconstructed current feature
pyramid F̂f are synthesized by warping. The total loss function consists of photometric error, depth
smooth loss, mask regularization term, mask smooth loss and feature pyramid matching loss (FPML).

The warp process is to find the corresponding point in the adjacent frames through the
depth map of the current frame and the camera egomotion, and then synthesize the current
frame. The warping process is divided into two steps: coordinate transformation and
interpolation reconstruction. According to the pinhole camera model, P = Dt(pt)K−1 pt
is a back projection process [26], where P represents a point in 3D space, pt denotes the
homogeneous coordinate of the point on the current frame, K is the given camera intrinsic
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parameters, and Dt(pt) is the depth of pt. The projection p f of P in the adjacent frames is
inferred as follows,

D f (p f )p f = KTt→ f

[
P
1

]
= K(Dt(pt)Tt→ f

[
K−1 pt

1

]
).

(1)

The process of interpolation reconstruction is to synthesize the pixel value of pt
according to the adjacent frames, Î f (pt) = I f (p f ), where Î f represents the current frame
synthesized by I f . We use the differentiable bilinear interpolation proposed by the spatial

transformer network [32] to obtain I f (p f ) = ∑i,j ωi,j I f (pi,j
f ), where pi,j

f is the integer pixel
located at the neighborhood (top left, top right, bottom left, and bottom right) of p f , and
∑i,j ωi,j = 1. As shown in Figure 1, the red arrows in the framework are the input and
output of the warp module. The warp process of the feature map is similar to the warp of
the RGB image, except that the multichannel feature map replaces the three-channel color.

The loss we propose includes a photometric error Lp weighted by the OAM, a depth
smoothness loss Ls, a mask regularization loss Lm, a mask smoothness loss Lms and the
FPML L f . we define overall loss function as follows,

Lall =
3

∑
n=0

(Ln
p + λsLn

s + λmLn
m + λmsLn

ms + λ f Ln
f ), (2)

where λs, λm, λms, λ f are the weight of depth smoothness loss, weight of mask regulariza-
tion term, weight of mask smoothness loss and weight of feature pyramid matching loss
respectively. The settings for them are described in Section 4.1. The total loss is applied on
four scales to combat the problem of holes caused by gradient locality [10], and n indexes
are considered over different depth map scales. The photometric error, the OAM and the
FPML elaborated in Sections 3.2–3.4 respectively.

3.2. Photometric Error and Smooth Loss

Under the assumption of surface Lambertian and static rigid scenes, the brightness of
the same object under different views should be consistent. Therefore, the current frame Î f
synthesized by the depth, camera egomotion and adjacent frame images should be similar
to the current frame It. We construct a robust photometric error loss function as follows,

Lp = ∑
f∈{t−1,t+1}

Vf M f δ(It, Î f ), (3)

where δ(It, I f ) represents the difference between the current frame and the reconstructed

frame, δ(It, I f ) = α
1−SSIM(It ,I f )

2 + (1− α) ‖ It − I f ‖1; SSIM is structural similarity in-
dex [20]; M f and Vf are the consistent mask and occlusion mask respectively, which are
defined in Section 3.3.

In order to make the depth smooth and the edge of it sharp, we also use the following
image gradient [9] based depth smoothness loss function,

Ls = | 5x Dt|e−|5x It | + | 5y Dt|e−|5y It |, (4)

where5x and5y represent the gradients in X and Y directions, respectively.

3.3. Occlusion-Aware Mask

Photometric consistency assumes that the scene is static and the objects are nonoc-
cluded. However, dynamic objects and occlusion usually occur in real scenes. As shown in
Figure 2, the pixels in the yellow dash area are visible in the past frame It−1 and current
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frame It but blocked by the vehicle in the next frame It+1. If the network predicts the correct
depth of the pixels in the yellow dashed area in current frame, then the corresponding
occluded area in the next frame does not match the the current frame. This condition results
in the large photometric error. The average photometric error is affected by occlusion.
Occlusion often occurs at the edge of the object and the inferred incorrect depth. Thus, we
propose a multiframe formulation to train a network for predicting occlusions.

𝐼௧
𝐼௧ିଵ

𝑇଴→ିଵ
𝑇଴→ଵ

𝑃

𝐷௧
𝐼௧ାଵ

Figure 2. Example of occlusion.

We assume a object is visible in the current frame. Depending on whether the corre-
sponding pixel on adjacent frames is visible, there are four cases of the corresponding pixel
as follows: visible in all adjacent frames, occluded in all adjacent frames, occluded in the
past or occluded in the future. The case that a pixel occluded in all adjacent frames rarely
occurs in practice is discarded.

The input of MaskNet is the current and adjacent frames I = [Ik, I f ], and the output is
the consistent masks M f corresponding to the reconstructed frames Î f . Each element on
the consistent mask indicates probability that the pixel satisfies photometric consistency
assumption. If pixel pt satisfies photometric consistency assumption in the adjacent frames,
we have It(pt) = Î f (pt), f ∈ {t− 1, t + 1}, and Mt−1(pt) = Mt+1(pt). When occlusion
only occurs in the past frame, we have ‖ It(pt)− Ît−1(pt) ‖1>‖ It(pt)− Ît+1(pt) ‖1 and
Mt−1(pt) < Mt+1(pt). Otherwise, we have Mt−1(pt) > Mt+1(pt). We extract occlusion
masks Vt−1 and Vt+1 from consistent masks Mt−1 and Mt+1 to indicate whether pixels
are visible on the adjacent frames. When Mt−1(pt) > Mt+1(pt), pt is more likely to be
visible in the past frame than in the future; as a result, Vt−1(pt) = 1, Vt+1(pt) = 0. If
Mt−1(pt) = Mt+1(pt), there are two situations; if Mt−1(pt) and Mt+1(pt) tend to zero,
there may be dynamic objects in the adjacent frames, and if they tend to one, there are no
dynamic objects. For occlusion, we let Vt−1(pt) = Vt+1(pt) = 0.5, it means pt is visible in
all adjacent frames.

Similar to SfmLearner [10], we add a regularization term of mask, that is,

Lm = −eβ‖Mt−1−Mt+1‖1(log Mt−1 + log Mt+1). (5)

In other words, the loss prevents the mask to always be zero, since most points in the
scene meet the photometric consistent. We also introduce the smoothing loss of the mask
to ensure that the pixels in the neighborhood have the similar state, that is,

Lms = ∑
f∈{t−1,t+1}

| 5x M f |e−|5x It | + | 5y M f |e−|5y It |. (6)
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3.4. Feature Pyramid Matching Loss

To consider both global high-level and local detailed information, we extract feature
pyramid from images and construct FPML for reducing the effect of brightness change and
non-Lambertian surface. Figure 3 summarizes the key processes of FPML, which consists
of feature pyramid and matching error. Given current image It and adjacent frames I f ,
we generate L levels pyramid feature, lth current feature map cl

t and lth adjacent feature
map cl

f . Specifically, current image and adjacent frames are input to DepthNet, and the
layers of conventional filters output the different scale feature maps to construct the feature
pyramid. The encoder module of DepthNet generates a feature pyramid with L = 5
layers, and the numbers of feature channels are 64, 64, 128, 256 and 512. FPML makes use
of the features generated in the encoder and therefore causes a minimal overhead. We
synthesize the current frame feature map by warping ĉl

f = g(Dl
t, Tt→ f , cl

f ) according to the

feature map cl
f generated by adjacent frames, downsampled depth mapDl

t of current frame

and camera egomotion Tt→ f . The resolution of Dl
t is same as that of lth feature map cl

f .
The corresponding feature of the same object in different frames is similar regardless of
brightness changes, occlusion and dynamic objects. Thus, we define cosine similarity loss
between lth feature maps as follows,

Ll
f = 1−

cl
t
T ĉl

f

‖ cl
t ‖‖ ĉl

f ‖
. (7)

The total FPML function is

L f = ∑
f∈{t−1,t+1}

∑
l∈{0,1,2,3,4}

Ll
f . (8)

𝐅𝐞𝐚𝐭𝐮𝐫𝐞 𝐏𝐲𝐫𝐚𝐦𝐢𝐝𝐭

Warping Camera Pose

Total feature 
map loss

𝐅𝐞𝐚𝐭𝐮𝐫𝐞 𝐏𝐲𝐫𝐚𝐦𝐢𝐝୤

Downsample depth

l th level loss

Figure 3. Feature pyramid matching error of the current frame and adjacent frame. Feature pyramid
is constructed by different scale feature maps. Adjacent feature maps warped using the downsampled
depth and camera pose computes a matching error.

3.5. Network Architecture

DepthNet and MaskNet

The DepthNet and MaskNet we proposed based on encoder-decoder architecture, in
which the decoder part can share the shallow information of the encoder part through skip
connections.

The encoder part adopts the standard ResNet18 [33], which contains 11M parameters
and uses the weights pretrained on ImageNet as the initial parameters. The difference of
the encoder parts between the DepthNet and MaskNet is the number of input images. The
first convolution layer parameter of the DepthNet is 3× 64× 3× 3. The first convolution
layer parameter of the MaskNet is set as 9× 64× 3× 3 for adapting to the input images.
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In the decoder modules, ELU [34] is adopted as all nonlinear activation functions; five
times of upsampling can obtain the feature map with the same resolution of input image,
and the upsampling parts use bilinear interpolation. Like SfmLearner [10], the decoder
output layer of the DepthNet is activated by sigmoid and converted into a non-negative
reasonable depth map. The process is formulated as D = 1

a∗sigmoid(x)+b , where a = 10
and b = 0.1. The MaskNet uses sigmoid activation to output two channels mask images
corresponding to the adjacent frames. Similar to Godard et al. [9] in border filling, we use
reflection padding instead of zero padding, which can reduce the border artifacts of the
depth map.

MotionNet

The input of MotionNet contains RGB images of the current frame and adjacent frames,
and the outputs are camera poses of the current frame and adjacent frames. MotionNet
consists of a ResNet18 and four convolution layers. The parameter of ResNet18 input
layer is 9× 64× 3× 3, and the weights pretrained in ImageNet are also used as initial
parameters. All activation functions use RELU, except for the last output layer. The output
of the last layer is two channels 6D vector φ ∈ R2∗6, including a 3D rotating Euler angle
and a 3D position.

4. Experiments

In this section, we compare results of our method with existing state-of-the-art ap-
proaches on depth and camera egomotion estimation.

4.1. Experimental Settings

Implementation details

Our models are implemented with PyTorch [35] and trained for 20 epochs. We set
the initial value of loss weights based on experience and other similar papers [9–11], and
then tune them with a sampled validation set from training images. In our entire training
process, we set weight of depth smoothness loss λs = 10−3, weight of mask regularization
term λm = 0.12, weight of mask smooth loss λms = 10−3 and weight of FPML λ f = 0.01.
During training, we use the Adam optimizer [36] with β1 = 0.9, β2 = 0.999. We also set
the learning rate of the first 15 epochs to 10−4, and then to 10−5 and mini-batch size of 12.
All the images in experiments are from KITTI monocular image sequences.

KITTI dataset

We use the KITTI [37] dataset as the main dataset for training and testing. In previous
works [7–15,28,29], KITTI is often used to evaluate performance on depth and egomotion.
The KITTI dataset contains images collected by four cameras (two grayscale and two RGB),
as well as point cloud collected by a Velodyne HDL-64E laser scanner and pose collected
by GPS/IMU. The KITTI dataset provides videos from 200 different scenes, including city
streets, roads and campus, etc. During the training, 156 image sequences without test
scenes are used, and the left and right images are treated independently. Furthermore,
we follow SfmLearner’s preprocessing to remove static frames [10]. A total of 40,109 are
obtained for training and 4431 for validation. We choose the Eigen split [7] for depth
testing. The Eigen split consists of 697 images, where the depth ground truth is obtained
by projecting the Velodyne laser scanned points into the image plane. During the training,
the input images are resized to resolution of 640× 192, and the camera intrinsic matrix
are known. During the validating and testing, the input images use the resolution of
1216× 352. KITTI Odometry dataset has 00–10 sequences with pose labels. We follow
SfmLearner [10], and split sequences 00–08 for training and 09–10 for testing.
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Evaluation metric

We use the depth evaluation metric of Eigen et al. [7]. The explanation of each metric
adopted in our evaluation is specified in Table 1, where D∗ and D represent the ground
truth and estimated depths respectively.

We use absolute trajectory error (ATE) [38] to evaluate camera motion. ATE first aligns
the estimated camera motion with the ground truth pose and then evaluates the relative
error of camera pose.

Table 1. Depth evaluation metric.

Abs Rel: 1
|T| ∑D∈T

|D−D∗ |
D∗

Sq Rel: 1
|T| ∑D∈T

|D−D∗ |2
D∗

RMSE log:
√

1
|T| ∑D∈T | log D

D∗ |2

RMSE:
√

1
|T| ∑D∈T |D− D∗|2

δt:% of D ∈ T max(D∗
D , D

D∗ ) < t

4.2. Depth Estimation Results

Quantitative comparison results of our method and previous methods are shown in
Table 2. The mono column denotes whether stereo camera is used, M means monocular, S
indicates stereo. The supervised column denotes whether additional supervised informa-
tion is used. In the first row, the upward arrow ↑ indicates higher is better, the downward
arrow ↓ means lower is better. The best results in each category are printed in bold.
Following other traditional methods [7,10], we limit the maximum depth to 80 m. Depth es-
timation in an unsupervised manner from monocular videos obtains related depth. So, we
multiply the estimated depth by the median scale factor s = median(D∗)/median(D) [10]
for comparison with absolute depth generated from stereo camera or supervised meth-
ods. Our method outperforms previous supervised methods [7,39] and unsupervised
methods [6,9–11,13–17,40,41]. Compared with these works mentioned above, our method
reduces Abs Rel by 0.017–0.088, Sq Rel by −0.039–0.700, RMSE by 0.187–1.752 and RMSE
log by 0.015–0.083. Compared with Struct2depth(M) [13], which uses motion model, our
result is 0.021 better than Struct2depth(M) in terms of Abs Rel, 0.187 better than that in
terms of RMSE, 0.015 better than that in terms of RMSE log, 0.052 better than that in
terms of δ < 1.25, and 0.009 better than that in terms of δ < 1.252, except in Sq Rel and
δ < 1.253. It is also worth noting that on the metric of Abs Rel, our method outperforms
other methods. This metric measures the ratio of prediction error over the ground truth
value and can be used to compare the reliability of different depth measurement results.
The good performance under this metric indicates that our method produces consistent
depth at long and short distances.

Our DepthNet and MotionNet are the same as those of methods in literature [10,13],
so the network inference time is also the same. Our test results show that for predicting
depth it takes 3.972 s to load model and initialize, 0.020 s for network inference and 0.003 s
for postprocessing. For predicting camera egomotion, it takes 4.132 s to load model and
initialize, 0.005 s for network inference and 0.002 s for postprocessing.

In Figure 4, our experimental results are compared with Sfmlearner, DDVO, GeoNet
and Monodepth methods. The first line is the original image and the following is the depth
maps generated by each method. The higher intensity of red in the depth map, the closer
the distance. The blue boxes in Figure 4 are the areas we focus on, which include objects
with broad shape as well as thin objects. Compared with other methods, the depth maps
produced by our method are clearer and the edges are sharper in both cases. In the blue
boxes of first column images, there is a farther vehicle. DDVO, GeoNet and Monodepth
do not estimate its depth, but our method estimates its depth accurately. The boxes in



Sensors 2021, 21, 923 10 of 15

the second and third columns of images include slender pillars, and the boundaries of
these objects estimated by other methods are blurry. The green dotted boxes in the image
indicate obvious defects in other baselines. We can see that our models generate higher
quality outputs and do not produce “holes” in the depth maps. There are holes in the
ground in the results of the SfmLearner, which may lead to autonomous vehicles misjudge
the passing area. In the results of Monodepth, the depth estimation of the edge area of the
image is wrong, which may be caused by the lack of covisible areas in the edge of the stereo
images. As shown in Figure 5a, a black region obtained from OAM indicates a possible
occlusion in the previous frame. Figure 5b obviously indicates dynamic objects in the scene
learned from the MaskNet.

Table 2. Depth estimation quantitative results on Eigen [7] split of KITTI raw dataset [37], capped at 80 m. These methods
are all trained on KITTI raw dataset. The camera column denotes whether stereo camera is used, M means monocular, S
indicates stereo. The supervised column denotes whether using additional supervised information. In the first row, the
upward arrow ↑ indicates higher is better, the downward arrow ↓ means lower is better. Best results in each category are in
bold.

Method Supervied Camera Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ δ < 1.25↑ δ < 1.252↑ δ < 1.253↑
Eigen [7] Depth M 0.203 1.548 6.307 0.282 0.702 0.890 0.890

Liu [39] Depth M 0.201 1.584 6.471 0.273 0.680 0.898 0.967

SfmLearner [10] - M 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Yang [15] - M 0.182 1.481 6.501 0.267 0.725 0.906 0.963

Vid2depth [16] - M 0.163 1.240 6.220 0.250 0.762 0.916 0.968

LEGO [14] - M 0.162 1.352 6.276 0.252 0.783 0.921 0.969

GeoNet [11] - M 0.155 1.296 5.857 0.233 0.793 0.931 0.973

DDVO [17] - M 0.151 1.257 5.583 0.228 0.810 0.936 0.974

Monodepth [9] Pose S 0.148 1.344 5.927 0.247 0.803 0.922 0.964

CC [40] - M 0.148 1.149 5.464 0.226 0.815 0.935 0.973

EPC++ [41] - M 0.141 1.029 5.350 0.216 0.816 0.941 0.976

Struct2depth(M) [13] - M 0.141 1.026 5.291 0.215 0.816 0.945 0.979

SC-SfmLearner [6] - M 0.137 1.089 5.439 0.217 0.830 0.942 0.975

Ours - M 0.120 1.065 5.104 0.200 0.868 0.954 0.978

SfmLearner

Figure 4. Qualitative KITTI results. Our method is compared with the results of SfmLearner [10],
DDVO [17], GeoNet [11] and Monodepth [9]. The higher intensity of red in the picture, the closer the
distance. The results in the blue dashed boxes are the areas we focus on. The results in the green
dashed boxes are “holes” in the depth maps.
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Figure 5. (a) occlusion mask (b) moving objects mask.

4.3. Camera Pose Estimation Results

Our method is compared not only with the traditional visual SLAM method [42] but
also with other deep learning methods [10,29]. The quantitative evaluation of camera
egomotion estimation is shown in Table 3. Table 3 shows that our camera egomotion
results exceed unsupervised learning method monodepth2 [29] and SfmLearner [10] in 09
and 10 sequences in terms of the ATE [38]. We compare our egomotion estimation with
two variants of monocular ORB-SLAM [42]. The results show that our method has an
advantage over ORB-SLAM(short), which runs on five-frame snippets. Our results are
not as good as ORB-SLAM(full) because ORB-SLAM(full) is a complete SLAM system
including loop closure and relocalization, which uses all images in the sequence.

Table 3. Absolute Trajectory Error (ATE) on the KITTI Odometry sequences 09 and 10 (lower is better).

Method Seq.09 Seq.10

ORB-SLAM(full) [42] 0.014± 0.008 0.012± 0.011

Mean Odometry 0.032± 0.026 0.028± 0.023

ORB-SLAM(short) 0.064± 0.141 0.064± 0.130

Monodepth2 [29] 0.023± 0.013 0.018± 0.014

SfmLearner [10] 0.021± 0.017 0.020± 0.015

Ours 0.019± 0.009 0.013± 0.010

4.4. Ablation Study

We measure the impact of each contribution on performance and show the results
of ablation study in Table 4 to understand which part of our method contributes to the
performance. In Table 4, the baseline model following recent works [10,11] does not contain
any of our contributions; +F represents the contribution of FPML; +OM indicates the
contribution of OAM. Comparing with the baseline, the performance is improved by
adding the FPML or OAM. In the main metric Abs Rel, the contribution of FPML is 0.01
better than that of the baseline. Moreover, the contribution of OAM is 0.013 better than
that of the baseline. The combination of these contributions improves performance by 0.02
better than the baseline in terms of Abs Rel.
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Table 4. Ablation studies on FPML and OAM. +F represents the contribution of FPML. +OM indicates
the contribution of OAM. Each of our contributions improves performance.

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.140 1.610 5.512 0.223 0.852 0.946 0.973

+F 0.130 0.974 5.197 0.208 0.840 0.948 0.979

+OM 0.127 0.957 5.163 0.202 0.852 0.953 0.980

+OM+F 0.120 1.065 5.104 0.200 0.868 0.954 0.978

5. Conclusions

We propose an unsupervised learning framework that achieves monocular depth and
egomotion estimation via FPML and OAM. The introduced FPML captures the local and
global information and reduces the influence of brightness variation and non-Lambertian
surface. In addition, the proposed OAM predicts not only dynamic objects but also
occluded pixels in an innovative manner according to change of masks. As a result, FPML
and OAM address the problem of photometric inconsistency and improve accuracy of depth
and camera pose estimation. On the KITTI dataset, our results are better than the state-of-
the-art unsupervised methods and even some supervised methods, both qualitatively and
quantitatively. Especially, compared with previous methods, our method reduces Abs Rel
by 0.017–0.088, which is the most important metric in the literature.

In our future works, we will estimate the 3D motion of the dynamic rigid object in the
image to help the robot better understand the 3D environment. Furthermore, the camera
and LiDAR information will also be fused to achieve real-time accurate depth estimation,
which is used for localization and mapping.
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Abbreviations
The following abbreviations are used in this manuscript:

FPML Feature Pyramid Matching Loss
OAM Occlusion-Aware Mask
Abs Rel Absolute Relative Error
SAD Sum of Absolute Differences
SSIM Structural Similarity
SAD Sum of Absolute Differences
SOTA State-Of-The-Art
CNN Convolutional Neural Network
Mask R-CNN Mask Region—Convolutional Neural Networks
Sq Rel Squared Relative Error
RMSE Root Mean Squard Error
ELU exponential linear unit
RELU Rectified Linear Unit
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GPS Global Position System
IMU Inertial Measurement Unit
ATE Absolute Trajectory Error
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