ﬁ Sensors

Article

Stochastic Decision Fusion of Convolutional Neural Networks
for Tomato Ripeness Detection in Agricultural Sorting Systems

KwangEun Ko 17, Inhoon Jang 1'*(, Jeong Hee Choi 2, Jeong Ho Lim 2 and Da Uhm Lee 2

check for

updates
Citation: Ko, K.; Jang, I.; Choi, ].H.;
Lim, J.H.; Lee, D.U. Stochastic
Decision Fusion of Convolutional
Neural Networks for Tomato
Ripeness Detection in Agricultural
Sorting Systems. Sensors 2021, 21, 917.
https:/ /doi.org/10.3390/521030917

Received: 14 December 2020
Accepted: 25 January 2021
Published: 29 January 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Korea Institute of Industrial Technology, 143 Hanggaulro, Sangnok-gu,

Ansan-si 15588, Gyeonggi-do, Korea; kke0217@kitech.re.kr

Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do,
Korea; choijh@kfri.re.kr (J.H.C.); jhlim@kfri.re.kr (J.H.L.); dulee@kfri.re.kr (D.U.L.)

*  Correspondence: inhuns@kitech.re.kr; Tel.: +82-31-8040-6387

Abstract: Advances in machine learning and artificial intelligence have led to many promising
solutions for challenging issues in agriculture. One of the remaining challenges is to develop practical
applications, such as an automatic sorting system for after-ripening crops such as tomatoes, according
to ripeness stages in the post-harvesting process. This paper proposes a novel method for detecting
tomato ripeness by utilizing multiple streams of convolutional neural network (ConvNet) and
their stochastic decision fusion (SDF) methodology. We have named the overall pipeline as SDF-
ConvNets. The SDF-ConvNets can correctly detect the tomato ripeness by following consecutive
phases: (1) an initial tomato ripeness detection for multi-view images based on the deep learning
model, and (2) stochastic decision fusion of those initial results to obtain the final classification result.
To train and validate the proposed method, we built a large-scale image dataset collected from a
total of 2712 tomato samples according to five continuous ripeness stages. Five-fold cross-validation
was used for a reliable evaluation of the performance of the proposed method. The experimental
results indicate that the average accuracy for detecting the five ripeness stages of tomato samples
reached 96%. In addition, we found that the proposed decision fusion phase contributed to the
improvement of the accuracy of the tomato ripeness detection.

Keywords: tomato ripeness detection; convolutional neural networks; stochastic decision fusion;
deep learning; automatic sorting system

1. Introduction

The quality of tomatoes depends on appearance (color, size, texture, etc.) and nutri-
tional value (minerals, acidity, antioxidants, etc.). These properties are commonly related
to ripeness [1]. As tomatoes ripen, glucose and fructose accumulate, and therefore, antioxi-
dants (e.g., ascorbate, lycopene, 3-carotene, rutin, and caffeic acid) increase [2,3], organic
acids (e.g., malic acid and citric acid) decrease, and sweetness increases [4]. Furthermore,
the surface color changes to red owing to a decrease in chlorophyll and an increase in
lycopene, and the flesh firmness decreases owing to a decrease in pectic substances [4,5].
Therefore, determining the appropriate ripening stages of tomatoes for sale before packag-
ing is very important. For example, let us suppose that tomatoes in different ripeness stages
are packaged into the same bundle. The tomatoes have different respiration rates, thereby
resulting in the acceleration of ripening due to ethylene production. This effect makes
quality management a challenge. On the other hand, the commercial value of tomatoes
can be maintained longer if they are sorted and packed into the proper ripening stages [6].
The classification of ripening stages is generally conducted by trained laborers. The manual
sorting process follows standard guidelines, such as those prescribed by the United States
Department of Agriculture (USDA) chart [7]. This manual-based approach has drawbacks,
such as relying on the competence of laborers and adding additional costs for training
sorters. The biggest challenge that the agricultural industry faces is a decrease in the
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number of laborers due to an aging population and the rise of labor costs. These problems
show that time-consuming and labor-intensive work should be replaced with automated
systems in future farm environments.

In recent years, artificial intelligence technologies have become popular in the food
and agriculture research field. In several recent studies related to food and agricultural
production, machine learning and deep learning applications have shown great success.
In the food domain, deep learning has shown promising performance in a variety of
tasks, such as food recognition [8], calorie estimation [9], sentiment analysis for cookery
channels [10], and fruit quality detection. In this paper, we narrow this scope to the
core task of developing smart technology for tomato farms: tomato ripeness detection
consisting of the localization of the tomato sample and its ripening stage classification. Fast
and accurate detection of ripe tomatoes is an important task in replacing manual laborers
with automatic systems. Zhao et al. [11] developed a machine vision system to detect
ripe tomato samples in a greenhouse scene by combining the AdaBoost classifier and a
contour analysis method. Liu et al. [12] studied an algorithm combining a coarse-to-fine
scanning method and a false-color removal method to detect mature tomatoes. To achieve
accurate ripe tomato detection, Hu et al. [13] suggested a method that combines a deep
learning algorithm and an edge-contour analysis method. Sun et al. [14] proposed an
improved feature-pyramid-network-based tomato organ recognition method. These results
demonstrate that machine learning, including deep learning, contributes to improving
tomato detection and can be further used in commercial applications.

Previous related works on fruit defect or grade detection in computer vision can be
categorized into two types: approaches based on hand-crafted features and those using
deeply learned features. Most existing studies belong to the former class [11,12,15-17].
Hand-crafted features have the advantages of locality and simplicity, but may lack the
semantic and discriminative capacity of extracted features in changing environments,
as appropriate features are generally selected based on experience. For example, as the
number of ripening stages of a tomato sample increases, the difficulty in designing proper
descriptors sufficient to classify these classes using raw images also increases. Furthermore,
in the case of classification, it is very time-consuming to determine an optimum combination
of the feature extractor and classifiers. In contrast, a deeply learned feature is extracted
from the training dataset itself using an end-to-end learning model architecture, so it comes
up with a reasonable descriptor for ripe tomato detection. Besides, the time-consuming
procedure necessary to find the optimum combination of feature extractor and classifier is
not required. For instance, a convolution network has abstracted feature maps that vary
depending on the depth of the corresponding layers, so that any feature map can enable
the representation of a data-driven descriptor [18]. Kamilaris et al. [19] found that deep
learning models achieved higher accuracy compared with those using hand-crafted and
shallow approaches. The fine-grained ripeness classification in practical scenarios is another
challenge. Previous research has mainly focused on hand-crafted color features on the
surface of tomatoes. Li et al. [20] proposed a dominant color histogram matching method
to analyze the shape, ripeness level, size, and surface defects of tomatoes. Arakeri et al. [21]
developed a tomato sorting software combining a preprocessor for noise filtering of raw
RGB images and a color feature extractor to detect surface defects and the ripeness stage of
tomatoes. In recent years, researchers have developed machine-learning-based approaches
to classify the ripeness of tomatoes. For example, Goel and Sehgal [15] converted color
features in RGB space into R-G features and conducted a sorting task using a fuzzy-
based classifier. El-Bendary et al. [16] determined the ripeness degree using color features
in the HSI space, a PCA-based feature extractor, and supervised-learning-model-based
classifiers. Furthermore, recent research has shown promising performance for the same
task [17]. However, these approaches may lead to intra-class variations at the same stage,
such as dynamic viewpoints, illumination conditions, and atypical shapes of surface color
distribution. These attributes are similar to the problem of human action recognition in
videos. The two-stream convolutional neural networks (ConvNets) outperformed in the
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task of action recognition [22]. This scheme can be adapted to our problem of tomato
ripeness detection by observing a tomato from multiple viewpoints, rather than from a
single viewpoint. However, the late fusion of ConvNet streams may lead to performance
decay if the fusion strategy is inadequate or the proper parameter settings are omitted.
To solve this issue, we propose a novel tomato ripeness detection pipeline based on multi-
ConvNet streams with a stochastic decision fusion (SDF) that can not only precisely classify
the ripening stage of a tomato sample but also localize the sample in real time.

This paper aims to develop an accurate tomato ripeness detection method based on
deep learning, called stochastic decision fusion of convolutional neural networks (SDF-
ConvNets). The proposed method is expected to be applied in the form of a sorting system
that classifies fruits according to those ripeness degrees in the post-harvest stage. Since the
ripeness detection process is conducted by observing images from various viewpoints, ex-
cellent synergy can be expected if the sorting module can be designed based on a conveyor
structure capable of rotating fruit objects and transporting them. To train and evaluate
the model, we constructed a large-scale image dataset collected by our customized image
acquisition system. Experiments for evaluating our system have shown superior perfor-
mance to other methods. In summary, the key contributions of our work are: (a) developing
a deep-learning-based robust and accurate ripe tomato detector, (b) increasing the accu-
racy of ripening stage classification using the stochastic decision fusion method, and (c)
collecting a large-scale image dataset that captures the five ripening stages of tomatoes
from different viewpoints.

2. Materials and Methods
2.1. Tomato Image Acquisition

The tomato images used in this study were captured using a JAI 3CCD camera and
a light source chamber, as shown in Figure 1. The CCD cameraisa 3 x 1/3” CCD color
progressive scan camera (up to 120 frames/s with full resolution). The camera was coupled
with a C-mount lens module whose focal length is 35 mm and the min/max operation
range of the iris is £2.0/£22.0.

CCD =
Camera

Light

Source™.

&
TomatoInstance ~ ® 1 |em——— e

Ground Truth
Annotation S/W

Figure 1. Camera system for acquisition of a large-scale image dataset of “Dafnis” variety tomatoes.

We designed the customized image acquisition system in conjunction with an anno-
tation labeling software that can manually generate ground truth labels for training the
proposed deep learning model at the same time as image acquisition. The ground truth
labels consisted of the spatial information of tomatoes in the image space as well as the
ripening stages. We selected tomatoes of the “Dafnis” variety for building a large-scale
image dataset. These were classified into five stages according to the USDA color chart.
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The dataset was collected from a minimum of 500 samples for each ripeness stage to contain
as many atypical features as possible, as shown in Table 1.

Table 1. The number of tomato samples used for model training and ripeness detection sets.

Ripening Stages Turning (T) Pink (P) Light Red (L) Red (R) Dec:pD)R ed
Flower-end
viewpoint
Sample 1
Image
(Dafnis)
Stem-end
viewpoint
Number of Samples for Training Set 416 417 458 429 444
Number of Samples for Test Set 105 114 92 119 118

2.2. Accurate Tomato Ripeness Detection Using the SDF-ConvNets

We concentrated on an approach for classifying the ripening stage of tomatoes, consid-
ering practical scenarios such as an automated sorting application in the post-harvesting
process.

We built a sequential process consisting of an initial tomato ripeness detection phase
and a stochastic decision fusion phase (Figure 2). A standard one-stage detector YOLOv3 [23]
was used for the initial ripeness detection stage based on tomato images viewed at the
stem-/flower-end, respectively. Then, the estimated results were transferred to the stochas-
tic decision fusion phase to improve the final ripening stage classification result of the
target tomato sample. This approach was inspired by how human laborers generally judge
the ripening stage of tomatoes by observing them from multiple viewpoints.

discrete

probability
Softmax output < distribution
~NMS
P(k) € R'%5
ConvNet T - s final discrete
Darknet backbone g probability
4 2 3 4 5 distribution
- Output Tensor " —
Stem-End image P Stochastic Decision 3 ps()
i i i i i e i i i i i i i R i i i I T i i i i i i i i Fusion > P
discrete - —
probaviiy | AR + A —aP(R)| ¢ T2 3 4 s
, - disbution :ﬁ Vprea = argmax(py (k), p2 (k) .. ps (k)
ConvNet T T B
Darknet backbone
Output Tensor
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Figure 2. The workflow of stochastic decision fusion of convolutional neural networks (SDF-ConvNets) for tomato ripeness
detection (NMS: non-maximum suppression).

2.2.1. Initial Tomato Ripeness Detection Based on YOLOv3

The initial tomato ripeness detection task consisted of two main parts: localizing
the spatial region of the target tomato sample and classifying those ripening stages from
tomato images viewed from the stem-/flower-end. Even when the observed environment
is constrained, classifying ripening stages is a difficult fine-grained problem, in which the
variation between consecutive stages is low and the variation between tomatoes belonging
to the same group is relatively high. Recently, deep-learning-based approaches have been
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used as a solution to this type of problem. The typical ConvNet architecture consists of two
main parts: a set of convolutional layers that perform feature extraction, and classification
layers. The frontal layers of the network mainly focus on obtaining deeper domain features
of the input, and the extracted features are transferred to the classification layers to discrim-
inate between classes, such as the ripening stages by using fully connected [24] or global
average pooling layers [25]. The parameters of the convolutional and classification layers
can be trained end-to-end. Several studies on object classification and detection based on
ConvNets have already achieved great success in various computer vision areas [26-29].
We applied a one-stage object detector based on YOLOV3 to resolve the tomato
ripeness detection problem. The YOLOv3 starts with an assumption that the entire input
image can be divided into S x S grid cells, and B proposal regions are located on each cell.
The detector generates an output tensor consisting of five elements, such as the spatial
information and class score for each region. If there is a jth bounding box in the ith grid cell,
then the spatial information of the target object is depicted as, b;; = [bx, by, bw, bh} c R1x4
and the object class score for the bounding box is depicted as C. The spatial information
is the coordinate offset and the size of the bounding box. The scalar variable C refers to
whether the confidence score of the predicted box contains an object. Each box also predicts
the multi-label score vector P = [p(cm)],—1 . € R*M ag a result of independent logistic
classifiers. The vector represents the conditional probability distribution of M classes, given
that an object is contained in the predicted box. Therefore, the total size of the output tensor
can be computed as S x S x B x (5 + M). A post-processing step, such as a non-maximum
suppression algorithm, is required to obtain the final result based on the output tensor.
In the training phase, a loss function based on binary cross-entropy was applied. The loss
function L consisted of sub-loss functions Lypox, Leonf, and Lejs. First, Lype, Was obtained

by comparing the predicted bounding box b;; with the ground truth box b, as shown in

Equation (1). If the jth bounding box contains an object in the ith grid cell, then 10b] =1,

otherwise 0. It should also be noted that lmb] 1

Euclidean distance between two vectors u and 0.

Lypox = Abbox Z i 10b]{ ( ijs )} 1)

i=1j=1

— ?jb] . The function d(u, v) 1nd1cates the

Leons represents the difference between the predicted confidence score C and the
ground truth C among {0, 1}, as defined in Equation (2).

conf - 2 Z 10b] l]' + Anoh] Z 2 1n0b] z]/ 2)

i=1j=1 i=1j=1

Equation (3) defines the loss L. used in the general multi-label classification problem.
Ym is the ground truth label, so that if the class is correct it is 1 and if not, 0. If the correct
one is the mth class, then y,;, = 1 and otherwise it is 0.

1 52 B bi
Las = =772 Z 1’ Z ymlog(p(em)) + (1= ym)log(1 = p(em)) ®)
z 1j=1 m=1
Finally, the sub-loss functions are defined in Equation (4).

L = Lppox + Lconf + Les 4)

The weights applied to losses (1) and (2) were set as Appy = 5 and A, = 0.1,
respectively [29]. By optimizing this loss function according to the mini-batch-based
stochastic gradient descent algorithm, each ConvINet can be trained.
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We tried to arrange the backbone network architecture by piling multiple residual
modules with a simple shortcut connection [27]. The ConvNet performance is strongly
related to the hyperparameters of the backbone architecture. It is widely known that
deeper models decrease bias and increase variance [30]. Considering the bias—variance
tradeoff, we mainly focused on the number of convolution layers and scales of the final
feature maps. There were 23 shortcut-connection-based residual modules and three heads
conducting initial ripeness detection using the global average pooling layer, and each head
received a different scaled feature map as input. The first head was directly derived from
the backbone and utilize the smallest-scale feature map. The second head branched by
using the low-level feature map of the backbone and the convolution layer output of the
first head as input. The third head also branched by using the lowest-level feature map of
the backbone and the convolution layer output of the second head. The detailed backbone
ConvNet architecture of the ripeness detection phase is presented in Figure 3.

We trained the model with the hyperparameter configuration of the YOLOv3 [23].
The optimizer of the training process was a mini-batch stochastic gradient descent with
momentum.

Learning rate: 0.01 (scale 0.1 at step 25,000, 35,000);
Max. training iteration: 50,000;

Size of mini-batch/subdivision: 32/8;

Weight decay: 0.0005;

Learning momentum: 0.9;

Total number of convolution layers: 79;

Scales of final feature map: 8, 16, 32.

Figure 4 represents examples of the initial ripeness detection result based on the deep
learning model. In case 1, the predicted stages at both viewpoints are matched, while the
result at the flower-end viewpoint in case 2 is different from that at the other viewpoint.
Therefore, in case 2, it is difficult to determine which is the correct ripening stage of the target
tomato sample. To overcome this limitation, we propose a stochastic decision fusion method.

2.2.2. Stochastic Decision Fusion

To accurately classify the final ripening stages of target tomato samples, we tried to
apply two types of weighted-fusion-based approaches. The first was to assign equal weight
to both ConvNet stream results. We assigned the equivalent scalar value as the weight for
each stream, as shown in Equation (5):

P =

2
0.5% P, 5)

n=1

where P, € R1*M is a multi-label score vector representing discrete probability distribu-
tions for tomato ripening stages when viewing a tomato sample from the n-th viewpoint.

Second, we hypothesized that weighting the superior one among the streams would
increase the accuracy of the final decision. In this paper, a multi-label confusion matrix
Ap=ay,..., 00 ., 4nm € RM*M was used to reflect the performance value of each
ConvNet stream in the weight decision process. The column vector a,;,; € RMX1 of the
confusion matrix A, was normalized by the total number of samples belonging to the
m-th class. This implies that each element of the a;,, ratio of the number of samples
classified as each class to the total number of samples belonging to the m-th class. The m-th
element is regarded as the precision of the classification result. Precision is an appropriate
performance metric for each ConvNet stream for classifying the ripening stages of tomatoes,
as decreasing the number of false-positive samples is important for practical applications.
Subsequently, the proposed weight decision process was conducted by combining the
score vectors Pq, P, and multi-label confusion matrices A;, A;. The details are described
based on examples of score vectors and confusion matrices. First, let us suppose that
score vectors obtained from both ConvNet streams for the k-th tomato sample are set
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to P1(k) = [0.8, 0.1, 0.05, 0.025, 0.025] and P,(k) = [0.1, 0.8, 0.1, 0, 0], respectively.
The multi-label confusion matrices for the results of both ConvNet streams are set to A;
and Aj, as shown in Table 2.

\i Shortcutt1

AN | Cnnvzg

|\ shortcutio N
N\ wComm} |
Q AN
lconv2y

i ShortCuts E
. Conv2

N

o
N Conv2 | ] » Convolution
——— Skip Connection
Convl J
— Concatenation
-_—
RGB Image

Figure 3. Visualization of backbone architecture for tomato ripeness detection.
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Case 1. True ripeness stage: " i Case 2. True ripeness stage: "Light Red"

Pink

lighiRed Pk

Figure 4. Examples of initial ripeness detection results of using ConvNet stream based on YOLOV3.

Table 2. Example of multi-label confusion matrices for ConvNet streams with stem-end view input (left) and flower-end
view input (right). (T: Turning, P: Pink, L: Light Red, R: Red, D: Deep-Red)

Stem-End Prediction Flower-End Prediction
View Image T P L R D View Image T P L R D
T 0.9 0.04 0 0 0 T 0.8 0.1 0.03 0 0
P 0.1 0.92 0.05 0 0 P 0.15 0.8 0.06 0 0
True L 0 0.04 0.9 0.02 0.02 True L 0.05 0.1 0.82 0.1 0.05
R 0 0.05 0.9 0.08 R 0 0 0.06 0.8 0.1
D 0 0 0 0.08 0.9 D 0 0 0.03 0.1 0.85
Precision ai aip a3 ay ais Precision ax ay ax; o ass

For the element with P; (k), the largest score value belongs to the first ripening stage

“T”, so the first column vector a11 of A; is responsible for determining the weight of Con-

vNet stream 1. In contrast, the element of P, (k) belongs to the second stage “P” showing

the largest score, so the second column vector ay; of A, is responsible for determining the

weight of ConvNet stream 2. Therefore, new weight vectors ay, ay € R*M were computed
using Equation (6).

an L = a2 ©)

a11 +an ap +ax

The final ripening stage of the input tomato sample was computed as shown in
Equation (7):

P=

2
&, @ Py ()

n=1
where ® is element-wise multiplication. These are given by the classification results of both
ConvNet streams. Therefore, the final result depends on the configuration of the weight
vectors, a1, &y € RM*1 which are, respectively, responsible for the stem-end and flower-
end viewpoints of the tomato. This approach improves the accuracy of the ripening stage
classification result by biasing the superior stream. The proposed algorithm is summarized
in Figure 5. The results of both decision fusion processes are transformed into an L2-
normalized vector like the Softmax function. Therefore, it is possible to determine the final
ripening stage of the target tomato sample with the index of the maximum valued element
of the output vector. In the next chapter, we describe several experiments we conducted to
evaluate our proposed approach by comparing it with existing state-of-the-art approaches.
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k-th stem-end k-th flower-end
image Image
Y y
Tomato ConvNet for Tomato
Detection Tomato Detection
Detection

' |
2 v v v

Score vector Confusion Matrix Score vector Confusion Matrix
P, (k) Ay P, (k) A;

Y Y
i = max_index{ P, (K)]

return i

return j

Weight Decision Weight Decision
Ay Ay
a; = a, =
a;; +a; @+ ay;

¢ 2

Final Ripening Stage _ Z
Decision Pl = 2, an ® Pulk)

n=1

Figure 5. Flowchart of the proposed stochastic decision fusion algorithm.

3. Results

The proposed SDF-ConvNets was verified with our tomato image dataset through
experiments in this section. The experiments were conducted on a computer equipped
with an Intel® Core™ i7-4790K 4.00 GHz CPU, 32 GB of RAM, and an NVIDIA GeForce
GTX Titan Xp GPU processor. We utilized the deep learning framework Darknet [31].
Three metrics were used to evaluate the experimental results: precision, recall, and F1 score.
In the multi-class classification problem, we calculated the precision, recall, and F1-score
per class in a one-versus-rest manner.

TP(c)
TP(c) 4+ FP(c)’

TP(c)

Recall(c) = TP(c) + EN(c)’

Precision(class = c) = 8)
where TP/FP/EN is the number of true-positive/false-positive/false-negative samples of
class c. Then, the per-class F1-score can be computed by Equation (9).

2 x Precision(c) x Recall(c)
Precision(c) 4+ Recall(c)

Fl(class = c) = )

3.1. Experiments for Tomato Ripeness Detection

Table 3 represents the experimental results obtained with our test dataset. The average
F1-scores of 94.2% and 93.04% were achieved by the single ConvINet stream with flower-
/stem-end images, respectively. It seems that the single ConvNet-based tomato ripeness
detector without any decision fusion steps performed well for our dataset.
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Table 3. Tomato ripeness detection performance reported by five-fold cross-validation based on
YOLOV3.

Average Performance of the Ripeness Average Performance of the Ripeness
Detection for Flower-End Image Set Detection for Stem-End Image Set
Precision  Recall F1-Score Precision  Recall F1-Score

Turning 0.942 0.924 0.932 Turning 0.960 0.896 0.926

Pink 0.870 0.914 0.888 Pink 0.864 0.898 0.878

Light Light

Red 0.920 0.920 0.918 Red 0.912 0.956 0.936

Red 0.980 0.972 0.978 Red 0.942 0.952 0.946

Deep Deep

Red 0.996 0.988 0.994 Red 0.976 0.952 0.966
Average 0.942 0.944 0.942 Average 0.931 0.931 0.931

3.2. Experiments for Stochastic Decision Fusion

In this paper, we used two decision fusion approaches based on stochastic metrics for
the final decision on the tomato ripeness stage of the target sample. As a result of comparing
the ripeness detection performance according to the proposed decision fusion method
with the results in Table 3, it can be seen that the decision fusion strategies contributed to
improving the ripeness detection accuracy, as shown in Table 4. In addition, the proposed
stochastic decision fusion technique was superior to the simple method of assigning equal
weights.

Table 4. Tomato ripeness detection performance reported by five-fold cross-validation based on two
decision fusion methods: stochastic fusion versus equal-weighted fusion.

Equal Weight Decision Fusion

(a:Ai,I ; M is the Number of Viewpoints) Stochastic Decision Fusion

Precision Recall F1-Score Precision Recall F1-Score

Turning 0.960 0.928 0.944 Turning 0.964 0.934 0.948

Pink 0.904 0.942 0.924 Pink 0.908 0.948 0.930
Light Light

Red 0.962 0.962 0.964 Red 0.964 0.962 0.964

Red 0.986 0.984 0.988 Red 0.986 0.982 0.986
Deep Deep

Red 0.998 0.992 0.998 Red 0.996 0.992 0.998

Average 0.962 0.962 0.964 Average 0.964 0.964 0.965

3.3. Comparison of State-of-the-Art Algorithms

We also used the precision-recall (PR) curve to compare the SDF-ConvNets to other
recent models, such as SVM [32] and YOLOV5 [33]. Three PR curve graphs are plotted
in Figure 6. The first and second curves are the ripeness detection results using YOLOv3
and v5, respectively, and the last graph shows the SDF-ConvNets-based detection result.
We can verify that the difference in performance between YOLOv3 and YOLOvV5 was
not noticeable, whereas the detection performance of the SDF-ConvNets was improved
through the area under each PR curve.

These experimental results demonstrate that the proposed SDF-ConvNets outper-
formed other methods. Table 5 compares the recent achievement of related works for the
fruit ripeness detection with the performance of the SDF-ConvNets to prove the result.
We can see that our approach is superior given the number of classes that need to be
classified or the number of images for testing.
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Figure 6. Precision-recall curves for three deep learning models for tomato ripeness detection with the same test dataset:
(a) YOLOVS3; (b) YOLOV5; (c) the SDF-ConvNets.

Table 5. Comparison of the detection performance of the SDF-ConvNets to other methods.

Model Category é\lka)_;,soefs No. of Images  Precision Recall F1-Score
Proposed (equal weighting) Tomato 5 548 0.962 0.962 0.964
Proposed (stochastic weighting) Tomato 5 548 0.964 0.964 0.965
YOLOv3 (w/o decision fusion) Tomato 5 548 0.937 0.938 0.937
YOLOV3 [33] Apple 2 878 0.908 0.922 0.915
ANN [17] Tomato 3 768 - - 0.902
SVM [32] Tomato 2 82 0.976 0.988 0.982
LDA+SVM [16] Tomato 5 250 - - 0.908
Fuzzy classifier [15] Tomato 6 36 0.952 0.967 0.953

4. Conclusions

In this paper, we proposed an accurate tomato ripeness detection methodology called
SDF-ConvNets. The overall ripeness detection pipeline consisted of two major steps:
the initial tomato ripeness detection phase based on ConvNet streams, and the stochastic
decision fusion phase to obtain a more precise ripeness classification result. Even if the ini-
tial ripeness classification fails for the stem-end or flower-end tomato image, the proposed
decision fusion phase can compensate for the misclassified stage into the correct stage.
To train, test, and verify the proposed method, a large-scale image dataset was collected
and labeled. The scale of the tomato image dataset is larger than any dataset used in
recent related works. The dataset consisted of 2166 tomato samples for training ConvNets
and 546 tomato samples used to evaluate the SDF-ConvNets. The experimental results
were obtained by averaging 5-fold cross-validation and evaluated in terms of the three
statistical metrics (precision, recall, and F1-score) of the tomato ripeness detection task.
The SDF-ConvNets successfully achieved accurate and fine-grained tomato ripeness de-
tection compared with other deep-learning-based approaches. The F1-score of the tomato
ripeness detection using the SDF-ConvNets was 96.5%. The proposed method was com-
pared with the recent achievement of related ripeness detection tasks and its superiority
was demonstrated.

In future work, a follow-up study will be conducted to develop an integrated frame-
work that can determine the appropriate harvest time and monitor the crop growth status
by recognizing and estimating the ripening stage in real-time through the observation of
tomatoes before harvest.
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