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Abstract: A new method was proposed for the damage identification of box girder bridges under
moving load, wherein the difference of strain influence line (DSIL) was taken as an index to represent
the long-gauge strain difference before and after damage. The damage identification theory based
on long-gauge strain influence lines was derived for box girder bridges with shear lag effect under
consideration, and a regularized index DSIL was proposed for the quantitative identifications of
damage location and extent. A series of experiments were carried out to study the influences of
speed, vehicle type, and vehicle weight on the damage identification, and the experimental data were
obtained by long-gauge fiber Bragg grating strain sensors. Moreover, numerical simulations were
performed to confirm the method. The experimental and numerical results show that the method
can locate the damage accurately, and quantitatively identify the damage extent under different
working conditions. The experimental damage extent is generally slightly higher than the theoretical,
with an average identification error smaller than 5%. Additionally, the relative error of damage
extent is smaller than 3% under different working conditions. Thus, the effectiveness of this method
was verified.

Keywords: damage identification; moving load; long-gauge fiber Bragg grating strain sensor; influ-
ence line; damage extent

1. Introduction

As important transportation infrastructure, bridges occupy an important position in
national economic development. Concrete box girder bridges are widely used on medium-
and long-span bridges due to their unique cross-sectional form and usage characteristics.
However, they are affected by traffic load, overload, environmental erosion, earthquakes,
and typhoons in daily operation, which will inevitably lead to structural damage. All these
result in decreases in structural stiffness, bearing capacity, and service life span, and even
in abrupt collapse. Therefore, it is of great significance to study and develop a structural
damage identification and warning method suitable for box girder bridges in order to
detect their early structural damage and evaluate the service state and safety of the box
girder bridges, which is in favor of a reasonable maintenance and management.

Bridge structural health monitoring (SHM) has attracted the extensive attention of
many researchers [1–5] and has been successively applied to bridge structures as an impor-
tant part of disaster reduction. As a core issue in SHM, structural damage identification
technology has developed rapidly. Damage identification technology can be grossly di-
vided into two species: frequency-domain signal (FDS)-based methods, and time-domain
signal (TDS)-based methods [6]. FDS-based methods mainly use the dynamic charac-
teristics of the structure, such as natural frequency, mode, etc., to identify the damage
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and parameters of the structure, and then to evaluate its working state and practical life;
extensive literature reviews on FDS-based methods have been conducted [7–11]. However,
this method is not sensitive to local structural damage in practical application, which leads
to the deviation of identification. Some FDS-based methods can avoid this problem and
are more sensitive to local damage. However, it is greatly prone to external load, which
obstruct its development [12–14].

Vibration-based damage identification (VBDI) techniques developed rapidly in the
2010s. The core of the technology is that the vibration characteristics of the structure are a
function of its physical parameters. If the structure is damaged, it means a change in the
structural parameters, so it will inevitably lead to the change in the structural vibration
characteristics. Doebling et al. [15] summarized the structural damage identification
methods based on the dynamic characteristic change of a structural system in detail; its
weakness is that the structural overall parameter is used to identify the local damage. Lee
et al. [16] presented a bi-level damage detection algorithm that utilizes dynamic responses
of the structure as the input and a neural network as a pattern classifier, but it is difficult
to use in practical engineering. Ntotsios et al. [17] proposed to extract damage indicators
from acceleration signals, but this type of method is too affected by noise, and the obtained
structural information is too macro to capture the local damage. Li et al. [18] presented
a distributed damage identification approach based on the dynamic response sensitivity
of a moving vehicle. Liu et al. [19] used the data from strain gauges installed on bridges
and finite element simulation to generate three types of sensor networks, and the causal
relationships among spatially distributed strain data streams were extracted and analyzed
for the localization of structural degradation in bridges. Nguyen et al. [20] presented a
novel damage identification method to locate and quantify damage using measured mode
shapes and natural frequencies.

The method of identifying damage by strain response has developed rapidly. How-
ever, the traditional strain measurement is basically “point” measurement, in which it is
difficult to effectively capture the structural damage. In order to solve this problem, Li and
Wu [21] proposed the concept of a distributed long gauge strain sensing, and developed
the related techniques and sensors. Liu et al. [22] applied the Brillouin optical time do-
main analysis (BOTDA) technique to bridge damage localization and proposed a damage
localization index based on quasi-static strain influence lines which was independent of
differences in the loading conditions before and after damage. Sun et al. [23] proposed a
novel real-time damage identification method for bridge SHM considering temperature
variation; the method utilized model-based and partial least-squares regression analyses
for damage identification. Zhao et al. [24] proposed a damage identification technique
based on distributed strain measurements, identifying the structural damage under ambi-
ent excitation; the distributed strain energy difference and the relative distributed strain
energy were used to identified and quantify damage. Hong et al. [25,26] proposed a
damage-assessment method based on long-gauge strain sensors, which is used for the
rapid diagnosis and long-term health monitoring of structures. However, the method
needs a reference element. Chen et al. [27] carried out a strict comparative study on three
representative methods using long-gauge fiber Bragg grating (FBG) for damage detection
of highway bridges, and the precision and reliability of three methods were thoroughly
studied and compared through the vehicle bridge coupling experiment. Wu et al. [28]
proposed a novel method for stiffness monitoring and damage identification of bridges
under moving vehicle loads using spatially-distributed optical fiber sensors. However,
there are few damage identification methods for the box girder bridges mainly applied in
actual engineering.

In this article, a damage identification method of box girder bridges is proposed, based
on long gauge strain influence lines. The feasibility and identification effects of this method
were verified by numerical simulations and model bridge experiments, and the influence of
vehicle speed, vehicle type, axle loads, and other parameters were studied on the damage
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identification of box girder bridges. The results show that the method can be used to locate
the damage of the box girder bridges and quantify the extent of the damage.

2. Damage Identification of Box Girder Bridges Based on Strain Influence Lines

The damage identification method of box girder structures under moving load is
studied by using strain influence line theory [29] and distributed long-gauge strain sensing
technology. Firstly, the equation of long gauge strain influence lines of box girder bridges
is derived.

For the thin-walled rectangular box section shown in Figure 1, the expression of
bending normal stress of wing plate considering the effect of shear lag [30] is:

σx = Eh
[

M(x)
EI
−
(

1− y3 − 3Is

4I

)
u′
]

(1)

in which:
u(x) =

7n
6EI

(c1shkx + c2chkx + u∗) (2)
n =

1

1− 7
8

Is

I

k =
1
b

√
14Gn

5E

(3)

where u(x) is the shear displacement function of the wing plate of the box girder, c1 and c2
are determined by the boundary conditions, u* is the special solution only related to the
shear distribution, h is the height of the neutral axis, M(x) is the bending moment, Is is the
inertia moment of the wing plate, I is the total inertia moment of the box girder, EI is the

section stiffness, and G is the shear modulus, y =
y
b

.
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Figure 1. Transverse distribution of bending normal stress in rectangular box girder.

For the simply supported box girder with uniform section shown in Figure 2, suppose
a moving load P acting symmetrically on the rib plate of the box girder, according to the
basic assumption of the variational method, then:

M1(x) = ξPx

u1 =
7nP
6EI

(c1shkx + c2chkx +
ξ

k2 )
0 ≤ x ≤ xi (4)


M2(x) = (xi − ηx)x

u2 =
7nP
6EI

(c3shkx + c4chkx +
η

k2 )
xi < x ≤ L (5)
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where ξ =
L− xi

L
, η =

xi
L

is the boundary condition; u′1|x=0 = 0, u′2|x=l = 0; continuous
condition: x = xi, u1 = u2, from the variational condition, at point x = xi:(

u′1 −
7nM
6EI

)∣∣∣∣xi

+

(
u′2 −

7nM
6EI

)∣∣∣∣
xi

= 0 (6)

According to the above boundary conditions:
u1 =

7nP
6EIk2 (

shk(L− xi)

shkL
chkx− ζ)

u2 =
7nP

6EIk2 (shkxishkx− shkxicthkLchkx + η)

(7)

By introducing Equations (2)–(7) into Equation (1), the normal bending stress of the
structure can be obtained as:

σx =


h
I

{
M(x)− 7nP

6k
(1− 3Is

4I
)

[
shk(L− xi)

shkL
shkx

]}
(0 ≤ xi ≤ x)

h
I

{
M(x)− 7nP

6k
(1− 3Is

4I
)(shkxi·chkx− shkxi·cthkL· shkx)

}
(x < x ≤ L)

(8)

According to structural mechanics, the strain influence line equation at any section xi
of a simply supported beam can be expressed as:

f (xi) =
σx

(E)i
(9)

As shown in Figure 3, a moving load passes through the bridge at a uniform speed.
Suppose that the bottom of the beam is divided into N units average along the length, and
a long gauge FBG sensor is installed under each unit. Combining Equations (8) and (9),
the expression of the long gauge strain influence line measured by the mth sensor at the
bottom of the beam is as follows:

fm(x) =


h

(EI)m

[
(L− xi)

L
x− λ1·shkx

]
(0 ≤ x ≤ xi, 1 ≤ m ≤ N)

h
(EI)m

[
xi(1−

x
L
)− λ2·(chkx− cthkL·shkx)

]
(xi < x ≤ L, 1 ≤ m ≤ N)

(10)

where λ1 =
7nP
6k

(1− 3Is

4I
)

shk(L− xi)

shkL
, λ2 =

7nP
6k

(1− 3Is

4I
)shkxi, and (EI)m represent the

equivalent stiffness of the structure within the gauge length of the mth sensor. Suppose
that damage occurs in the mth element, the stiffness of the damaged element is (EI)∗m =
(1− α)(EI)m, α is the index of stiffness degradation degree, then the long gauge strain
influence line of the mth sensor in the damaged state is as follows:

fm(x)∗ =
h

(EI)∗m

[
(L− xi)

L
x− λ1·shkx

]
(0 ≤ x ≤ xi, 1 ≤ j ≤ N) (11)

Calculating the difference between Equations (10) and (11), it can be obtained that:

∆ fm(x) = fm(x)∗ − fm(x) =

[
h

(EI)∗m
− h

(EI)m

][
(L− xi)

L
x− λ1·shkx

]
=

α

1− α

h
(EI)m

[
(L− xi)

L
x− λ1·shkx

]
=

α

1− α
fm(x)

(12)
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Equation (12) shows that the strain difference measured by the mth sensor before and
after the damage is inversely proportional to the average stiffness in the sensor gauge
length. The initial stiffness of the structure is a constant value, and the parameter can be
used as a damage index to identify the structure damage based on this relationship. In
order to facilitate comparison, a regularized damage index difference of strain influence
line (DSIL) is proposed for the bridge damage identification. The expression of the damage
indicator DSIL is:

DSIL = [DSIL1, DSIL2 . . . DSILm . . . DSILN ]

=

{
[∆ f1(x)]max
[ f1(x)]max

,
[∆ f2(x)]max
[ f2(x)]max

. . .
[∆ fm(x)]max
[ fm(x)]max

. . .
[∆ fN(x)]max
[ fN(x)]max

} (13)

where [ fm(x)]max is the maximum amplitude of the strain influence line measured by the
mth sensor before the damage. After regularization, the damage index DSIL is only related
to the stiffness of the bridge structure and the position of the sensor, and independent of the
load. Therefore, DSIL can be used to identify damage and evaluate structural performance.
When the bridge is in a non-destructive state, the damage index DSIL is always around
zero. However, when the structure within a certain sensor gauge length is damaged, the
structural stiffness will decrease, and the corresponding value of DSIL will deviate from
zero. This result can be used to the locate the damage of the structure.

For the quantification of structural damage degree, suppose that the structure is
damaged within the mth sensor gauge distance, and α represents the damage degree.
According to the definition of damage index DSIL, the expression of damage degree α is:

α =
(DSIL)m

(DSIL)m + 1
(14)Sensors 2021, 21, x FOR PEER REVIEW 6 of 20 
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3. Numerical Verification

In order to verify the effectiveness of the above method, a numerical analysis model
was established, as shown in Figure 4. The model beam was 18 m in length, 1.6 m in height,
4.68 m in width, and the thickness of the upper and lower plates was 0.2 m. The density of
the beam was 2500 kg/m3, the elastic modulus was 3.5 × 104 MPa, and the Poisson’s ratio
was 0.2. It was divided into 120 elements along the beam length, 15 sensors were arranged
at the bottom of the beam, and each sensor was covered with 8 elements. A moving load
was applied on the top of the beam, and the strain time history response of each sensor
was extracted for analysis.
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Firstly, how to deduce the long gauge strain from the displacement information of
nodes was studied. Suppose that a strain sensor with the gauge length of Lm is arranged at
the bottom of the beam element (Figure 5), the average strain within the sensor range (i.e.,
long gauge strain) can be expressed as:

εm =
h

Lm
(vi − vj) (15)

where vi and vj represent the angle displacement of the nodes at both ends of the beam
element (section i–i and section j–j, respectively). In the finite element, the method of
extracting the angle displacement is different according to the type of element. The finite
element method used in this article cannot extract the rotation angle information directly,
and it needs to be converted by Equation (16), where ui and uj represent the longitudinal
displacement of the element node. 

vi =
ui
H

vj =
uj

H

(16)
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The calculation method of damage extent in the coverage area of long gauge sensors
is shown in ref. [25]. Suppose one long-gauge strain sensor with the gauge length L is
attached on the beam element (Figure 6) and damage occurs in the region of L2. The
average stiffness corresponding to the gauge length using strain equivalent method can be
expressed as follows:

ML
(EI)equ

=
ML1

EI
+

ML2

(1− α)EI
+

ML3

EI
(17)

(EI)equ =
(1− α)EIL

(1− α)(L− L2) + L2
(18)

where EI is the flexural stiffness of the intact beam, α is the stiffness reduction coefficient
due to the damage, M is the bending moment, and (EI)equ represents the equivalent flexural
stiffness within the gauge length. Therefore, the average damage extent corresponding to
the gauge length can be theoretically calculated by:

α =
EI − (EI)equ

EI
=

αL2

(1− α)(L− L2) + L2
(19)

A total of 10 working conditions were analyzed: intact condition (C0), single dam-
age condition (C1–C3), two damage condition (C4–C6), and multiple damage condition
(C7–C9). The damage setting method was to reduce the unit stiffness of the bottom plate
of the box girder in the gauge length section of the sensor, and the specific setting is shown
in Table 1. The load type was uniaxial moving load P = 400 kN and the speed was 5 m/s.
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Table 1. Damage condition design.

Condition Damage Location Damage Extent Damage
Location Damage Extent Damage

Location Damage Extent

C0 F4 F7 F12
C1 F4 10% F7 F12
C2 F4 20% F7 F12
C3 F4 30% F7 F12
C4 F4 10% F7 F12 10%
C5 F4 20% F7 F12 20%
C6 F4 30% F7 F12 30%
C7 F4 10% F7 10% F12 10%
C8 F4 20% F7 20% F12 20%
C9 F4 30% F7 30% F12 30%

3.1. Single Damage Case

The proposed damage identification method was used to analyze the working condi-
tion C1–C3, and the results are shown in Figure 7. It can be seen from this figure that the
DSIL value of the F4 sensor had a large mutation, and the others were basically around zero.
The result is consistent with the damage location; therefore, the method can identify the
damage location well. In addition, with the increase in the damage degree, the protrusion
degree of the DSIL value of the F4 sensor increased gradually, and there was a one-to-one
correspondence with the set damage degree, which indicated that the method could not
only locate the damage, but also quantify the damage. After inputting the DSIL value
into Equation (14), the identification result of the corresponding damage extent could be
obtained, as shown in Figure 8. It can be seen that the proposed method can identify the
damage extent relatively accurately. The damage extent identified by numerical verification
is slightly higher than the theoretical one, and the error is smaller than 3%.
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3.2. Multiple Damage Cases

Simulation analyses with two or more damage locations were performed to study
the damage identification with multiple damage conditions. The simulation results are
shown in Figure 9. It can be seen from the figure that the DSIL values of sensors F4
and F12 changed abruptly under two damage conditions, and that the DSIL values of
sensors F4, F7 and F12 changed abruptly under multiple damage conditions. The results
are consistent with the set damage conditions. The simulation results revealed that the
proposed damage identification method is not only suitable for a single damage state,
but also suitable for multiple damage states. Similarly, according to Equation (14), the
identification results of damage extent could be obtained, which are shown in Figure 10.
Similar to the identification result of single damage, the damage extent identified by
numerical verification is slightly higher than the theoretical extent.
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4. Experimental Verification
4.1. Experimental Setup

To test the feasibility of the proposed method, a series of bridge model experiments
were conducted. The experimental platform is shown in Figure 11, including a 4 m
acceleration section in front of the bridge, a 3 m test section, and a 3 m deceleration section.
The experimental model bridge was made with acrylic material, the performances of which
are suitable for simulating concrete bridge structures in the model experiment. Moreover,
it is easy to simulate different types of damage with this type of material. The size of the
bridge section is shown in Figure 12.
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In this experiment, eight long-gauge FBG (fiber Bragg grating) strain sensors were
symmetrically installed on the bottom of the girder to monitor the strain. As shown in
Figure 13, the sensor was composed of fiber grating, two T-shaped metal blocks, an outer
protective cover, and armored cable which protected the tail fiber. During the manufacture,
the optical fiber needed to be pre-tensioned and encapsulated in the groove between the
metal blocks with glue, and the grating was located in the middle of two metal blocks.
The measurement sensitivity of the sensor was more than three times higher compared
with the ordinary FBG sensor and could be adjusted according to the actual needs. The
metal package ensured the durability and service life of the sensor, and it was convenient
to be installed and disassembled. The gauge length of the sensor was determined by the
distance between the two mounting supports, and the sensors selected in this experiment
were 30 cm.

The experimental vehicle models are shown in Figure 14a, and the vehicle speed was
achieved through changing the speed of the motor frequency converter. The vehicle models
were divided into two-axle and three-axle vehicles. The specific parameters are shown in
Figure 14b. The total weight of the vehicles could be changed with counterweights. The
wavelengths of the FBG sensors were acquired with S130 model acquisition instrument of
Micron Optics Co., Ltd., and the sampling rate was 500 Hz. In order to study the influence
of different parameters on the experimental results, five different vehicle speeds were set
in the experiment, and the vehicle counterweights were divided into three levels.
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The damage was realized by cutting the designed length of the box girder at the
bottom plate, as shown in Figure 15. The damage extent was calculated through the
reduction in the inertia of the section. A total of nine damage conditions were set, including
single damage, two damage, and multiple damage scenarios, as shown in Figure 16. The
specific design is shown in Table 2, where the parameters include the number and extent of
the damage.
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Figure 16. Damage scenarios: (a) single damage; (b) two damage; (c) multiple damage sites.

Table 2. Damage conditions in the experiment.

Condition Damage Location Damage Extent Damage Location Damage Extent Damage Location Damage Extent

C0 F2 F4 F6
C1 F2 9.19% F4 F6
C2 F2 14.43% F4 F6
C3 F2 21.25% F4 F6
C4 F2 21.25% F4 9.19% F6
C5 F2 21.25% F4 14.43% F6
C6 F2 21.25% F4 21.25% F6
C7 F2 21.25% F4 21.25% F6 9.19%
C8 F2 21.25% F4 21.25% F6 14.43%
C9 F2 21.25% F4 21.25% F6 21.25%

4.2. Results and Discussion

The influences of vehicle speed, type and weight on the identified results were studied
in the experiments. The measured long-gauge strain response was filtered by the Empirical
Mode Decomposition (EMD) method [31], and a typical long-gauge strain history curve
was obtained, as shown in Figures 17 and 18. The DSIL values of each sensor under
different working conditions can be obtained through inputting the long-gauge strain
history curve into the method proposed in this paper. Then, the damage condition of the
bridge can be obtained.
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Figure 18. Typical long-gauge strain histories filtered by the EMD method: (a) two-axle vehicle at 0.72 m/s with 10 kg
additional weight; (b) two-axle vehicle at 1.48 m/s with 10 kg additional weight.

4.2.1. Influence of Speed

The vehicle speeds were divided into five types, which were 0.72 m/s, 1.11 m/s,
1.48 m/s, 1.82 m/s, and 2.25 m/s. The damage identification results of two-axle vehicle
models with five speed classes are shown in Figure 19. It can be seen that the damage
location of the bridge could be well identified under the nine working conditions, and
speed had little influence on the identification of damage location. It should be pointed
out that the DSIL values obtained with FBG sensors at the boundary and near the damage
location fluctuated greatly, which may be related to the dynamic effect. This phenomenon
was widespread in the experiment, but did not affect the overall identified effect.

According to Equation (14), the damage extent with a relative error could be identified
and obtained. The experimental results are shown in Figure 20. It can be seen that the
damage extent was accurately identified with the proposed method. The experimental
damage extent was generally slightly higher than the theoretical extent, with an average
error smaller than 5%, which is within an acceptable range. In addition, it was found that
the relative error of the damage identification was large for the small damage extent; it was
approximately 2% in damage extent level 1. The relative error decreased with the increase
in the damage extent, and its value was smaller than 1% in damage extent level 3. This
was due to the reason that the signal-to-noise ratio increased for the specimens with a large
damage extent.
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4.2.2. Influence of Vehicle Type

The vehicle types in the experiment were divided into two-axle vehicles and three-axle
vehicles. Figure 21 shows the identification results of two-axle vehicles and three-axle
vehicles with a 20 kg load at 0.72 m/s and 1.48 m/s, respectively. It can be seen that the
location of the damage was accurately identified for both cases, and the vehicle model
had little impact on the identification results of damage. Similar with the identification
result of speed influence, the fluctuation of DSIL value of the sensor at the boundary and
near the damage position still existed, but it did not affect the overall identification effect.
Similarly, the identification result of corresponding damage extent with a relative error
could be obtained according to the measured DSIL value and Equation (14), as shown
in Figure 22. Similar with Figure 20, the measured damage extent was generally higher
than the theoretical one, but the identification error was smaller than 5%, which is still
acceptable. When the damage extent was small, the relative error was larger. However, the
relative error decreased as the damage extent increased. In general, the relative error was
smaller than 3% under different vehicle types.
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Figure 21. Identification results of damage location: (a) two-axle vehicle with a load of 20 kg at 0.72 m/s; (b) three-axle
vehicle with a load of 20 kg at 0.72 m/s; (c) two-axle vehicle with a load of 20 kg at 1.48 m/s; (d) three-axle vehicle with a
load of 20 kg at 1.48 m/s.
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4.2.3. Influence of Vehicle Weight

In the experiment, the additional weight of the vehicle was divided into three grades:
20 kg, 30 kg, and 40 kg. Figure 23 shows the damage identification results of two-axle
vehicle at 1.48 m/s with different additional weight conditions. It can be seen that the
damage location could be accurately identified under any working conditions, and with
the increase in the additional weight on the vehicle, the accuracy of the damage location
identification was hardly affected. Consequently, the proposed damage identification
method was not affected by the vehicle weight. The identification results of damage extent
are shown in Figure 24. The measured damage extent was generally higher than the
theoretical extent, and the average identification error of damage extent was smaller than
5%. Moreover, the relative error of damage extent was smaller than 3% under different
vehicle weight conditions.
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5. Conclusions 
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through the relationship between strain difference index DSIL and damage extent. In ad-
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Figure 24. Identification results of damage extent of different vehicle weight.

5. Conclusions

A novel damage identification method for box girder bridge structures was proposed
through the relationship between strain difference index DSIL and damage extent. In
addition, a series of numerical simulation and experiments were conducted to verify the
proposed method. The main conclusions are as follows:

1. The regularization index DSIL before and after the damage of bridge structures is
related to the stiffness of the bridge and the installation position of the sensor, which
can be used to identify the damage. When the damage occurs in the gauge length of
the sensor, the value of DSIL deviates from zero, and the damage location is, thus,
identified.

2. Through the verification of numerical simulation, the method can locate the damage
accurately, and has a certain ability to identify the damage extent.

3. Through a series of experiments, the influence of speed, vehicle type, and vehicle
weight on the identification method were studied. The experimental results show
that the method is not affected by these parameters and the damage location can be
accurately identified under various working conditions.

4. When the damage was analyzed quantitatively, it was found that the measured
damage extents were generally higher than the theoretical one, and the average
identification error of damage extent was smaller than 5%. Moreover, the relative
error decreased as the damage extent increased. In general, the relative error was
smaller than 3% under different working conditions.
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