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Abstract: Due to limited resources of the Internet of Things (IoT) edge devices, deep neural network
(DNN) inference requires collaboration with cloud server platforms, where DNN inference is parti-
tioned and offloaded to high-performance servers to reduce end-to-end latency. As data-intensive
intermediate feature space at the partitioned layer should be transmitted to the servers, efficient
compression of the feature space is imperative for high-throughput inference. However, the feature
space at deeper layers has different characteristics than natural images, limiting the compression
performance by conventional preprocessing and encoding techniques. To tackle this limitation,
we introduce a new method for compressing DNN intermediate feature space using a specialized
autoencoder, called auto-tiler. The proposed auto-tiler is designed to include the tiling process and
provide multiple input/output dimensions to support various partitioned layers and compression
ratios. The results show that auto-tiler achieves 18% to 67% higher percent point accuracy compared
to the existing methods at the same bitrate while reducing the process latency by 73% to 81%. The
dimension variability of an auto-tiler also reduces the storage overhead by 62% with negligible
accuracy loss.

Keywords: collaborative intelligence; deep feature compression; inference partitioning; autoencoder;
convolutional neural network; deep learning; machine learning; distributed computation; Internet
of Things

1. Introduction

Artificial Intelligence (AI) is rapidly spreading into Internet of Things (IoT) devices,
including face recognition for smart security systems [1–3], voice assistant with AI speak-
ers [4–6], and smart cars [7,8]. IoT edge devices, however, do not have sufficient resources
to perform inference of complex deep neural networks (DNN) in a timely manner. To
satisfy the latency requirement, the inference computation load can be offloaded to high-
performance servers in the cloud. This offloading approach started as a full-offloading,
and has evolved to a partial offloading. In full offloading, a mobile device transmits input
data to a cloud server, which performs inference of the entire DNN and returns a result
back to the device. The server, equipped with cutting-edge GPUs and AI accelerators is
generally orders of magnitude faster than the mobile device and can meet latency and
throughput requirements of real-time inferences.

As IoT edge devices enhance their AI processing capabilities, the offloading mecha-
nism has evolved to partial offloading, called ‘Collaborative Intelligence’ [9–12]. Recent
mobile devices have AI hardware units inside (e.g., neural processing unit in an application
processor) and can perform inference of simple DNNs on-device. However, these units
cannot execute complex DNN models by themselves due to limited resources from battery-
supplied power and small form factors. Instead, collaborative intelligence utilizes the
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on-device hardware to keep some computation on-device, and partially offloads the rest of
the computation to a server. The motivation behind collaborative intelligence is that most
DNNs have intermediate feature spaces smaller than the input feature space. Collaborative
intelligence utilizes this characteristic to trade computation time for communication time. It
partitions DNN layers and the edge device executes up to the partitioned layer. The output
features from the partitioned layer are then transferred to a cloud server, which will con-
tinue executing the rest of the network. Executing early layers on the relatively-slow edge
device and transferring a smaller amount of features can reduce the end-to-end latency
significantly than transferring a large volume of input data and executing the entire layers
in the relatively-fast server hardware.

An offloading scheme, either full offloading or collaborative intelligence, incurs sig-
nificant overheads in transferring a large volume of feature data, especially when the
input data is a high-resolution image or video. Compressing the feature data is promising
for reducing the communication time. There is a rich literature on compressing input
image/video, including Joint Photographic Experts Group (JPEG) and High Efficiency
Video Coding (HEVC). These codecs have evolved over decades and can achieve a very
high compression ratio on vision data. Compressing intermediate features is relatively new
and many studies [13–16] extend existing image/video codecs to compress vision-based
intermediate features. They add a preprocessing stage before applying an image/video
codec to fit intermediate features into the target codec.

Such studies, however, are sub-optimal by poorly processing multiple channels. In
most convolutional neural networks (CNN), channel count increases and feature map size
decreases as layers deepen. Some studies [13,14] individually apply a codec to these many
small-sized maps, which suffers from limited redundancy and unamortized header costs.
The others [15,16] tile multiple maps to build a large frame, which introduces blockiness in
the combined frame and degrades the efficiency of natural-image-based codecs.

To address these limitations, this paper presents a new preprocessing technique for
intermediate compression, called ‘auto-tiler’ (Figure 1). Auto-tiler is a specially-designed
autoencoder that encodes an intermediate feature space (a collection of feature maps)
into a single output feature map. Image/video codecs can then be applied to this map
without any additional preprocessing. The output map has a smaller dimension than its
inputs, and auto-tiler supports multiple output dimensions from a single model to support
multiple compression ratios.

Figure 1. Overview of the proposed auto-tiler encoding process.

Another strength of an auto-tiler is its flexibility in dealing with changes in com-
munication conditions. In a real environment, communication conditions (e.g., latency,
throughput, and error rate) can change frequently. Such a change affects communication
time and can change the optimal partition layer in collaborative intelligence. The proposed
auto-tiler is designed to support multiple partition layers using a single model. The same
model can be reused to process intermediate features from different partitioning layers.

Our evaluation shows that auto-tiler achieves 18% to 67% higher percent point ac-
curacy compared to the existing methods at the same bitrate. Auto-tiler also improved
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the process latency by 73% to 81% depending on the compression quality. Additionally,
by allowing an auto-tiler to support multiple input and output dimensions, we managed
to save the storage overhead by 62% with minor accuracy loss.

The rest of the paper is organized as follows—Section 2 provides backgrounds and
motivations for auto-tiler. In Section 3, we introduce the characteristics of auto-tiler and its
unique design choices. In Section 4, we explain our experimentation settings and compare
the performance of auto-tiler with existing methods. Section 5 provides the summary of
our paper and future works.

2. Backgrounds and Related Work
2.1. Collaborative Intelligence

DNN requires billions of operations to infer. Mobile devices, which have limited
power supply and computational resources, used to offload the entire computation to
clouds. The cloud-only approach fully offloads the computation to the cloud and utilizes
high-performance GPUs and AI accelerators to complete the job in a timely manner. As
mobile devices introduced AI hardware, this offloading scheme has evolved to Collaborative
Intelligence to partially offload computation to servers. With collaborative intelligence,
server computation time is traded with on-device computation to reduce transfer time.

There are researches to compress intermediate features in collaborative intelligence in
order to reduce the transfer time [13–16]. Some suggest preprocessing methods to make
feature space easily compressed by conventional image/video codecs such as JPEG and
HEVC. They utilize state-of-the-art codecs to achieve high compression efficiency and can
be classified into two categories based on how they process multi-channel features.

2.2. Existing Feature Preprocessing Methods and Their Limitations

We organized the existing feature preprocessing methods into two groups—one that
applies codecs individually to each feature maps, and another which first tile these feature
maps into a large frame before applying codecs. In the following subsections, we will
discuss these two methods in detail and analyze their limitations.

2.2.1. Frame per Channel Method

Most CNNs decrease their feature map size but increase feature map count (i.e., chan-
nel count) as layers deepen. For example, input features of AlexNet [17] and VGG16 [18]
have a dimension of 224 × 224 × 3 (width × height × channel). But the third convolutional
layer of AlexNet has an intermediate feature space of 13 × 13 × 384 and the conv3_2 layer
of VGG16 has an output dimension of 56 × 56 × 256. Some methods [13,14] regard each
channel as a frame and compress separately (referred to as Frame Per Channel (FPC) in this
paper, Figure 2). This approach becomes less efficient as the feature map size gets smaller.
Figure 3 compares JPEG compression ratio of a sample image against ones of different-
sized sub-images. Each sub-image is built by slicing the image into smaller sub-images.
For example, the four 250 × 203 sub-images are built by splitting 500 × 406 images evenly
both horizontally and vertically. The result illustrates that the compression ratio decreases
as the feature map size decreases. Our evaluation in Section 4 also shows FPC-based
methods require more bandwidth for a target accuracy or exhibit poor accuracy for a
given bandwidth.

2.2.2. Tiling Method

The others [15,16] ‘tiles’ many small-sized feature maps into a single large frame and
apply a codec to the entire frame (i.e., the entire feature space) (Figure 2). With increased
frame size, tiling-based methods can exploit increased redundancy and amortize costs to
achieve a higher compression ratio than FPC-based ones. However, one of the drawbacks
of these methods is that it introduces blockiness into the frame. At feature map boundaries,
there can be abrupt changes in pixel values. The resulting frame has blocking artifacts at tile
boundaries and suffer from sub-optimal compression efficiency with natural-image-based
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codecs, which rely on a frequency-domain transform to increase data redundancy and
reduce the perception of errors [19,20].
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Figure 2. (a) Frame per Channel (FPC) and Tiling process, (b) visualization of Frame per Channel
method, and (c) visualization of a tiled feature map.
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Figure 3. Impact on compression ratio due to splitting.

As explained above, both existing approaches have limitations as a preprocessing
method of feature map compression. Furthermore, deep feature space has different spatial
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characteristics compared to natural images [15]. To verify this difference in characteristics,
we also conducted an experiment on a partitioned YOLO v3 network [21]. In this experi-
ment, spatial similarity is measured as a percentage of pixels that is within 2% difference
with its spatial neighbors (left, top, top-left, bottom-left, top-right). For each neighbors,
the similarity is calculated individually and then averaged to determine the overall spatial
similarity. As shown in Figure 4, the overall spatial similarity of the network generally
decreases as the layer goes deeper. Therefore the deep feature space should be preprocessed
in a way that the spatial similarity can be improved, to effectively use conventional image
compression algorithms.
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Figure 4. Spatial similarity result of YOLOv3 network at different partitioned layers.

2.3. Autoencoder as a Preprocessor

Autoencoders are a special type of a neural network which is typically used to reduce
the dimension of the input feature space using a bottleneck layer. They are trained to
learn and approximate the identity function so that the decoding part of the network can
reconstruct the input from the compressed bottleneck layer activation.

Deep feature space can be better compressed if we train and use an autoencoder
network that is tailored towards compressing the intermediate features. This is because
conventional compression algorithms are crafted based on realistic images with human
visual system in mind, which the deep feature space differs from. Autoencoder network
can then be used as a preprocessor during feature map compression by decreasing the
dimension and number of channels of the feature space. This autoencoded feature space is
then tiled into a single frame and further compressed by image/video encoders.

We conducted a simple experiment to check the feasibility of autoencoders as the
preprocessor. Figure 4 portrays that a simple autoencoder showed relatively higher spatial
similarity in deeper layers, while the spatial similarities of other preprocessing methods
decreased. The increased redundancy at deeper layers will allow the video encoders to
compress the feature space even further, thus improving the compression ratio.

Although autoencoder can encode the feature space while increasing the spatial
similarity, the output feature space is still many small-sized channels, which are not
favorable to the conventional encoders. Even though tiling can combine these channels into
a single frame, it causes blockiness introduced by different feature maps being adjacent
to each other in a tiled frame. The proposed method solves this problem by using an
autoencoder with special bottleneck structure while preserving the advantages which
autoencoder brings.
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3. Proposed Method

We propose a new preprocessing method called ‘auto-tiler that utilizes a specially-
structured autoencoder to encode the feature space into a reduced dimension. The im-
portant aspect of the proposed method is that it automatically ‘tiles’ the multi-channel
feature space into a single-channel one within its encoding process. By effectively allow-
ing an auto-tiler to learn the optimal tiling process by itself, it eliminates the additional
process that was required for better compression by the existing methods. An example of
an auto-tiled feature map is illustrated in Figure 5. This feature map does not have the
problems arising from many smaller-sized feature maps in Figure 2b and also does not
show multiple blocky edges as shown in Figure 2c. The effect of these characteristics are
demonstrated in Section 4.3.1. The result indicates that the proposed method retains no-
ticeably higher structural similarity after compression than the existing methods shown in
Figure 2b,c, allowing for a more efficient compression. In addition, we design an auto-tiler
to accept the input feature space with multiple different dimensions, in order to support
various partitioned layers of a network. It also allows multiple output dimensions to
support quality-compression scalability. The structure of a proposed auto-tiler is shown in
Figure 6, and its core features (auto-tiling, variable input dimensions, and variable output
dimensions) are explained in the following subsections.

(a)

(b)

Figure 5. (a) Input image and (b) a visualized example of an auto-tiled feature map.

3.1. Auto-Tiling Autoencoder

The structure of a conventional autoencoder is altered so that it outputs a single,
larger feature map at the bottleneck layer. The size of a filter (convolution kernel) in the
bottleneck layer is increased to compensate for the low quantity of filters. This eliminates
the need to perform tiling/de-tiling operation before the encoding/decoding process. That
is, the bottleneck activation of an auto-tiler can be directly encoded by a video encoder,
and its decoded frame can also be directly used as an input to the decoding part of an
auto-tiler. Furthermore, by using a single, larger filter, the blockiness of a tiled (in this case,
auto-tiled) frame can be reduced, which makes room for a video encoder to improve the
compression ratio.



Sensors 2021, 21, 896 7 of 17

3.2. Auto-Tiler with Variable Input/Output Dimensions

During inference, the optimal partitioned layer may change based on available net-
work capacity and compute/memory resource of the edge device [9]. It implies that the
dimension of the intermediate feature space can vary depending on the partitioned layer.
However typical autoencoders can only accept the input with one fixed dimension.

Another challenge in partitioned inference is that the required compression ratio can
vary depending on the latency requirement or transmission link conditions. However,
the output feature dimension of conventional autoencoders is fixed, so the compression
ratio cannot be altered on-line. One of the simple solutions to this issue is to train multiple
autoencoder models with different input and output dimensions (compression ratios),
and store all the models in an edge device. However, this is not an efficient solution as
it increases storage overhead proportional to the number of required models. Another
approach can be dynamically tuning an autoencoder model depending on the required
input/output dimension. However, this method also is limited since training an entire
autoencoder network is a costly operation. Therefore, it is advantageous to design an
autoencoder (an auto-tiler in the proposed approach) so that it is compatible with variable
input and output dimensions.

Figure 6. The overview of proposed encoding and decoding process of an auto-tiler.

3.2.1. Variable Input Dimensions

We design an auto-tiler with multiple input dimensions by adding compatibility
autoencoders with different structures to a core auto-tiler. A core auto-tiler is a network
that is trained on the intermediate layer with the smallest dimension and will be used
in conjunction with compatibility autoencoders as needed. Compatibility autoencoders
transform the larger input dimension to a smaller one which is compatible with a core
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auto-tiler. In this way, we can easily support multiple input dimensions while minimizing
the storage overhead, since a large portion of the network (core auto-tiler) is shared.

We applied this approach to the YOLO v3 network, which has three partition-able
output dimension (Width, Height, Channels): (208, 208, 64) for the 4th layer, (108, 108, 128)
for the 11th layer, and (52, 52, 256) for 15th, 24th, and 36th layer. Partitioning beyond the
36th layer is undesirable due to the skip line concatenating the 36th layer with the 96th
layer. In order to support these multiple dimensions, we have first trained a core auto-tiler
network on activation feature space of 15th, 24th, and 36th layer as they have the same,
smallest dimension. Then for the 4th and 11th layer, we trained additional compatibility
autoencoders that reduce the dimensions so that it can be compatible with a core auto-tiler.

3.2.2. Variable Output Dimensions

We designed an auto-tiler with variable output dimensions by allowing a core auto-
tiler to generate different bottleneck activations in its inference process. Therefore, it will
encode the input with different strengths depending on the inference depth. In this way,
we can change the compression ratio without having to re-train the network.

To determine the optimal compression ratio (CR) that an auto-tiler should support, we
trained a simple auto-tiler by increasing the CR by 4×, from 4× to 256×. Then, we defined
an effective mAP to be 85% of the maximum mAP of the YOLO v3 network. Should an
auto-tiler network with a certain CR achieves less mAP than an effective mAP, that CR will
be considered ‘too heavy’. Our experiment on Figure 7 showed that a CR of 4× to 64× was
within our effective mAP range, with 64× sitting on the edge of an effective mAP. Thus,
we determined that the optimal CR that an auto-tiler network should support is within 4×
to 64×.

Based on this approach, we designed an auto-tiler network so that it can compress
the input feature space into two different output dimensions. These output dimensions
are (416, 416, 1), (208, 208, 1), which compress the feature space of the 15th, 24th, and 36th
layers by 4× and 16×, respectively. Its compression ratio is increased by 2× as the partition
depth gets shallower. That is, when compressing the 11th layer activation the compression
ratio will be 8× and 32×, and when compressing the 4th layer it would be 16× and 64×
respectively. This is due to the compatibility autoencoders compressing the 11th and
4th layer activation by 2× and 4× in order to make it compatible with a core auto-tiler.
As a result, an auto-tiler network will support a CR from 4× to 64×. The structure of an
autoencoder, auto-tiler, and compatibility autoencoders is shown in Figure 8.
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Figure 7. Auto-tiler with compression ratio (CR) of 4–256 and its respective mAPs.
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(a) Autoencoder structure

(b) Core auto-tiler structure

(c) 4th layer compatibility autoencoder

(d) 11th layer compatibility autoencoder

Figure 8. Network structure of (a) autoencoder, (b) multi-layer auto-tiler, (c) 4th layer compatibility autoencoder, and (d)
11th layer compatibility autoencoder.
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4. Experiment Results
4.1. Experiment Settings

In the following subsections, we discuss the experimentation settings. We first discuss
which framework we used to evaluate and train the models. Then we describe the model
structure and training setups. Subsequently, we demonstrate the configurations for the
video encoder.

4.1.1. DNN Model Training

The proposed autoencoders including an auto-tiler are trained using TensorFlow [22].
YOLO v3 model that we have used during training is a pre-trained network which is
transfer-learned on VOC dataset [23]. As for the training dataset, we used 16,125 images
from a total of 18,407 combined images of VOC2007 and VOC2012 training dataset [24,25].
We have excluded the first 2282 images in the training dataset to use during validation.
Then 287 overlapping VOC2007 test images are removed and the remaining 1995 images are
used as a validation dataset. Finally, for testing, we used 4952 test images from the VOC2007
test dataset. Every measurement of the proposed method are derived by averaging the
results of all images in the test dataset. Additionally, all training and testing are done with
PC specs of AMD Ryzen 7 3900x and NVIDIA RTX2080, which have a respective FP32
computation capability of 2649.6 GFLOPS and 10.07 TFLOPS [26,27].

We first trained a simple autoencoder that does not have an auto-tiling bottleneck
layer as a comparison. The CR4 model, which gives a compression ratio of 4×, is trained
initially and extra layers are then attached to further reduce the dimensions by 4× which
constitutes the CR16 model as shown in Figure 8a. The encoding part of the CR16 model is
trained with its parent CR4 encoder frozen. The decoding part on the other hand is trained
individually for each compression ratios since server platforms are less limited by storage
space than edge devices. This allows us to achieve better accuracy without sacrificing the
limited storage space on edge devices. The learning rate is set to 0.003 and 0.001 when
training the CR4 model and CR16 model respectively. A simple autoencoder is only trained
on the 36th layer for the sake of comparison.

When training a core auto-tiler we loaded the activations from the 15th, 24th, and 36th
layer sequentially since they have the same dimension. In a similar manner as training an
autoencoder, a CR4 auto-tiler is trained initially. Additional layers that provide heavier
compression are then attached to form a CR16 auto-tiler. The encoding part of a CR16
model is trained with its parent CR4 encoder frozen, and the decoding part is trained
individually in the same vein as an autoencoder. It should be noted that this still reduces
the decoders’ storage overhead since a core auto-tiler is shared and supports multiple
partitioned layers through compatibility autoencoders. The learning rate was fixed to
0.0003 during training. The structure of a core auto-tiler is shown in Figure 8b.

Compatibility autoencoders for 4th (Figure 8c) and 11th (Figure 8d) layers are trained
by freezing the weights of a core auto-tiler and attaching the autoencoders at both ends. We
trained the CR16 models first and then trained the CR4 models afterward. When training
the CR4 models, we copied the weights from the CR16 model and froze the weights of the
encoding part. Therefore the CR4 and CR16 models are trained to share the encoding part
while the decoding parts are trained individually to recover the original feature space. We
used a learning rate of 0.0005 for the 4th layer compatibility autoencoder and 0.00001 for
the 11th layer.

All of the autoencoders and auto-tiler models are trained for 60 epochs with the
early stopping patience of 5. We chose a model with the lowest validation loss to use
during testing.

4.1.2. Video Encoder Settings

In our experiment, the feature maps created by an autoencoder or an auto-tiler are
encoded by the HEVC codec, available as an FFmpeg library [28–30]. The frame rate was
set to 30 frames per second, and the pixel format is set to grayscale. We used a bitrate
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based encoding where the encoding bases are [450, 900, 1800, 3600, 7200, lossless] Kbps,
which are equivalent to [15, 30, 60, 120, 240, lossless] Kbpi (kilobits per image). When using
the FPC method, these bitrates are divided by the number of channels to keep the Kbpi
in a similar range. That is, for the FPC method on (52, 52, 256) feature space, we used the
encoding bases as [450/256, 900/256, 1800/256, 3600/256, 7200/256, lossless] rounded to
the nearest integer.

4.2. Independent vs. Variable Auto-Tiler

A variable auto-tiler model has a distinct advantage over the independent ones. That
is, it reduces the storage space overhead by not requiring multiple models to support
varying dimensions. However, implementing variability to a model may reduce the
accuracy as a model could become less specialized to a particular configuration. Therefore
in the following subsections, we illustrate that the proposed method obtains comparable
accuracy even with the added variability. Then, we compare the storage space overhead of
each method to highlight the advantage of a variable model.

4.2.1. Compression Performance Comparison

Considering that we have designed an auto-tiler to support variable input and output
dimensions, we must compare its accuracy with independent models to verify its feasibility.
In Figure 9 we compared the result with independent models and achieved around 1.15%
accuracy loss with our variable model. Consequently, we were able to verify the feasibility
of a proposed variable model in terms of accuracy as it showed negligible accuracy loss
compared to the invariable, independent models.
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Figure 9. mAP comparison of independent vs variable auto-tiler model.

4.2.2. Memory Overhead Comparison

The most significant advantage of a variable auto-tiler model is its much smaller
storage space overhead than the independent models. We compared the memory overhead
of variable and independent models in Table 1, which indicates that the overall memory
overhead is reduced by 62%. The encoder part, which will be stored on edge devices, is
reduced by 74%.

Table 1. Storage space overhead comparison of independent vs variable auto-tiler model.

Model Independent Variable Reduction (%)

Encoder 71,002 KB 18,479 KB 73.973%
Decoder 68,592 KB 34,656 KB 49.475%

Total 139,594 KB 53,135 KB 61.936%

4.3. Auto-Tiler vs. Existing Methods

The following subsections will discuss several major advantages of an auto-tiler
against existing methods. We first discuss the structural robustness of the proposed method
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to the compression artifacts. Then we compare the compression performance at various
configurations and analyze the effective compression ratio of each method. Afterward, we
study the latency-improving effects of the proposed method.

4.3.1. Structural Similarity Comparison

To verify that our proposed method is more structurally stable after compression
than the existing methods, we measured the structural similarity (SSIM) [31] of auto-tiler
CR4-16, FPC and tiling method over all partitioned layers. SSIM is measured using FFmpeg
library [30] with the losslessly encoded feature space as a reference data. SSIM value is
within the range of −1 to 1, where 1 denotes that the target is an exact match to the reference
data and −1 represents that the target is most dissimilar. The result is shown in Figure 10.
It is clearly demonstrated that auto-tiler exhibits markedly higher SSIM than the existing
methods over all Kbpi setting. This illustrates that our proposed method allows a more
efficient compression by suffering less from compression artifacts resulting from blocky
edges of tiled feature maps, or inefficient compression arising from small-sized feature
maps and increased header cost of FPC method.
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Figure 10. Structural similarity (SSIM) measurement result for FPC, tiling, and auto-tiler method at different Kbpi setting.

4.3.2. Compression Performance Comparison

Comparison of compression performance between an autoencoder, auto-tiler, and the
existing methods is shown in Figure 11. Auto-tiler generally showed better rate-distortion
characteristics compared to Tiling and FPC method. It also suffered notably less accuracy
loss from compression compared to those of autoencoder while achieving similar maximum
accuracy. This is due to the fact that an auto-tiler removes the need to manually ‘tile’ the
feature maps, therefore reducing blockiness and discontinuity resulting from tiling.

We also compared mAP at 60 Kbpi, Kbpi at lossless video encoding mode, mAP at
lossless video encoding mode, and Kbpi required to achieve 0.6 mAP. The result is shown in
Figure 12. At 60 Kbpi, the auto-tiling method showed substantially higher mAP compared
to the FPC or Tiling method which only uses video encoders to compress. Versus FPC
method, an auto-tiler at CR4 mode attained 23.8% to 62.1% higher percent point accuracy,
and at CR16 mode it showed 53.0% to 67.3% higher percent point accuracy. However,
comparing an auto-tiler results with the FPC method was nearly pointless as the accuracy
of that method was near 0%. We then compared an auto-tiler with the Tiling method and
achieved 18.2% to 46.1% higher percent point accuracy when using CR4 mode, and 30.8%
to 57.3% higher percent point accuracy when using CR16 mode. When losslessly encoded
using HEVC codec, CR4 quality auto-tiler achieved 3.2× to 9.0× higher compression
ratio compared to those of Tiling method, and CR16 quality auto-tiler achieved 22.0× to
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32.8× higher compression ratio. When compared to the FPC method, CR4 mode auto-tiler
achieved 6.1× to 11.6× higher compression ratio, and CR16 mode achieved 11.4× to 42.3×
higher compression ratio.
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Figure 11. mAP comparison of an auto-tiler, autoencoder, and existing methods at 36th layer.
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Figure 12. mAP comparison at 60 Kbpi and lossless video encoding mode, Kbpi comparison at lossless video encoding
mode, and Kbpi required to achieve 0.6 mAP.

The accuracy of an auto-tiler is reduced due to being a lossy compression method.
A CR4 quality auto-tiler suffered an average of 2.3% mAP loss where 4th layer accuracy
loss was the highest as a result of having the highest compression ratio. An average mAP
loss of a CR16 quality auto-tiler is 3.7% where the highest accuracy loss was at the 4th
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layer as well. We also calculated the Kbpi required to achieve 0.6 mAP by using linear
interpolation. We were able to see that using an auto-tiler reduced the Kbpi requirement
by 62.9% to 81.2% on average on CR4 mode, and 81.9% and 92.6% on average on CR16
mode. Taking everything into account, we were able to achieve better and more efficient
compression with an auto-tiler when compared to video encoding methods at the same
compression ratio.

4.3.3. Effective Compression Ratio Comparison

In order to analyze the compression performance of an auto-tiler, we compared the
effective compression ratio of an auto-tiler with existing methods. We defined the effective
compression ratio as the range of compression ratios from the highest achievable mAP
of that method to the 85% of the maximum mAP of the network. Since we achieved a
maximum mAP of 0.72 on the YOLOv3 network that we used on VOC dataset, the effective
compression ratio would be the range of achievable compression ratio within the mAP
range of 0.72 to 0.612. Note that the maximum mAP will not always be the same across
all methods since auto-tiler already compresses the network, and is a lossy compression
method. The result is shown in Figure 13 where auto-tiler CR4 and auto-tiler CR16
represents the range of effective compression ratio achieved with fixed CR modes. Auto-
tiler CR4-16 on the other hand is not limited to single CR mode and the compression ratio
depends on the inference depth. We can observe that the average effective CR range for
FPC and tiling method is 1.2×–19.6× and 1.8×–25.5× respectively, while auto-tiler CR4–16
supports an effective CR range of 9.9×–173.3×. From this result, it is clear that auto-tiler
supports a much wider and higher range of compression ratio, with its average maximum
compression ratio being 8.8× to 6.8× higher than the existing FPC and tiling methods.
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Figure 13. Effective CR comparison of an auto-tiler and existing methods.

4.3.4. Latency Comparison

One of the most important benefits of using an auto-tiler over conventional methods is
its higher throughput. While the additional neural network adds a small amount of latency,
preprocessing and video coding latency is significantly reduced since the network reduces
the dimension of the feature maps. This effect is shown in Figure 14, where we compared
the per-image latencies of each step in the overall encoding and inference process.

Each latency component is explained as follows—YOLO inference latency (Pt. 1) is the
time it takes to propagate through the network until the partitioned layer for Tiling and FPC
method, and output of the encoding part of an auto-tiler for auto-tiling method. Tiling and
normalization latency is a latency needed to tile the feature space if needed, and normalize
the frame into a format that is supported by video encoders. Video encoding latency and
video decoding latency is the time required to encode and decode the processed frames
using HEVC video codec. De-tiling and denormalization latency is the time required to
de-tile the frame if needed, and denormalize the frames to recover the feature space sent
from the partitioned layer. YOLO inference latency (Pt. 2) is the time it takes to propagate
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through the rest of the partitioned network, including the decoding part of an auto-tiler
when measuring the latency for an auto-tiling method. Network latency is not measured
and is considered to be the same since we compressed the intermediate activations at the
same bitrate of 60 Kbpi during measurement.
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Figure 14. Latency comparison of Tiling, Frame per Channel, and auto-tiling method.

For the Tiling and FPC method, the total latency is dominated by tiling and normaliza-
tion latency. However, when utilizing an auto-tiler, we can see a considerable improvement
in that latency. The reason for this improvement is that the latency for tiling or normal-
ization depends on the size of a frame. The frame size of the Tiling method ranges from
832 × 832 × 1 to 1664 × 1664 × 1 and that of the FPC method ranges from 52 × 52 × 256
to 208 × 208 × 64. Auto-tiler on the other hand reduces the dimension to 208 × 208 × 1
or 416 × 416 × 1 depending on the inference depth. This reduced frame size alongside
with the removal of tiling process altogether significantly reduces the latency required to
tile, normalize, and recover the feature space. Consequently, we can observe an average of
73.2% and 81.3% reduction for CR4 and CR16 mode respectively in terms of overall latency
compared to the existing methods.

5. Conclusions

In conclusion, we were able to compress the intermediate feature space of deep neural
networks more effectively than existing methods by using an auto-tiler as a preprocessor
to video encoders. Additionally, by using an auto-tiler we were able to use the bottleneck
layer activation by itself without any tiling or de-tiling process during video encoding. This
removal of tiling processes allowed us to significantly reduce the total inference latency.
Auto-tiler also reduced the blockiness and discontinuity that may be introduced during the
existing tiling process, thus reducing accuracy decay at lower bitrates. Furthermore, by sup-
porting variable input and output dimensions we were able to significantly reduce storage
space overhead with minimal accuracy loss. Finally, the utilization of an auto-tiler consider-
ably improved the mAP and bitrate overhead during the compression of the intermediate
feature space and effectively allowed a much wider range of compression ratio.

In this paper, we illustrated the advantages of AI-based compression in deep interme-
diate feature space. Our proposed approach, auto-tiler, will allow IoT edge devices in a
collaborative intelligence environment to operate more effectively by improving compres-
sion efficiency and latency. We however believe that auto-tiler can be further improved
on certain points. For one, future works may improve the input and output variability
of auto-tiler. Although the proposed auto-tiler in this paper does support multiple input
and output dimensions, it is still required to analyze the available dimensions before
deployment. Future research may design an omni-dimensional auto-tiler that may support
as many dimensions as the conventional codecs. This will allow it to be deployed on any
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partitioned network without prior dimensional analysis. Another could be to improve
the robustness to data losses. Our work is mainly focused on the losses introduced by
compression artifacts and assumed no data loss during transmission, as it was beyond the
scope of our paper. However, in real-life situations, there may be multiple issues that could
result in such losses. Therefore it could be advantageous to consider these issues during
the design phase. With these improvements, we speculate that auto-tiler can become an
essential technique to be used in IoT devices. To this end, other aspects of auto-tiler must
also be explored and need further study.
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