
sensors

Article

A Possible World-Based Fusion Estimation Model for Uncertain
Data Clustering in WBNs

Chao Li 1 , Zhenjiang Zhang 2,*, Wei Wei 3, Han-Chieh Chao 4 and Xuejun Liu 5

����������
�������

Citation: Li, C.; Zhang, Z.; Wei, W.;

Chao, H.-C.; Liu, X. A Possible

World-Based Fusion Estimation

Model for Uncertain Data Clustering

in WBNs. Sensors 2021, 21, 875.

https://doi.org/10.3390/s21030875

Academic Editor: Dawid Połap

Received: 15 December 2020

Accepted: 25 January 2021

Published: 28 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electronic and Information Engineering, Key Laboratory of Communication and Information
Systems, Beijing Municipal Commission of Education, Beijing Jiaotong University, Beijing 100044, China;
15111037@bjtu.edu.cn

2 The School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China
3 Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and

Engineering, Xi’an University of Technology, Xi’an 710048, China; weiwei@xaut.edu.cn
4 Department of Electrical Engineering, National Dong Hwa University, Hualien 97401, Taiwan;

hcc@mail.ndhu.edu.tw
5 School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China;

lxj@bipt.edu.cn
* Correspondence: zhangzhenjiang@bjtu.edu.cn

Abstract: In data clustering, the measured data are usually regarded as uncertain data. As a
probability-based clustering technique, possible world can easily cluster the uncertain data. However,
the method of possible world needs to satisfy two conditions: determine the data of different
possible worlds and determine the corresponding probability of occurrence. The existing methods
mostly make multiple measurements and treat each measurement as deterministic data of a possible
world. In this paper, a possible world-based fusion estimation model is proposed, which changes
the deterministic data into probability distribution according to the estimation algorithm, and the
corresponding probability can be confirmed naturally. Further, in the clustering stage, the Kullback–
Leibler divergence is introduced to describe the relationships of probability distributions among
different possible worlds. Then, an application in wearable body networks (WBNs) is given, and
some interesting conclusions are shown. Finally, simulations show better performance when the
relationships between features in measured data are more complex.

Keywords: possible worlds; fusion estimation; uncertain data; clustering

1. Introduction

Clustering is a kind of technology for machine learning that puts similar objects into
the same cluster. Clustering techniques play an important role in many areas such as
health care and action recognition in the medical domain [1,2], behavior surveillance and
battlefield prediction in the military field [3,4], resource and information management in the
communications field [5,6], and so on. There are plenty of cluster methods presented that
can be divided into three principal types according to the clustering scale: distance-based,
density-based, and connectivity-based [7,8].

Most clustering methods focus on deterministic data. Unfortunately, almost all cluster-
ing data are collected by the corresponding equipment, which entails measuring errors. In
this case, the uncertain data can describe the measurement data better. For acquiring better
and more appropriate results, the fusion estimation methods such as the Bayes-based [9],
Kalman-based [10], or artificial intelligence-based [11,12] methods are commonly used to
estimate the measurements.

Fusion estimation is a technology that uses the computing power of data acquisition
equipment to de-noise and de-redundancy the measurement data according to certain rules.
It focuses on mining data information, designing corresponding estimation algorithms,
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and improving the accuracy of data. In this technology, the measurement data are de-
noised first, and then the data is fused on the time series to obtain the accurate conclusion
for uncertain data. Finally, the uncertain data is processed by clustering, and the final
processing result is obtained.

Many methods have been proposed to deal with uncertain data in recently years [13–15].
Among these methods, the possible world-based methods have been demonstrated to be
efficient and reasonable. Possible world-based clustering methods consider all the probabil-
ities of the uncertain data and fuse them into the final clustering result. This kind of method
usually exhibits good performance. On the other hand, the uncertain data can be repre-
sented by a probability distribution in most cases. Therefore, the Kullback–Leibler diver-
gence (KL divergence) [16] is used to describe the similarity of two probability distributions.

In practice, there are differences in the accuracy of different acquisition equipment,
which is represented by the differences in data uncertainty. Existing algorithms based on
possible worlds can deal with the difference problem of uncertainty in a relatively simple
way. In this paper, variance, an important statistic of data uncertainty, is introduced into
the model of possible worlds to study its role in improving accuracy. Then, a possible
world-based fusion estimation model (PWFEM) for uncertain data is presented, which
includes two methods according to different distance-based formulas. When the variance
of uncertain data is small, the numerical distance-based method (PWFEM-nd) is employed.
The probabilistic distance-based method (PWFEM-pd) is employed when variance is
prominent. Then, the application in wearable body networks (WBNs) is introduced. The
specific derivation formula is given with the different distance-based formulas. Finally, the
simulations show good performance in terms of the proposed model.

The rest of the paper is organized as follows. In Section 2, the related works are
introduced. In Section 3, the preliminaries are introduced, and some definitions and
assumptions are given. The theoretical derivation of the PWFEM is given in Section 4. In
Section 5, the simulations examine the performance of the PWFEM. Finally, conclusions
are given in Section 6.

2. Related Works

In this section, the processing technologies of uncertain data are introduced in detail.
The collected data that come from acquisition equipment contain noise, which means
the collected data contain great uncertainty. Therefore, it is necessary to perform fusion
estimation processing on the data first, and use the rules and redundancy of the data itself
to improve the data accuracy and reduce the uncertainty of the data.

Commonly used fusion estimation algorithms include Bayes filter (BF) [17], Kalman
filter (KF) [18], extended Kalman filter (EKF) [19], unscented Kalman filter (UKF) [20],
and particle filter (PF) [21]. Wherein, BF and KF are estimates of linear systems, BF can
theoretically estimate data of arbitrary noise distribution, and KF is BF when the noise is
Gaussian white noise. The EKF, UKF, and PF are the estimates of the nonlinear system,
where EKF is for weak nonlinear system, UKF is for strong nonlinear systems and has high
computing complexity, while the PF is calculated directly from the average probability
density conditions, in which the probability density is determined by EKF and UKF
approximation, but the estimation precision is higher than that of a single use of EKF or
UKF, but the number of calculations is much higher than that of EKF and UKF.

In [22], the authors argued that two possible world-based clustering algorithms suf-
fered from the following issues: (1) they dealt with each possible world independently
and ignored the consistency principle across different possible worlds; (2) they required
an extra post-processing procedure to obtain the results, which meant that effectiveness
was highly dependent on the post-processing method, and their efficiencies were also not
very good. In order to solve the problems above, Liu et al. proposed a possible world-
based consistency learning model that considered the consistency principle during the
clustering/classification procedure and thus could achieve satisfactory performance.



Sensors 2021, 21, 875 3 of 18

The Possible world based consistency learning model for clustering uncertain data
(PWCLU) was proposed in [22], which holds that the clustering results in each possible
world are consistent. Several equipment types were used for collecting the same data. Each
piece of data for one piece of equipment was considered to belong to a possible world, and
the probability was regarded as equal for each possible world. The authors only gave an
algorithm to deal with finite possible worlds.

On the other hand, clustering algorithms usually require a method to describe the
distance between two datasets. In uncertain data, the distance can be expressed as a proba-
bility distribution in most cases. Therefore, a method of describing the distance between
probability distributions is required. Sinkkonen and Kaski [23] studied the problem of
learning groups or categories that were local in the continuous primary space but homo-
geneous according to the distributions of an associated auxiliary random variable over a
discrete auxiliary space. In their model, Kullback–Leibler divergence was used to calculate
the distance between two probability distributions.

In this paper, a possible world-based fusion estimation model (PWFEM) is proposed
for clustering uncertain data. The proposed model removes the assumption of the consis-
tency principle of [22]. Moreover, two PWFEM-based methods are given. One generalizes
the PWCLU to the continuous possible worlds, which is based on numerical distance.
Therefore, it is called PWFEM-nd. The other is based on probability distribution distance
and is named PWFEM-pd. Then, an application in WSNs is discussed. Two specific distance
functions that correspond to the numerical distance and probability distribution distance,
respectively, are introduced to prove that the PWFEM-nd is equivalent to PWFEM-pd
under certain circumstances. Finally, the simulations are discussed; they showed good
performance of the models.

3. Preliminaries

In this section, some necessary definitions and assumptions are given for possible
world and Kullback–Leibler divergence; the assumptions of independence for each compo-
nent of the datasets and the structure of the data are also given.

3.1. Definition of Possible World

Let O ∈ RN×n, O = {O1, O2, · · · , On} be an uncertain dataset, where O is not de-
terministic data but a probability distribution. If O is a discrete probability distribu-
tion, pw is one of the possibilities of the uncertain data O, which can be written as
pw =

{
Opw

1 , Opw
2 , · · · , Opw

n

}
, which is deterministic data with its probability P(pw). If

O is a continuous probability distribution, O can be described as a probability density
function f (pw), where pw is the value of the random variable O. Then,∫

D
f (pw)dpw = 1

3.2. Definition of Kullback–Leibler Divergence

Let p(x) and q(x) be the distribution of random variable X, so the Kullback–Leibler
divergence of p(x) and q(x) is:

dKL(p(x), q(x)) =
+∞∫
−∞

p(x) log
(

p(x)
q(x)

)
dx (1)

3.3. Some Assumptions

Assumption 1. Almost all possible worlds exhibit the same class labels and clus-
ter structures, and they exhibit the different class labels and cluster structures with
small probabilities.

Assumption 2. In Section 5, it is assumed that ∀xi, xj∈X, xi + xj is also the
Gaussian distribution.
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Assumption 3. In Section 5, it is assumed that the wearable nodes keep a stable state
to collect the data all the time. Therefore, the covariance matrix will not change.

4. Possible World-Based Fusion Estimation Model (PWFWM)

In this section, the details of the PWFWM are introduced in three parts. The first
part is the introduction of data fusion estimation. The second part is the introduction of
the calculation process of distribution distance. The third part introduces the clustering
method based on the possible world.

4.1. Data Fusion Estimation

The collected data can be divided into two types: filterable data and high accuracy
data. Without loss of generality, it is assumed the measurement data at time t is:

Mt =
[
z f

1 , z f
2 , · · · , z f

q , za
1, za

2, · · · , za
s

]
t

(2)

where M f
t =

[
z f

1 , z f
2 , · · · , z f

q

]
t

are the filterable data, and Ma
t =

[
za

1, za
2, · · · , za

s
]

t are the
high-accuracy data.

Corresponding to the possible world, filterable data are the probabilistic data, while
the high accuracy data are the numeric data. It is assumed the format of the clustering data
in a possible world at time t is:

Xt =
[

xp
1 , xp

2 , · · · , xp
h , xn

1 , xn
2 , · · · , xn

s

]
t

(3)

where Xp
t =

[
xp

1 , xp
2 , · · · , xp

h

]
t

are the probability data, and Xn
t =

[
xn

1 , xn
2 , · · · , xn

s
]

t are the
numeric data.

In most cases, the filterable data can be obtained according to the Kalman-based filter.
The high accuracy data can be converted to filterable data by the Gaussian distribution,
whose expectation is zero and whose variance is small. The details are as follows.

The measurement data are first converted to the clustering data by the
following formulas:

If the filterable data satisfied the following state function and measurement function: Xp
t = f

(
Xp

t−1

)
+ ωt/t−1

M f
t = g

(
Xp

t−1

)
+ υt

(4)

The appropriate filter algorithm can be used to solve the functions above. If the result
is X̂p

t , the probability data can be written as X̂p
t + ωt/t−1.

Similarly, the numerical data can be written as Xn
t = Ma

t + ωa
t , where ωa

t is Gaussian
distribution with zero mean and small variance.

Then, we have:

Xt =

[
X̂p

t + ωt/t−1
Ma

t + ωa
t

]
=

[
X̂p

t
Ma

t

]
+

[
ωt/t−1

ωa
t

]
= X̂t + Ωt (5)

where X̂t =

[
X̂p

t
Ma

t

]
and Ωt =

[
ωt/t−1

ωa
t

]
. Moreover, we let Ωt =

[
ωp

ωa

]
, which is a

scleronomic Gaussian distribution. Therefore, according to Assumption 2, the multivariate
Gaussian distribution with Xt can be written as follows:

X =
1(√

2π
)l
|Σ|

1
2

e−
(x−µx)T (Σ)−1(x−µx)

2 (6)
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where l = h + s, µx = [E(xi)]
l
i=1 and

Σ =
[
σij
]

l×l , σij =
√

D(xi)·D
(
xj
)

(7)

Based on the above, the structure of clustering data can be confirmed. Then, the
distance-based functions need to be confirmed.

4.2. Distance Calculation Method Based on KL Divergence-Based Distance

Almost all clustering algorithms need to calculate the distance. In the PWFWM, there
are two types of data: filterable and high accuracy. For accuracy data, the Euclidean
distance can be used, and the KL divergence can be used to process the filterable data.
In this Section, the distance calculation method based on KL divergence is introduced
in detail.

KL divergence analyzes the degree of difference between two distributions from the
perspective of information entropy. Assume that p(x) and q(x) are two distributions of
random variable X, then the KL divergence is:

KL(p ‖ q) =
∫ +∞

−∞
p(x) log

p(x)
q(x)

dx (8)

The calculation formula in the discrete case is:

KL(p ‖ q) =
n

∑
i=1

p(xi) log
p(xi)

q(xi)
(9)

Assuming that the probability distribution is usually Gaussian, P ∼ N(µ1, Σ1) and
Q ∼ N(µ2, Σ2), and the dimension of the data is n. Then, the KL divergence calculation
formula is as follows:

KL(P ‖ Q) =
∫ +∞

−∞
p(x) log

p(x)
q(x)

dx = Ep[log p(x)− log q(x)] (10)

Plugs the P ∼ N(µ1, Σ1) and Q ∼ N(µ2, Σ2) in (10):
KL(P ‖ Q) = 1

2 EP

[
log |Σ2|

|Σ1|
− (x− µ1)

TΣ−1
1 (x− µ1) + (x− µ2)

TΣ−1
2 (x− µ2)

]
= 1

2 log |Σ2|
|Σ1|
− 1

2 EP

[
(x− µ1)

TΣ−1
1 (x− µ1)

]
+ 1

2 EP

[
(x− µ2)

TΣ−1
2 (x− µ2)

] (11)

where

EP

[
(x− µ1)

TΣ−1
1 (x− µ1)

]
= EP

[
tr
(

Σ−1
1 (x− µ1)(x− µ1)

T
)]

= tr
[

EP

(
Σ−1

1 (x− µ1)(x− µ1)
T
)]

= tr
[
Σ−1

1 EP

(
(x− µ1)(x− µ1)

T
)]

= n
(12)

and

EP

[
(x− µ2)

TΣ−1
2 (x− µ2)

]
= EP

[
tr
(

Σ−1
2 (x− µ2)(x− µ2)

T
)]

= tr
[
Σ−1

2 EP

(
(x− µ2)(x− µ2)

T
)]

= tr
[
Σ−1

2 EP
(
xxT − xµT

2 − µ2xT + µ2µT
2
)]

= tr
[
Σ−1

2
(
Σ1 + µ1µT

1 − µ1µT
2 − µ2µT

1 + µ2µT
2
)]

= tr
[
Σ−1

2 Σ1 + Σ−1
2 (µ1 − µ2)(µ1 − µ2)

T
]

= tr
(

Σ−1
2 Σ1

)
+ (µ1 − µ2)

TΣ−1
2 (µ1 − µ2)

(13)
Finally, we have

KL(P ‖ Q) =
1
2

[
log
|Σ2|
|Σ1|
− n + tr

(
Σ−1

2 ·Σ1

)
+ (µ1 − µ2)

TΣ−1
2 (µ1 − µ2)

]
(14)
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Moreover, if Σ1 = Σ2 = Σ. Then, we get:

dKL(i, j) = KL(P ‖ Q) =
1
2
(
uj − ui

)TΣ−1(uj − ui
)

(15)

In this way, the distance between two probability distributions is obtained. Then, the
clustering method based on the possible world can be used.

4.3. The Clustering Method Based on the Possible World

In [22], the authors used an adaptive, local-structure learning method to calculate the
consensus affinity matrix. In their model, the collected numerical data are used to match
the probability density function (PDF) of the uncertain data. However, the authors give no
algorithm for the case where the PDF is given directly. Moreover, the proposed method
needs a sizable quantity of data. In this paper, Assumption 1 is proposed instead of the
consistency principle.

According to Assumption 1 above, the probability of each possible world should be
considered when calculating the consensus affinity matrix. Then, the objective function is
shown as follows:

min
n
∑

j=1
dpw

ij spw
ij + α

n
∑

j=1
spw

ij

s.t. Spw
i =

[
spw

1i , spw
2i , · · · , spw

ni

]T(
Spw

i

)T
·1n×1 = 1

0 ≤ spw
ij ≤ 1

(16)

where, dpw
ij is a kind of distance function between Opw

i and Opw
j , and Spw

i =
[
spw

1i , spw
2i , · · · , spw

ni

]T

is the normalized distance matrix for one of the possible worlds (pw).
Moreover, let the effective results of Si

t =
n

∑
j=1

sgn
(

spw
ij

)
(17)

According to the conclusion of [22], t can be adjusted by α, and the optimization
result is

spw
ij =

1
t
+

1
2α


t

∑
s=1

d′pw
is

t
− dpw

ij

 (18)

where D′pw
i =

[
d′pw

1i , d′pw
2i , · · · , d′pw

ni

]T
is another order of Dpw

i , and it ranges from small
to large.

According to the formulas above, the extra information about classes is required to
confirm t. It is set as t = N if there is no extra information about classes. That is:

spw
ij =

1
n
+

1
2α


n
∑

s=1
d′pw

is

n
− dpw

ij

 (19)

Finally, an optimization normalized distance matrix S* is needed for clustering the
training set, which is satisfied by the following optimal model:

minE
(
‖S− Spw‖2

F

)
s.t. (Si)

T ·1n×1 = 1
0 ≤ sij ≤ 1

(20)
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where Si = [s1i, s2i, · · · , sni]
T and S = [S1, S2, · · · , Sn]

T .
According to the object function (20),

E
(
‖S− Spw‖2

F

)
= E

(
n

∑
i=1

n

∑
j=1

(
sij − spw

ij

)2
)

=
n

∑
i=1

n

∑
j=1

E
(

sij − spw
ij

)2
(21)

On the other hand, according to (19), we have

sij − spw
ij = sij −

1
n
− 1

2α


n
∑

s=1
dpw

is

n
− dpw

ij

. (22)

Therefore,

E
(

sij − spw
ij

)2
= E

sij −
1
n
− 1

2α


n
∑

s=1
dpw

is

n
− dpw

ij




2

(23)

According to the properties of expectation and variance:

E
(

X2
)
= E2(X) + D(X), (24)

E(aX + b) = aE(X) + b (25)

and
D(aX + b) = a2·D(X), (26)

Equation (23) can be reduced to:

E
(

sij − spw
ij

)2
=

sij −
1
n
− 1

2α


n
∑

s=1
E
(

dpw
is

)
n

− E
(

dpw
ij

)


2

+
1

4α2 D


n
∑

s=1
dpw

is

n
− dpw

ij

 (27)

Obviously, (7) is equivalent to the following optimal model:

min
n

∑
i=1

n

∑
j=1

sij −
1
n
− 1

2α


n
∑

s=1
E
(

dpw
is

)
n

− E
(

dpw
ij

)


2

. (28)

The optimal solution for the above optimal model can be obtained easily, which is

sij =
1
n
+

1
2α


n
∑

s=1
E
(

dpw
is

)
n

− E
(

dpw
ij

), i = 1, 2, · · · , n. (29)

Now, another understanding for a possible world is presented. Let us review the
definition of possible world. The construction of an uncertain dataset and its PDF f (pw) are
known. Then, if the dimensions of the dataset are finite, which is assumed to be

{
oij
}n

j=1,
the edge probability density function (EPDF) for ith dimension is:

fi(Oi) =
∫

Dpw/Di

f (pw)d(pw/Oi) (30)
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Moreover, if the dimensions of Oi(i = 1, 2, . . . , n) are finite, which is assumed to be{
oij
}n

j=1, the edge probability density function (EPDF) for jth dimension of
Oi(i = 1, 2, . . . , n) is:

fij
(
oij
)
=
∫

Di/Dij

fi(Oi)d
(
Oi/oij

)
(31)

Here, it is assumed that distance(Oi,Oj) is the distance between the random vari-
ables Oi and Oj. Then, the consensus affinity matrix S can be obtained according to the
following formula:

min
n
∑

j=1
dijsij + α

n
∑

j=1
sij

s.t. Si = [s1i, s2i, · · · , sni]
T

(Si)
T ·1n×1 = 1

0 ≤ sij ≤ 1

(32)

where dij = g(distance(Oi,Oj)), and S = [S1, S2, · · · , Sn]
T .

Then, according to the analysis above, if there is no extra information about classes,
the optimal solution for the object function (15) is:

sij =
1
n
+

1
2α


n
∑

s=1
dis

n
− dij

. (33)

Compared with (12), the distribution is used instead of the expectation of point
distance. Therefore, (12) is appropriate for the possible world that includes fewer and
simpler random variables, while (16) is appropriate for the possible world with complexity
random variables in theory.

So far, when the distance-based function is confirmed, the optimization consensus
affinity matrix S for the all possible worlds can be worked out.

According to the calculations above, the closer two data objects are, the larger sij is.
Therefore, the value of sij may have no use when sij < p (distance threshold). Then, the
matrix S may need to be pruned to remove the meaningless sij. This pruning is divided
into two steps: removing and normalization. In the removing step, the meaningless values
are replaced by 0. In the normalization step, the meaningful value is recalculated to keep
the equation:

n

∑
i=1

sij = 1, j = 1, 2, · · · , n. (34)

The following Algorithm 1 shows the processing of pruning:
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Algorithm 1 for Matrix Pruning:

Input: the matrix S ∈ Rn×n and pruning threshold p
The processing:
Removing step:
For i = 1 to n
For j = 1 to n
If sij < p
sij = 0
End if
End for
End for
Normalization step:
For i = 1 to n
sumi =

n
∑

j=1
sji

For j = 1 to n
sji =

sji
sumi

End for
End for

Moreover, in spectral analysis, if a nonnegative affinity matrix S is given, the corre-
sponding Laplacian matrix Ls can be calculated as Ls = Ds − ST+S

2 , where Ds is a diagonal

matrix and its ith diagonal element is
n
∑

j=1

sij+sji
2 . The Laplacian matrix Ls has an important

property as follows [24].

Theorem 1. Let S be a nonnegative affinity matrix; then, the multiplicity k of the eigenvalue 0 of
the Laplacian matrix Ls is equal to the number of connected components in the graph associated
with the affinity matrix S.

It is assumed that the eigenvalues of the Laplacian matrix Ls, which is {σi}n
i=1, are ordered

from small to large. According to the properties of the Laplacian matrix Ls, we have the following
conclusion:

0 = σ1 ≤ σ2 ≤ · · · ≤ σn. (35)

If the number of clusters k is unknown, the threshold Th is set to decide k, which satisfies:

σk ≤ Th ≤ σk+1. (36)

Finally, the eigenvectors of eigenvalues σ1 to σk comprise the matrix U ∈ Rn×k. The
k-means clustering algorithm is used to cluster the row of matrix U. The clustering result is
that of the training set. The Algorithm 2 for processing S is shown as follows.

Algorithm 2 for processing S:

Input: the matrix S ∈ Rn×n and clustering threshold Th
The processing:
Ls = Ds − ST+S

2
{σi}n

i=1 is the set of eigenvalues of Ls
0 = σ1 ≤ σ2 ≤ · · · ≤ σn.
{υi}n

i=1 is the set of eigenvectors of Ls
If
σr ≤ Th ≤ σr+1
k = r
End if
U = [υ1, υ2, · · · , υk]
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Cluster the row of matrix U according to the k-means method. These are also the
clustering results for training set. Therefore, the cluster {Ci}k

i=1, and the number of cluster
members {ni}k

i=1 are obtained.

4.4. Updating

After clustering the training set, the data in the test set should be put into the clusters
determined above. Firstly, the test set is given as follows:

The Test Set: O = {Oi}
n+p
i=n , and Oi = [o1i, o2i, · · · , oni]

T is the data object.
The clustering updating algorithm for the test set is divided into two steps: clustering

and updating. The details are shown in the following Algorithm 3:

Algorithm 3 for Clustering Updating:

Input: the center of each cluster {Ci}k
i=1, and the number of cluster members {ni}k

i=1 of training
set and the test set O = {Oi}

n+p
i=n .

The processing:
Clustering step:{

C′i
}k

i=1 = {Ci}k
i=1.

For i = n + 1 to n + p[
dij

]k

j=1
, dij = distance

(
Oi, Cj

)
[
d′ij
]k

j=1
, dij = distance

(
Oi, C′j

)
clusteri = argmin

j
dij cluster′i = argmin

j
d′ij

If clusteri = clusteri’
Oi belongs to clusteri.
Else if
di,clusteri
di,cluster′i

≥
d′

i,cluster′i
d′i,clusteri

Oi belongs to clusteri’
Else
Oi belongs to clusteri
End if
End if
End for
Centers updating step:
For i = n + 1 to n + p
If Oi belongs to clusteri

C′clusteri
=

nclusteri C′clusteri
+Oi

nclusteri+1
nclusteri

= nclusteri
+ 1

End if
End for

5. Simulations

In this section, comparisons with three state-of-the-art uncertain data clustering al-
gorithms are conducted on real benchmark datasets. Moreover, an uncertain dataset
that obeys the multivariate Gaussian distribution is generated, and the parameters in the
PWFEM model are discussed.

In the comparisons, six common real benchmark datasets, which came from
‘http://archive.ics.uci.edu/ml/’, are employed for the simulation; their details are shown
in Table 1:

http://archive.ics.uci.edu/ml/
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Table 1. Details of the adoptive datasets [25].

Dataset Objects Attributes Classes

Iris 150 4 3
Wine 178 13 3
Glass 214 9 6
Ecoli 327 7 5

Waveform 5000 21 3
PhishingData [26] 1353 9 3

These datasets were originally established as collections of data with determinate
values. Then, we followed the method in [27] to generate uncertainty in these datasets, and
the generation method is shown as follows Algorithm 4:

Algorithm 4 The Generation Method from Numerical Data to Uncertain Data (Gaussian Type).

Input: the numerical data a = [a1, a2, · · · , an]
T and the standard deviation of each attribute

[σ1, σ2, · · · , σn]
Output: the corresponding uncertain data ua = [ua1, ua2, · · · , uan]

T

For i = 1 to n
x = random, 0 < x ≤ 1

uai =
1√
2πσ

e−
(x−ai )

2

2σ2

End for

5.1. The Clustering Accuracy

In this part, 2 widely used evaluation metric, which are accuracy (ACC) and Normal-
ized mutual information (NMI), are adopted to compare the different clustering algorithms.
In this part, the proposed clustering algorithms, PWFEM-nd and PWFEM-pd, are compared
with three state-of-the-art uncertain data clustering algorithms: UK-means [26], REP [27]
and PWCLU. Each clustering algorithm was run 100 times. The maximum, minimum,
mean value, and variance of the ACC were calculated with respect to each algorithm. The
comparisons were simulated for two cases. Case 1 is the real mean value with variance
known, while case 2 is the finite measurement results, which obey the given PDF instead.

In order for the proposed model to be executed properly, the exact values of expecta-
tion and covariance need to be known. However, the datasets used in this simulation do
not give those values. Therefore, the approximate values were calculated instead according
to the following formula:

E = X and Cov = Cov(X). (37)

where X = {xi}n
i=1 is the dataset.

The comparisons of ACC for each algorithm in case 1 are shown in Table 2.
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Table 2. Accuracy (ACC) for each algorithm in case 1.

UK-Means REP PWCLU PWFEM-nd PWFEM-pd

Iris

Max 0.8800 0.8133 0.8133 0.8133 0.8533
Min 0.5533 0.5533 0.5400 0.4867 0.5200

Mean 0.7244 0.6994 0.6869 0.7181 0.7602
Variance 0.0022 0.0021 0.0016 0.0017 0.0028

Wine

Max 0.7022 0.7022 0.5730 0.7079 0.9607
Min 0.7022 0.7022 0.5730 0.6966 0.3202

Mean 0.7022 0.7022 0.5730 0.6989 0.8999
Variance 0 0 0 0 0.0173

Glass

Max 0.8333 0.7619 0.8618 0.7905 0.9286
Min 0.2476 0.6000 0.2571 0.2286 0.3095

Mean 0.7239 0.7078 0.7588 0.6489 0.7818
Variance 0.0191 0.0010 0.0204 0.0173 0.0537

Ecoli

Max 0.5327 0.4953 0.5374 0.5234 0.5421
Min 0.3458 0.2056 0.4065 0.3318 0.4299

Mean 0.4422 0.4025 0.4905 0.4527 0.4634
Variance 0.0012 0.0035 0.0011 0.0014 0.0009

Waveform

Max 0.5291 0.4006 0.7003 0.5199 0.7156
Min 0.3180 0.2324 0.3945 0.4006 0.4801

Mean 0.4350 0.3177 0.5403 0.4445 0.5706
Variance 0.0014 0.0013 0.0025 0.0006 0.0038

PhishingData
Max 0.5639 0.4560 0.5647 0.5188 0.6061
Min 0.4664 0.3585 0.4568 0.4508 0.4797

Mean 0.5183 0.4218 0.5027 0.4910 0.5719
Variance 0.0005 0.0004 0.0004 0.0002 0.0010

As shown in Table 2, in the datasets of wine and glass, the PWFEM-nd shows the best
performance with maximum, minimum, and mean values. Unfortunately, it shows the
worst performances with those values in the datasets of iris, Ecoli and PhishingData. As for
the proposed PWFEM-pd, it shows the best performances with maximums in all datasets
except wine and glass.

According to their respective algorithms, there may be plenty of reasons for the results
above. Some analyses that have high probabilities are presented next.

Firstly, it is important to note that the UK-means, REP, PWCLU, and PWFEM-nd use
the mean value only. Therefore, their variance values are zeros, which means the clustering
results never change throughout the 100 iterations. Only PWFEM-pd uses the variance of
uncertain data.

Secondly, UK-means clusters the dataset directly, while REP, PWCLU, PWFEM-nd,
and PWFEM-pd cluster the dataset indirectly. Here, REP, PWCLU, PWFEM-nd, and
PWFEM-pd use the model based on the possible world. Moreover, PWCLU uses the
Euclidean distance (‖·‖2). PWFEM-nd uses the cosine similarity. PWFEM-pd uses the
Kullback–Leibler divergence. Compared with the PWCLU, PWFEM-nd combines the
distributions of each component in a datum. Moreover, PWFEM-pd calculates the distance
in distributions directly, while PWCLU and PWFEM-nd transform the distributions into
some special numbers (mean value and variance). Therefore, the clustering accuracy of
PWFEM-pd may be higher than that of PWCLU in most cases. Moreover, PWFEM-pd can
be regarded as having different covariances obtained randomly to that of clustering. If a
covariance close to the true covariance is acquired, a high accuracy of clustering is gained.

For a clearer view of the changing of clustering accuracy with different covariances,
see Figure 1.
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As shown in Figure 1, the ACC of PWFEM-pd is sensitive to the covariance of the
uncertain data. On the other hand, the impacts caused by covariances from different
datasets lead to different results. Obviously, in Figure 1a,c,d,f, the ACC is highly dependent
on the covariance. In Figure 1e, the ACC is divided into two parts: one is around 0.51 and
the other is around 0.34, when different covariances are given. Moreover, in Figure 1b, the
ACC is stable around 0.5 most times with the changing of covariance.

According to the analysis above, only for the proposed models, which are PWFEM-nd
and PWFEM-pd, the ACC is sensitive to covariance. Then, the changing of mean values is
added to the simulations. Therefore, the simulation results are given for case 2, which uses
the generation method proposed in the beginning of this section; the results of case 2 are
shown in Table 3 and Figure 2.
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Table 3. NMI for each algorithm.

UK-Means REP PWCLU PWFEM-nd PWFEM-pd

Iris

Max 0.7854 0.6809 0.6716 0.6700 0.7396
Min 0.2694 0.3898 0.2871 0.2213 0.3162

Mean 0.5374 0.5245 0.4834 0.5295 0.5927
Variance 0.0050 0.0027 0.0031 0.0033 0.0054

Wine

Max 0.4946 0.4946 0.3184 0.5389 0.9551
Min 0.4946 0.4946 0.3184 0.5136 0.3146

Mean 0.4946 0.4946 0.3184 0.5209 0.8803
Variance 0 0 0 0 0.0198

Glass

Max 0.7001 0.6171 0.7522 0.6288 0.8671
Min 0.0997 0.4028 0.1643 0.0320 0.2233

Mean 0.5511 0.5250 0.6094 0.4258 0.6911
Variance 0.0196 0.0019 0.0223 0.0204 0.0672

Ecoli

Max 0.6544 0.6544 0.7064 0.7125 0.7309
Min 0.3731 0.3731 0.5199 0.4679 0.3639

Mean 0.4988 0.4988 0.6354 0.5629 0.5569
Variance 0.0050 0.0050 0.0034 0.0054 0.0079

Waveform

Max 0.3247 0.2548 0.4645 0.3104 0.4895
Min 0.1195 0.1286 0.1282 0.1919 0.2545

Mean 0.2112 0.1909 0.3244 0.2392 0.3558
Variance 0.0017 0.0008 0.0022 0.0005 0.0025

PhishingData
Max 0.2517 0.1636 0.2416 0.2200 0.3190
Min 0.1559 0.0594 0.1452 0.1313 0.1804

Mean 0.2088 0.1050 0.1880 0.1760 0.2803
Variance 0.0004 0.0004 0.0005 0.0003 0.0008

As shown in Table 3, when combining the maximum value and minimum value, the
clustering results of all clustering methods change. This means all the clustering methods
are sensitive to the mean value. Moreover, the sensitivity to each clustering method varies.
Obviously, the fluctuation ranges of all clustering methods in iris and glass are the most
drastic. On the other hand, the clustering accuracy of the PWFEM-pd algorithm is always
higher than that of the PWFEM-nd, but its stability is lower than that of the PWFEM-nd.
Besides, compared with Table 2, the NMI are lower than the ACC for the same dataset,
which means that in the clustering results of the model, the accuracy of each class is
inconsistent, with some categories having high precision and some having low precision.

For a clearer view of the changing of clustering accuracy with different covariances
and mean values, see Figure 2.

As shown in Figure 2, the PWFEM-pd has a similar fluctuation as that shown in
Figure 1. Unfortunately, this clustering method is sensitive to both mean value and co-
variance. Therefore, it is hard to distinguish the main reason. Next, the remaining four
clustering methods are discussed.

Firstly, similar to the conclusion in Table 2, Figure 2c,d in all clustering methods show
a drastic fluctuation. For UK-means and CK-means, they show a drastic fluctuation in
Figure 2a and are stable in Figure 2b,e,f. For PWCLU, it is stable in Figure 2a,b,e,f. For
PWFEM-nd, it is stable in Figure 2a,b,f, while it is stable at two ranges in Figure 2e.

According to the analysis above, the situations of the proposed methods are clearer.
However, the variation tendency with the mean value and covariance are not clear. There-
fore, a specific dataset was generated to investigate the above issues.
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5.2. The Simulation with a Specific Dataset

In this part, a specific dataset is generated to analyze the impacts of mean value and
covariance. The generated dataset consisted of two dimensions, and the number of data
points was set at 1000. It was divided into three clusters, whose centers were [0, 0], [100, 0],
and [0, 100]. The distance between the datum and its center was randomly distributed in
[0, r]. The variance for each dimension was σi(i = 1, 2). Moreover, it was set as σ1 = σ2 = σ.
The correlation coefficient of these two dimensions was ρ. Therefore, the covariance of this
dataset was: [

σ ρσ
ρσ σ

]
.
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Next, the parameters r, σ, and ρ are discussed.
In this simulation, σ = 2, ρ = 0, and r was from 1 to 100. As shown in Figure 3, the

ACCs of all methods were 1 before about 50, and then reduced with increasing r. This
simulation results are in accordance with common sense.
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On the other hand, if ρ = 0 and r is fixed, σ can vary the distance between the
data evenly. Therefore, it cannot affect the clustering results, and the simulation proves
it. Because the ACC curves of all methods are lines parallel to the X-axis, the figure
was omitted.

Finally, the simulation for ρ is discussed with σ = 2, r = 20, 40, 60, and 80, and
−1 < ρ < 1. The simulation results are shown in Figure 4.
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As shown in Figure 4, when r < 50, the ACCs are stable for all methods with−1 < ρ < 1.
This is because the cluster structure is prominent in this condition, whereas the effect of ρ
on the clustering result is weak. Moreover, when r > 50, the ACCs of UK-means, CK-means,
PWCLU, and PWFEM-nd show significant changes between in (−1, −0.7) and in (0.7, 1). In
these two intervals, ρ makes the data points even messier. Therefore, the ACCs of clustering
results decrease if the data points are not processed. On the other hand, the ACCs become
stable when −0.7 < ρ < 0.7. Obviously, the effect of ρ on the clustering results is weak.

6. Conclusions

In this paper, a possible world-based fusion estimation model for uncertain data is
proposed. It includes two methods, which are the PWFEM-nd and PWFEM-pd. The
PWFEM-nd is based on a data perspective, which uses a bottom-up method to cluster
the data. The PWFEM-pd uses clustering according to the uncertain data directly. Both
these methods depend more on the probability density distribution of uncertain data. We
performed some simulations and confirmed that the proposed methods showed better
performance in terms of probabilistic accuracy. The accuracy is highly dependent on the
accuracy of covariance.

The discussion in the last section is incomplete. Obviously, it gets more complex
when dimension increases. Only some simple conclusions are given in the simulation.
In addition, the exact covariance is not usually obtained in actual scenarios. In any case,
the proposed methods provide a new way to treat uncertain data clustering. The issues
mentioned above are also to be addressed in future works.
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