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Abstract: Under a dense and large IoT network, a star topology where each device is directly
connected to the Internet gateway may cause serious waste of energy and congestion issues. Grouping
network devices into clusters provides a suitable architecture to reduce the energy consumption
and allows an effective management of communication channels. Although several clustering
approaches were proposed in the literature, most of them use the single-hop intra-clustering model.
In a large network, the number of clusters increases and the energy draining remains almost the
same as in un-clustered architecture. To solve the problem, several approaches use the k-hop intra-
clustering to generate a reduced number of large clusters. However, k-hop proposed schemes
are, generally, centralized and only assume the node direct neighbors information which lack of
robustness. In this regard, the present work proposes a distributed approach for the k-hop intra-
clustering called Distributed Clustering based 2-Hop Connectivity (DC2HC). The algorithm uses
the two-hop neighbors connectivity to elect the appropriate set of cluster heads and strengthen
the clusters connectivity. The objective is to optimize the set of representative cluster heads to
minimize the number of long range communication channels and expand the network lifetime. The
paper provides the convergence proof of the proposed solution. Simulation results show that our
proposed protocol outperforms similar approaches available in the literature by reducing the number
of generated cluster heads and achieving longer network lifetime.

Keywords: IoT; WSN; multi-hop clustering; distributed clustering; dynamic intra-clustering

1. Introduction

IoT networks cover progressively more aspects of our daily life and represent a
convergence field of multiple technologies. The basic idea is to allow the variety of devices,
or things, present around us (smartphones, sensors, cameras, laptops, Radio-Frequency
Identification tags (RFID), etc.) to interact and cooperate to achieve a common goal and
make users lives easier [1]. With extensive attention, IoT has rapidly spread to various
fields of interest, i.e., smart healthcare, smart city, smart home, intelligent transportation
systems and many other applications [2]. Such systems could be seen as a large number
of heterogeneous devices that need to access and be accessible from the Internet [3]. This
paradigm enables new technologies [4,5] such as heterogeneous types of big data, Cloud
and Fog Computing, Data Centers, etc. IoT devices perform more functionalities than mere
sensing, leading to a fast depletion of the available energy where battery recharging is often
costly or economically disadvantageous. Therefore, energy efficiency is a basic concept
that should be incorporated into the overall networks infrastructure [6].

Network clustering is a technique that has been widely used in wireless networks.
Indeed, grouping sensor nodes into clusters is an effective way to improve the network per-
formance due to its ability to extend the networks lifetime [7,8] and increase the scalability

Sensors 2021, 21, 873. https://doi.org/10.3390/s21030873 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2788-4892
https://orcid.org/0000-0002-1811-6306
https://orcid.org/0000-0001-6524-7352
https://doi.org/10.3390/s21030873
https://doi.org/10.3390/s21030873
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21030873
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/3/873?type=check_update&version=1


Sensors 2021, 21, 873 2 of 28

of the network [9]. Figure 1 illustrates a simplified example of devices connecting with the
Base Station (BS) using a flat architecture (Figure 1a) versus connecting through a cluster
based scheme (Figure 1b). This figure shows how the number of direct communication
channels with the BS can be considerably higher using a flat network. The clustering is
used as a functional solution for managing the multi-channel communications [10]. Many
channel management mechanisms were proposed to improve the radio capacity of the
network [11,12]. However, in a flat and dense network, the base station may not satisfy
the simultaneous connection resulting in a waste of wireless communication resources
and energy.

(a) (b)

Figure 1. Connections toward the base station (a) using a flat architecture with individual connections,
(b) using a structured and cluster-based architecture.

Several previously proposed clustering protocols focus on the multi-hop inter-clustering [7,9,13]
between the cluster heads (CH’s) and the base station to increase the network durability,
however only few consider the intra-cluster communication (between devices and their
CH). Usually, existing intra-clustering schemes [14–16] assume a direct connection between
Cluster Members (CMs) and their CHs, therefore, a high number of clusters are formed.
In a large scale network, the distance between nodes and their CHs may not be short
enough for communication. Therefore, direct communication becomes obstructive and
k-hop intra-clustering communication should be applied to ensure the network scalabil-
ity. The k-hop intra-clustering model received a considerable interest from the research
community [17–19] since it expresses (in a better way) the features of well-organized net-
work. Indeed, k-hops intra-clustering model reduces the number of clusters which reduces
the number of long-range communication channels and increases network durability [9].
The objective of k-hop clustering is to organize nodes into clusters where the path between
cluster members and their corresponding cluster head is shorter than k hops of distance.
It provides a robust topology in dynamic networks since cluster members may not be
in direct contact with their CH, hence reconfiguration events (cluster head election and
re-affiliations) are limited [20]. The maximum number of hops k inside each cluster could
be easily determined according to the targeted application requirements and the deploy-
ment area’s nature. The proposed algorithm uses a weight based mechanism during the
clustering process which consists of selecting the node with the maximum weight among
its k-hop neighborhood as a CH. The weight of each node is based on three parameters,
namely: the two-hop connectivity ratio, the remaining energy and the communication
quality. A k-hop routing tree is elaborated within each cluster in a distributed fashion,
where CMs use the Received Signal Strength Indicator (RSSI) to join the tree and select their
parents by following the shortest routing path leading to the corresponding CH. Therefore,
the k-hop clusters topology will further improve the energy efficiency and extend the
network lifespan.
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1.1. Network Architecture

The architecture of an IoT network is usually composed of two layers: the Access Net-
work (AN) and the Backbone Network (BN). The AN contains two kinds of components
(Figure 2): the Internet gateways (access points, base stations, NB, eNB, gNB [21], etc.)
and a variety of deployed devices. The Base Stations (BS) acts as a gateway that allows
network devices to connect with the Internet. On the other hand, the BN is mainly com-
posed of the Internet that streams the collected data to a particular distant service (for
network monitoring or saving and processing). In the k-hop intra-clustering, nodes of the
same cluster exchange their information using a short-range communication. The IEEE
802.15.4 standard is commonly used for this purpose [22] and is adopted by many low-cost
wireless interfaces such as Bluetooth [2], Zigbee [23], WirelessHART [24], 6LoWPAN [25],
Z-Wave [26], etc. Where the energy consumption is reduced and devices can work for
years without replacement. In contrast, to access the Internet getaway (typically the BS),
network devices usually use long-range communication technologies [27], such as Wi-Fi
(IEEE 802.11 [28]), LTE, LTE-M [29], etc. Long-range communication presents significantly
high energy consumption and constraints devices lifetime to few days. The choice of
the communication interface depends on the system application. Moreover, advanced
communication technologies for Low Power Wide Area (LPWA) [30] were proposed in
the literature to manage even wider communication areas, such as BLE (Bluetooth Low
Energy) [31], WAVENIS [22], LoRaWAN (LoRa) [32] and Narrowband IoT (NB-IoT) [30].
Table 1 shows a brief comparison of some prevalent existing communication technologies
with their associate application.

Figure 2. IoT network architecture.
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Table 1. Comparison of characteristics of different communicatioTn interfaces.

Protocol Frequency Band Data Rate Range Energy Consumption Usage Area

Wi-Fi [28] 2.4/5.0 GHz 54 Mb/s 30 m Medium Home entertainment, Industrial
Bluetooth [2] 2.4 GHz 1 Mb/s 10 m Low Industrial, Traffic management
IEEE 802.15.4 [23] 868−915 MHz/2.4 GHz 250 kb/s [10, 100] m Low Industrial, Traffic management, Smart

home, vehicle monitoring
LTE [29] 2.6 GHz 10 Mb/s ≤15 km High Mobil telecommunications, Smart Cities
Wireless HART [24] 2.4−2.5 MHz 250 kb/s [1, 100] m Low Healthcare, Industry automation
BLE [31] 2.4 MHz 1 Mb/s 200 m Very Low Healthcare, Home entertainment
Z-WAVE [26] 1 GHz 40 kb/s 30 m Low Home automation applications
WAVENIS [22] 865−916 GHz 100 kb/s ≤4 km Very Low Chemical and healthcare applications
LoRaWAN [32] 868−900 GHz 50 kb/s ≤15 km Very Low Smart City, industrial Monitoring,

Agriculture
NB-IoT [30] 180 kHz 234.7 kb/s ≤35 km Low Industrial Monitoring, Smart City

1.2. Motivation

As discussed in the introduction, when each network device is directly connected to
the gateway, numerous energetic and radio channel access problems are faced, especially in
dense and large networks [33]. Clustering the network by using direct connections among
nodes and their CH engenders a high number of small clusters [34]. K-hop intra-clustering
has demonstrated many advantages to avoid the congestion problems and prolong the
network lifetime [5,35]. However, k-hop intra-clustering protocols are mostly centralized
and only consider the node direct neighbors information, which lacks robustness. Indeed,
with a centralized k-hop scheme, the BS is a central point of failure, i.e., a potential BS
failure will obstruct the execution of the whole protocol. A loss of a critical node or a
communication error could eventually cause a severe clustering failure because some data
are usually of higher importance in a centralized approach. Moreover, when the network
scales up, the BS may become a performance bottleneck. In this regard, this paper presents
a new distributed k-hop intra-clustering protocol that takes into consideration the two-hop
neighbors connectivity information. The main objective is to optimize the set of CHs in
order to reduce the number of long-range communication channels to avoid congestion
issues and extend the network lifetime.

The main contributions of this work are as follows:

• A new connectivity metric is introduced to elect the set of appropriate CHs. The nov-
elty of this metric is taking into account the two-hop connectivity of the current node
and its surrounding neighborhood (instead of using the traditional direct neighbors
connectivity), in order to strengthen the clusters stability.

• The design of the algorithm is inspired from the distributed self-stabilizing systems.
We prove that the algorithm converges within O(n + k) rounds, which represents the
upper bound of the time complexity, n is the number of network nodes and k is the
depth threshold of the clusters. This perspective allows network devices to efficiently
tolerate potential failures that can occur locally in the dynamic topology.

• The proposed approach generates clusters with an energy efficient topology by reduc-
ing the distance between nodes and their respective CH. The adopted approach is
peculiar in that it constructs the intra-cluster links in a distributed manner rather than
using a centralized algorithm executed by the CH.

The remainder of this paper is structured as follows: Section 2 describes some re-
lated works. The network model and the algorithm objectives are presented in Section 3.
Section 4 is dedicated to the presentation of our contribution. The energy model and
transmission reliability are presented in Section 5. Section 6 is devoted to the convergence
proof of the proposed scheme. The complexity of the algorithm is analyzed in Section 7.
Section 8 describes the experimental settings and the simulation results. We conclude our
work in Section 9.
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2. Literature Review

Several researches focus on clustering techniques for wireless networks [8,20,22,36–39].
In this section, we present some of the prevalent one-hop and k-hop intra-clustering
approaches designed for wireless networks (Table 2). Many researchers have addressed
the one-hop intra-clustering [5,40–42] in order to design an energy efficient network. Low
Energy Adaptive Clustering Hierarchy (LEACH) [43] is one of the first and most well-
known energy efficiency clustering algorithms in this field. In LEACH, each sensor joins
the closest one-hop away CH. The role of CH is rotated randomly and periodically over
nodes to extend the network lifetime. This work has motivated many variations and
improvements such as EP-LEACH [44], FL-LEACH [45] and MH-LEACH [46].

Xiao et al. [44] improved LEACH protocol by introducing the energy harvesting capa-
bility in the CHs election, which minimizes the energy consumption of devices. Authors
in [45] proposed an amelioration of LEACH that shares the same heuristic and integrates
a fuzzy inference system to determine the desired number of CHs in the network by
only using the network density as an input. Chung-Wei [47] proposed a bio-inspired
clustering algorithm. The idea is to use a multi-metric optimization algorithm to find a
sub-optimal set of cluster heads and balance the number of CMs over clusters in order to
reduce energy consumption.

The one-hop intra-clustering provides a convenient solution to structure the network.
However, for large networks many clusters are formed. Therefore, isolated devices may
appear and connectivity may be difficult to ensure. Multi-hop (or k-hop) intra-clustering
alleviate the problem by producing a consistent structure in dynamic and large scale
environments. MH-LEACH [46] or Multi-Hop LEACH is a novel extension of LEACH
that supports the k-hop intra-clustering to increase energy efficiency. In this approach,
cluster members send their data to the cluster heads through multi-hop communication
and the CH aggregates data directly to the BS. The objective is to reduce the intra-cluster
energy consumption by using multi-hop communications. However, in addition to the
disadvantages of LEACH, this technique does not provide load balancing during the
routing process.

E-PEGASIS [48] is a chain-based intra-clustering mechanism that aims to reduce the
redundancy of data transmitted toward the BS. The algorithm finds a dominating set in the
network and uses an ant colony optimization to elect the sub-optimal routing chain from
the dominating nodes. This approach is an energy efficient solution. However, the time
complexity required to organize the nodes into chain is costly. In [49], authors presented
a k-hop Energy Constrained intra-clustering technique based on the Dominating Sets
theory called K-ECDS. The proposed algorithm considers the energy limitation and models
the problem of optimally choosing cluster heads based on the quality of communication
channels and nodes cardinality. The clustering is distributed and aims to scale the network.

Authors in [14] proposed a new energy efficient hierarchical clustering using an intra-
cluster communication scheme to improve the lifetime of the wireless networks. The
proposed method uses an uneven clustering technique to alleviate the hot spot problem.
The BS divides the network into three unequal clusters level, the CHs selection is based
on the residual energy and the number of neighbours. The multi-hop intra-clustering is
only applied in clusters located faraway from the BS. This protocol reduces the number of
clusters and the messages overhead. However, the clustering is centralized, a potential BS
failure will lead to the failure of the whole protocol. Authors in [19] presented a multi-hop
intra-cluster clustering architecture. Initially, nodes enter a sleeping period and compute a
wake up time slot according to their degree and the average distance to their neighbors.
Nodes with a large set of neighbors and low average distance are awakened in an earlier
execution time to be privileged for the CH election. Although the CHs selection provides
more energy efficiency and balanced cluster formation, the clustering time is prolonged.

Mezghani [34] proposed a distributed multi-hop intra-clustering approach based on
Khalimsky topology. The network is divided into k-hop large dynamic clusters. The CH
election is distributed and weight based, the weight of each node is based on the residual



Sensors 2021, 21, 873 6 of 28

energy, nodes degree and the neighbors communication probability. The node with the
highest weight in its neighborhood is selected as a CH. The cluster topology is performed
using the triangulation theory of Khalimsky to ensure optimal intra-clustering routing and
reduce the energy consumption.

Traditional centralized intra-clustering algorithms often need knowledge of the entire
network information. A loss of a critical node or a communication error could eventually
cause a severe clustering failure because some data are usually of higher importance in a
centralized approach. Therefore, our proposal is fully distributed allowing network nodes
to act simultaneously and independently in order to make the network fault-tolerant.

Table 2. Clustering algorithms properties comparison.

Algorithm Topology Number of CH’s Intra Clustering Inter Clustering Load Balancing Energy Consideration Benchmarks

LEACH [43] Distributed Undetermined Single-hop Single-hop No No MTE
EP-LEACH [44] Distributed Undetermined Single-hop Single-hop No Yes (CH-election) LEACH, TEEN
FL-LEACH [45] Distributed Determined Single-hop Single-hop Yes No LEACH
Wu et al. [47] Centralized Undetermined Single-hop Single-hop Yes No Not specified
MH-LEACH [46] Distributed Undetermined Multi-hop Single-hop No Yes (Multi-Hop transmis-

sion)
LEACH

E-PEGASIS [48] Centralized Determined Multi-hop Single-hop No No PEGASIS,
LBEERA

EE3C [50] Centralized Undetermined Multi-hop Multi-hop Yes No Not specified
K-ECDS [49] Distributed Undetermined Multi-hop Multi-hop No No ECDS, HEED
Singh et al. [14] Centralized Undetermined Multi-hop Multi-hop Yes Yes (CH-rotation) EEUC, EUCA
Turgut [19] Distributed Undetermined Multi-hop Single-hop Yes No Not specified
Mezghani [34] Distributed Undetermined Multi-hop Single-hop Yes Yes (intra-cluster routing) MTE, HEED,

APTEEN, EDC,
THC, VCA

3. Network Model and Algorithm Objective

In this study, the wireless network is assumed to be composed of a set of devices
represented by a graph G = (V, E), where V is the set of network nodes and E is the set
of edges that represents the communication and interfering links. Nk(i) denotes the set of
k-hop neighbors of the node i ∈ V, N<k(i) represents the set neighbors at distance < k-hop
from i. N(i) denotes neighbors of node i at one hop. Deg(i) = |N(i)| is the degree of node
i, i.e., number of nodes in the neighborhood of node i. The distance between the node i and
the node j is Dist(i, j) (the number of hops in the shortest path between i and j). Nodes use
multi-hop communication to relay their data toward their CH. We assume that all devices
have the same transmission range (communication links are symmetric). Network devices
use a single channel transceiver, i.e., they cannot receive from multiple senders or send and
receive at the same time.

The objective of our proposed solution is to optimize the number of CHs and reduce
the waste of energy caused by the long-range communication channels and decrease the
risk of congestion. More precisely, we aim to find the smallest set C of selected cluster heads
CHn (n ∈ {1, 2, ..., |C|}) using a two-hop neighbors connectivity metric, while respecting a
particular maximum hops constraint k between each node and its cluster head. Considering
that Mn is the set of nodes that belong to the cluster coordinated by the cluster head CHn.
The objective of the proposed mechanism is formulated as follows:

C = (Min |
⋃

CHn ⊆ V|) ∧ ( ∀i ∈ Mn, ∀ CHn ∈ V) :

Dist(i, CHn) is Minimized

where
Mn = {∀ i ∈ V, ∀ CHn ∈ V | Dist(i, CHn) ≤ k}
|C|⋃

n=1

Mn = V ∧ (∀ n 6= m : Mn ∩Mm = ∅) (1)
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The communication over multi-hop short-range is usually more energy efficient than
directly transmitting in a single-hop long-range communication [51]. Larger intra-cluster
hops extends the coverage of the CHs, which reduces the number of elected CHs and
the energy dissipation. However, in case of dense network, the interference rate will also
increase, which expands the waste of energy due to collusion problems that may occur.

4. Proposed Approach

In this section, we present our distributed k-hop intra-clustering approach for wireless
networks named Distributed Clustering based 2-Hop Connectivity (DC2HC). The clus-
tering approach consists of grouping nodes with high connectivity into k-hop clusters.
As cluster heads consume more energy compared with other nodes, the number of CHs
should be reduced [49]. Therefore, DC2HC aims to produce an optimized number of
clusters while maintaining the network coverage, reducing the number of isolated nodes
and providing more extended network durability. The algorithm adopts a weight based
mechanism during the cluster heads election process. This latter consists of selecting as
a CH node with the maximum weight in its k-hop neighborhood. Multi-hop spanning
trees [52] are formed inside each cluster where CMs use the Received Signal Strength
Indicator (RSSI) to select their parents in the routing path leading to the corresponding CH.
Therefore, clusters will be constructed with a topology that consumes less energy. Nodes
weight combines three metrics:

1. Two-hop connectivity ratio (TCR): this parameter represents the connectivity ratio
of a node relative to its neighborhood. The TCR value of a given node i is calculated
using Equation (2). Each node computes the average connectivity within its two
hop neighborhood (N≤2(i)) using Φi, then compares the obtained value with the
local degree to define the TCRi. A negative TCRi value (|N(i)| −Φi ≤ 0) reflects the
low connectivity proportion of the node i relatively to its surrounding environment.
Higher TCRi value means that node i is surrounded by a large number of neighbors
and these neighbors are well connected with many other nodes, thus i is a suitable CH
candidate to maintain network connectivity. Therefore, it covers the largest number of
nodes within the maximum hop constraint k and generates more fault tolerant and
stable cluster topology. Indeed, in case of potential CH failure, the neighborhood of
this node is well connected and the replacement of the current CH does not affect the
cluster performance.

Φi =

[
|N≤2(i)|

∑
j=1

|N(j)| / j ∈ N≤2(i)

]
+ |N(i)|

|N≤2(i)|+ 1

TCRi = |N(i)| −Φi (2)

2. Residual energy (Eratio): the remaining energy of network nodes is introduced in the
CH election process. The ratio of remaining energy of a node i is computed as:

Eratio
i =

Eresidual
i
Einit

i
(3)

where Einit
i is the initial energy of the current device and Eresidual

i is its remaining energy.
3. Communication link quality (RSSI): DC2HC uses Radio Signal Strength Indicator

(RSSI) as a metric to measure the quality of communications. The RSSI value (the
received transmission power Pr) can be represented by the Log Distance Path Loss
Model [53] as follows:

Pr(d)(dBm) = Pt(dBm)− 10× α log(d)− Xσ (4)
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Pt represents the power of the transmitter’s radio signal in dBm. The distance d
between the sender and the receiver is measured in meter. α is the path loss exponent
that depends on the environmental conditions (α = 2 in the free space propagation
model). Xσ is a Gaussian random variable used in case of shadowing effect. Otherwise,
it equals zero.

Therefore, the weight Wi of a node i, based on the previous parameters, is computed
as follow:

Wi = α× TCR + β× Eratio
i + γ× RSSI (5)

where α, β, γ represent the weighted coefficients of the corresponding metrics with the
constraint α + β + γ = 1. The contribution and importance of each parameter, relatively
to the others, is indicated by its corresponding weighted coefficient. They are adjusted
according to the system requirements and the network environment. A particular weight
coefficient may be adjusted relatively to the others to obtain an optimal result for a par-
ticular network configuration. For example, in a low density environment, the residual
energy should be favored. In case of a dense network, the connectivity should be favored.
Whereas, in a noisy environment, the communication link quality needs to be considered.
However, the proposed scheme is designed to work under a typical network with various
configurations to cover different use-case scenarios. Therefore, in this experiment, all the
weight coefficients are considered equal.

In DC2HC, the clustering is completely distributed where each node has only a partial
view of the network which consists of its two-hop neighbors knowledge. The algorithm
is designed by a set of rules of the form [If condition then action], where the condition is a
predicate defined over the node partial information. If the predicate is true, then the node is
said to be enabled to make a move (execute an action). This algorithm structure is inspired
from the self-stabilization algorithms that are considered as advantageous approaches for
tolerating transient faults in a network [54], which is desirable in an environment with a
dynamic topology. We assume that each node i has a unique identifier and maintains a
set of variables that constitute the Local State Values of the node (LSV): node identifier
(IDi), its weight Wi, Mychi (the relative CH of the current node), CHweight (the weight
of the relative CH), Dist(i, Mychi) that indicates the distance to Mych (in term of hops),
Deg(i), and its parent Pi in the shortest data aggregation path. The structure of LSV is
illustrated in Figure 3. Each node has a clustering record list CRL that contains a set
of neighbors information required by the clustering process. Nodes store the received
clustering information (LSV beacons) in this list.

Figure 3. Example of Local State Values (LSV) structure.

Table 3 summarizes various notations used in the proposed approach. DC2HC is
composed of three phases: the initialization phase, cluster heads election phase, and
maintenance phase.
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Table 3. Notation used in the proposed approach.

Symbol Description

IDi Identity of device i
Wi Weight of i (computed using Equation (5))

Mychi Relative Cluster Head of i
CH_weighti Weight of Mychi

Dist(i, Mychi) Distance between i and Mychi (in term of hops)
Pi Parent of i in the aggregation path toward the relative CH
Tri Transmitting range of i

Deg(i) Degree of i (Number of node in the neighborhood of i)
LSVi Local State Variable of i

CRLi
Clustering Record List (Neighbors clustering information

received)
TCRi Two-hop connectivity ration of i

4.1. Initialization Phase

The BS broadcasts a periodic beacon signal at the initial stage. Based on the received
signal, nodes can estimate the transmission quality to the BS (the RSSI value). After receiv-
ing this beacon, each node broadcasts a periodic Tx_QUALITY message in its transmitting
range. After receiving a Tx_QUALITY message, a node updates its local state and replies
by sending an LSV beacon. When the new node i receives LSV beacons from its neigh-
borhood, it updates the CRLi list and computes its weight Wi using Equation (5), then
rebroadcasts a clustering message that contains the updated information. The LSV beacon
is broadcasted every time that a local information changes, so that network nodes can main-
tain consistent and updated information about their local environment. The initialization
process is described in Algorithm 1. Figure 4 summarizes the initialization phase.

Figure 4. Sequence diagram of the initialization phase.
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Algorithm 1 Initialization phase.

Code for each node i

Variables:

IDi: identifier

CRLi = Null

Ni = ∅

Degi = 0

Wi = 0

RSSIi = −100 dBm

Upon receiving BS signal:

Update RSSI value

Broadcast Tx_QUALITYi message

Foreach received LSV Beacon

do:

|Ni| = |Ni|+ 1

Update TCRi value using Equation (2)

Deg(i) = |N(i)|
Update CRLi list

Endfor

Update Wi value using Equation (5)

Broadcast LSVi Beacon

Upon receiving Tx_QUALITYj message:

Send LSVi beacon to j

4.2. Cluster Head Election Phase

The pseudo-code of the clustering process is presented in Algorithm 2. We assume
that no potential failure occurs during the execution of the CHs election phase. First,
to elect a cluster head, a node i browses the CRLi list and compares its weight with the
weight of its neighbors and with the weight of CHs that dominate its neighbors (rule R1).
If Wi is the greatest weight, i updates Mychi = IDi (elect itself as a cluster head) and
set Dist(i, Mychi) = 0 (execute R2), then broadcasts a CH_Announcement beacon that
contains the new CH information. Otherwise, i chooses the node with the highest weight
value in CRLi list as its new CH. In the case where two or more nodes have the same highest
weight, the node identifier is used as a tie-breaker, i.e., the device that has the highest ID
is elected as CH. Rule R1 prevents the formation of poorly structured clusters, it allows
network nodes to choose the most appropriate cluster head in their k-hop neighborhood.
Otherwise, the node chooses the second weightiest node in CRLi and so on until finding
the weightiest CH with less than k hops of distance. If no CH meets these requirements,
then the current node elects itself as a new CH to avoid isolated node scenario. Node i
updates Mychi with the identifier of the chosen node from (R1) and selects the path with
the minimum number of hops toward the CH according to the information received from
its one hop neighborhood (using rule (R3)). Consequently, nodes will be constrained to join
the closest cluster that includes the weightiest CH, which prevents the formation of a height
number of small clusters. The cluster heads election process is illustrated in Figure 5.
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Algorithm 2 Cluster Head election phase.

Code for each node i

Variables:

IDi: identifier

N(i): set of neighbors node of i

Wi: weight of the node i

Max_weight: temporary variable used to find the node with the highest weight

Output

CRLi: clustering record list of i

Mychi: the relative CH of i

Dist(i, Mychi): the minimal distance between i and its relative CH (in term of hop)

(R1): If Max_weight 6= Max({CRL[IDj][W] | j ∈ (N(i) ∨MychN(i)) ∧ Dist(j, Mychj) <

k}⋃{Wi}) then

Max_weight = Max({CRL[IDj][W] | j ∈ (N(i)∨MychN(i))∧Dist(j, Mychj) <

k}⋃{Wi})
Mychi = IDj

Else

If i 6= j ∧Wi = Wj then

If IDi ≥ IDj

Mychi = IDi

Else

Mychi = IDj

(R2): If (Mychi = IDi) ∧ CRL[Mychi][Disti] 6= 0 then

Dist(i, Mychi) = 0

CRL[Mychi][Disti] = 0

Broadcast CH_Announcement beacon

(R3): If (Mychi 6= IDi) ∧ (Dist(i, Mychi) 6= Min(Dist(j, Mychj) | j ∈ N(i) ∧Mychi =

Mychj) + 1) then

Dist(i, Mychi) = Min(Dist(j, Mychj) | j ∈ N(i) ∧Mychi = Mychj) + 1

CRL[Mychi][Disti] = Dist(i, Mychi)
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Figure 5. The cluster head election phase.

Figure 6 shows an execution scenario of the clustering process with k = 2 in a small
network (modeled by a graph). Green nodes represent the CHs and the white nodes
represent the cluster members. Tables (b,d,f,h) in Figure 6 show the different nodes
parameter. Figure 6a,g present, respectively, the initial network state and the final clustered
network. Initially, network nodes have received the signal message from the BS and
exchanged their clustering information. At each stage, the variables of each node used
during the clustering are illustrated in the corresponding matrix. Notice in Figure 6a, the
weight of nodes 1 and 11 are the highest among all the nodes in their CRL lists. During the
following round (Figure 6c) these two nodes execute rule R1 to update their Mych value
(became CHs) and rule R2 to update the distance Dist(i, Mychi) = 0. Next, nodes 1 and
11 send an announcement beacon to their neighbors. When the neighbors of these nodes
receive the CH_Announcement message, they update their CRL lists and join the CH with
the highest weight using rule R1, then execute R3 to select the shortest path toward their
CHs using neighbors information. At this stage, two clusters are formed in the network:
C1 {CH : 1; CMs : 2, 3, 4, 9}, C2 {CH : 11; CMs : 12, 13, 14}. Next (Figure 6e), as new
members joined the cluster, the members send LSV message that contains the updated
cluster information to their surrounding neighbors. Therefore, in the last state (Figure 6g)
the same situation can be repeated for the rest of the nodes. The remaining unallocated
nodes have received the clustering information and updated their CRL lists. These nodes
join the cluster with the weightiest CH, then update their distance using R3 (Dist = 2) to
form the final two hops clusters.
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(a) Initial state (b) nodes parameters

(c) CHs election (d) nodes parameters

(e) Routing paths formation (f) nodes parameters

(g) Clusters formation (h) nodes parameters

Figure 6. Execution scenario of Distributed Clustering based 2-Hop Connectivity (DC2HC) clustering process.
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4.3. Maintenance

In a dynamic wireless network, frequent topology changes can occur due to device
mobility, battery draining, lack of coverage, etc. The clustered structure must be resilient
to eventual node disconnections factor. Our approach adopts a continuous clustering
maintenance, where devices periodically exchange control information. This mechanism
is suitable for a dynamic scenario where disconnection events frequently occur [20]. The
DC2HC re-clustering process can be locally driven and does not affect the entire network
when disconnection events occur. Frequently updated control information enables a faster
reaction to disconnection events. Thus, the clustered structure is more efficient and stable.
The cluster maintenance phase is described as follows:

4.3.1. Cluster Leaving

Each node monitors its local environment through the periodically exchanged beacon
messages to keep track of the neighborhood members. When a node leaves the cluster
(following a disconnection factor), it stops transmitting; the surrounding neighbors detect
this event and remove this node from their CRL lists. If the leaving node is a cluster head,
rule (R1) will be activated and CMs re-execute this rule to elect a new CH and perform the
necessary updates. Otherwise (the case where the leaving node is not a CH), rule (R3) will
be activated and CMs having it as forwarder (to access the CH in multi-hop fashion) will
choose another path to relay their information. The cluster leaving process is illustrated in
Figure 7.

Figure 7. The cluster head leaving process.

4.3.2. Cluster Joining

When a node i decides to join a cluster, it executes the initialization phase and broad-
casts a join request to the nearest neighbors. These neighbors reply by sending an LSVi
beacon that contains the clustering information. The new node saves the received informa-
tion in its CLRi list and computes its weight value Wi. If it has the largest weight among
all the CRLi members, then it elects itself as the new CH and broadcasts an announcement
message, so that the surrounding neighbors can perform the necessary changes (set the
new node as their new CH). Otherwise, the new node joins the cluster of the weightiest
CH in its k-hop neighborhood. Next, i selects the closest node to the CH (node with the
lowest RSSI value) as its new parent to relay the collected data.

In the case where no reply packet is received, i.e., the new node is inside an isolated re-
gion, the new node i elects itself as a cluster head (to avoid isolated node scenario), updates
its local state (Mychi = IDi, Dist(i, Mychi) = 0) and broadcasts a CH_Announcement
packet, since other nodes may have joined this region while i was executing the joining
procedure. The cluster joining process is shown in Figure 8.
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Figure 8. The cluster head joining process.

5. Energy Model and Transmission Reliability

Wireless network devices perform many functionalities (i.e., sensing, processing,
transmitting and receiving information). Among all those functionalities, wireless com-
munication is the one, which depletes most of the energy [36]. Therefore, in this study, we
do not consider the energy dissipated in the data processing. The energy consumption
model for the proposed DC2HC is adopted from the radio model used in [40], it assumes a
simple communication model for the radio hardware battery consumption. In this model,
the transmitter consumes an amount of power to run the radio electronics and the power
amplifier. On the other side, the receiver consumes energy to detect and decode the radio
signal as illustrated in Figure 9. Radio model parameters are illustrated in Table 4.

Figure 9. Radio energy consumption model.

Equation (6) computes the energy required to transmit a data packet with l bits
over a distance d, where Eelec is the power dissipation to run the transmitter circuitry for
transmission or reception. εamp represents the power amplifier and depends on the distance
to the receiver. εFS is the power consumption of the free space propagation, εMFS is the
power consumption of multi-path propagation and d0 is a threshold distance. When the
distance between the transmitter and the receiver is lower than d0, the free space model is
used. Otherwise, the multi-path model is used. d0 is calculated as:

d0 =
√

εFS/εMFS

ETran(l, d) = Eelec × l + εamp × l (6)

where:

εamp =

{
εFS × d2 : d < d0
εMFS × d4 : d ≥ d0

Equation (7) represents the dissipated energy by the receiver in receiving ’l’ bits
of data.

ERec = Eelec × l (7)

Transmission reliability plays an essential criterion to improve the QoS of an applica-
tion. The well-known available Link Quality Estimators (LQEs) are shown in Figure 10.
Among all these estimators, Radio Signal Strength Indicator (RSSI), Link Quality Indicator
(LQI) and Packets Received Rate (PRR) are the most common metrics used to estimate
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transmission quality [36]. RSSI measures the power signal of the received packets. LQI
indicates the correctness of the received packets based on the first eight bits of that packet.
LQI is an efficient estimator, but the RSSI perform good results with a small number of
measurements and converge faster than LQI. PRR is considered as the best indicator for
link quality [55]. However, it requires more time and energy to perform an accurate quality
value. For these reasons, RSSI is chosen as the link quality estimator in this study. Lower
RSSI value implies a weaker signal. It is measured in decibel, the closer this value is to
zero the better the signal is. For example, −50 dBm is a good signal and −75 dBm is
fairly reasonable.

Figure 10. Available link quality estimators (LQE’s) [56].

6. Convergence

Since the network structure is dynamic, the clustering algorithms must have a quick
convergence time (Convergence time: represents the duration from when a node starts
the execution of the clustering algorithm until the cluster is finally constructed. At the
convergence point, no more executions are performed by the node until the end of the
clustering process). The convergence time of the algorithm is measured in terms of rounds.
Each round is estimated by a number of movements. Therefore, in this section we will prove
that our algorithm requires a finite number of movements in the clustering process, which
implies its convergence. We assume that the network starts from an arbitrary configuration.

Lemma 1. Let i ∈ V be the node that has the highest weight value in G (i.e., ∀j ∈ V − {i} : Wi >
Wj ∨ (∃ i 6= j : Wi = Wj ∧ IDi > IDj). i makes at most 2 movements (executes (R1) and (R3)).

Proof. We show that node i executes a finite number of movements.

We assume that the value of Mychi is not updated. Since i is the weightiest node in
G, it has the highest weight among all its neighbors (∀j ∈ N(i) : Wi > Wj). The rule R1
is enabled at node i, it will update the Mychi value (CH). Next, R2 is executed, i updates
the distance Dist(i, Mychi) = 0, afterward, no more rules are executed by node i, so it will
not make another move. Mychi and Dist(i, Mychi) will have the same values during the
setup phase.

Lemma 2. Neighbors at distance < k from the node with the highest weight i ∈ G will execute a
finite number of movements.

Proof. We show that the k-hop neighbors of i execute a finite number of movements
(at most 2 × k movements) before reaching the final state (Final state (or stable state):
represents the state where the node has reached the convergence point. From this state, the
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node has a correct clustering variable (LSV) and all the algorithm rules are disabled for
this node).

After that, node i (the node with the highest weight) reaches a stable state (Lemma 1).
Rule R1 and R3 will be enabled for its direct neighborhood j ∈ N(i), these neighbors
will update their Mych value (Mych = IDi), then execute R3 to update the distance
Dist(i, j)+ = 1 (2 movements). After that, no more rule will be enabled in the neighborhood
of i (N(i) has reached a final state).

This execution will be repeated by all nodes ∈ N2(i). Each node j ∈ N2(i) will
execute at most 2 movements (R1 and R3) then finish their execution. Hence, the same
scenario is repeated for the rest of nodes until it covers all the nodes in the sub-graph
G
′
= {i⋃N≤k(i)} that contains i and its k-hop neighborhood. Thus, the k-hop neighbors

of the node with the highest weight reach the final state after at most 2× k movements and
will not be able to execute any more movements.

Lemma 3. The stability of DC2HC is ensured.

Proof. Since node i with the highest weight in the network executes a finite number
of movements (Lemma 1) and the k-hop neighbors of node i also execute a finite num-
ber of movements (Lemma 2). This implies that the sub-graph composed by the set
of nodes {i}⋃Nk(i) reaches a stable state after a finite number of movements. Let
G
′′
= {G / ({i}⋃Nk(i))} be the graph obtained by removing the first stabilized sub-

graph from G. The execution given above in G can be repeated in G
′′
, the second sub-graph

that contains the node with the highest weight in G
′′

stabilizes with the same reasoning, so
all the nodes of the graph will follow this reasoning. This implies that the total number of
moves executed by DC2HC is finite.

7. Complexity

In the previous section, we demonstrated that the proposed approach terminates
within a finite number of movements (2 × (k + 1) moves). However, the convergence
complexity is not provided. In this section, the complexity of the proposed algorithm is
examined in both theoretical and simulation-based analyses.

7.1. Theoretical Analysis

In the following, we assume the worst configuration from which our algorithm can
start. Then we study the complexity of DC2HC.

There is a known configuration from which DC2HC fails to provide good results (the
worst-case scenario). This scenario is when nodes are related and organized in a straight
line and their IDs are monotonically increasing or decreasing as illustrated in Figure 11. In
this configuration (network with low density), the maximum degree of each node i ∈ G is:
0 < Deg(i) ≤ 2. In this case, network nodes will have the same weight and the election of
cluster head depends on nodes IDs. Although, this configuration is unlikely to occur in a
real-world network. It will allow the computation of the complexity in the worst case.

Figure 11. Worst-case scenario (k = 2).

In the following, we prove that the time complexity of DC2HC is at most O(|V|+ k)
rounds, where |V| is the number of nodes on the network.
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Lemma 4. Let i be the node with highest weight in G then:

(a) After 2 rounds and in all following rounds, i is a cluster head (Mychi = IDi and Dist(i, Mychi) = 0).
(b) After 2× k + 2 rounds and in all following rounds, the neighbors of node i at distance ≤ k

form a cluster, where ∀j ∈ N≤k(i) : (Mychj = i) ∧ (Dist(i, j) ≤ k).

Proof. First, we demonstrate that (a) is true. In the first round, as i is the node with the
highest weight in G, it has the high weight value among all its neighbors.

∀j ∈ V − {i}, z ∈ N(i) : (Wi > Wj)⇒ (Wi > Wz)

This node executes rule R1 to become a CH. In the second round, i executes rule R2
to update the distance value Dist(i, Mychi) = 0. After that, no more rules are activated at
node i, so it will not execute another move in the following rounds. Property (b) means
that the sub-graph G

′
= {i⋃N≤k(i)} that contains node i and its neighbors at distance

≤ k reaches a stable state after at most 2 + 2× k rounds. In the 3rd round, when node i
finishes its execution, rule R1 will be enabled for its neighborhood. These neighbors join
the cluster of node i. Next, they execute R3 to update their distance Dist(i, Mychi) = 1
(round 4). After round 4, no more rules can be activated in the neighborhood of i, so they
will not execute other movements in the following rounds.

The argument given above is repeated for the neighbors at distance ≤ k from i (i.e.,
neighbors of i will reach a stable state after 2× k rounds). Therefore, to form a cluster, two
rounds are required to elect the CH and 2× k rounds to form the cluster. By induction,
each node with the highest weight and its neighbors finish their execution after at most
2 + 2× k rounds.

Lemma 5. The maximum number of clusters that can be generated with DC2HC in the worst case
configuration is 1 + n/(k + 1) where n = |V|.

Proof. DC2HC divides the graph G into several spanning trees where each tree has the
node with the highest weight as its root (the cluster head) and its neighbors at a distance≤ k
represent the rest of this tree (cluster). Therefore, the minimum number of nodes that can
be in a cluster is k + 1. In the worst-case scenario (the graph shown in Figure 11), a related
graph can contain n/(k + 1) clusters. As each cluster is represented by only one CH, the
graph can contain at most n/(k + 1) cluster heads. One is added to the previous threshold
to cover the case where n mod(k + 1) > 0. Thus, we obtain [ n

k+1 ] + 1, which represents the
maximum number of CHs formed by DC2HC in the worst-case configuration.

Lemma 6. DC2HC algorithm converges after at most 2× (n + k + 1) rounds.

Proof. According to Lemma 4, the subset that contains the node with the highest weight
i ∈ G and its neighbors at a distance ≤ k (i

⋃
N≤k(i)) stabilizes after at most 2× k + 2

successive rounds. The same process is repeated in the graph G
′
= {G / i

⋃
N≤k(i)}. As

G contains at most [ n
k+1 ] + 1 clusters (Lemma 5) and each cluster takes 2× k + 2 rounds

to reach a stable state. Thus, the proposed protocol requires at most ([ n
k+1 ] + 1) × (2×

k + 2) = ([ n
k+1 ] + 1) × 2(k + 1) = 2(n + k + 1) rounds to form all the clusters in the

network.

Lemma 7. DC2HC algorithm has a linear time complexity of O(n) rounds.

Proof. Based on Lemma 6, the upper bound of the time needed for the execution of DC2HC
is 2× (n + k + 1) rounds. Thus, it is obvious that the time complexity (convergence time)
of the algorithm is O(|E|+ k). As |E| ≥ k, the proposed algorithm converges after at most
O(n) rounds.
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Lemma 8. DC2HC algorithm has a linear space complexity.

Proof. Each node has to maintain the 2-hop neighbors information in its CRL data structure.
Therefore, the space complexity of each node will not increase as long as the local density
remains constant. The space complexity of DH2HC is O(d2), where d2 represents the 2-hop
local density. As d2 ≤ n, the complexity of the proposed algorithm is linear, which is
needed in a resource constrained environment.

The number of nodes inside clusters depends upon the network density and the
k-hop constraint. Indeed, in the case of complete graph, all nodes can be grouped within a
singleton cluster. Hence, the maximum number of nodes in a cluster is n, where n is the
number of nodes in the network. However, this situation may not often occur in real world
networks. Therefore, by considering a related graph, the maximum number of clusters
that can be generated by the proposal is n/(k + 1) (Lemma 5), thus, the minimum limit of
member inside each cluster is equal to n

n/(k+1) =
n(k+1)

n = k + 1.

7.2. Clustering Property

To prove that the proposed approach works properly. Clustering properties (safety
and liveness) need to be satisfied.

7.2.1. Safety Property

The safety property ensures that network nodes are grouped into clusters and each
cluster has only one CH to avoid overlapping between clusters.

Lemma 9. The safety property is verified.

Proof. Each ordinary node elects the node with the highest weight among its multi-hop
neighbors as its cluster head and the variable Mych holds only one value based on CRL
list. Thus, a node can only belong to one cluster at a time and is covered by a unique CH.
As a result, the safety property is satisfied.

7.2.2. Liveness Property

The liveness property ensures that the clustering progresses normally and reaches a
final state after a finite time.

Lemma 10. The liveness property is satisfied.

Proof. According to Lemma 3 and Lemma 6, the proposed algorithm executes a finite
number of movements and converges after at most n + k rounds. Hence, the liveness
property is satisfied.

8. Simulation
8.1. Experimental Settings

The performances of the proposed approach are analyzed and compared using a
simulator implemented in java using Java Universal Network/Graph (JUNG) [57] a Java
based library that allows the modeling, analysis, and visualization of a wireless network as
a graph. The network topology is composed of a variable number of nodes (δ ∈ [40, 1300])
distributed across a square area of size ∆2 = 1000 × 1000 m2. A random distribution is
assumed to generate a random network topology, which is typically used in clustering
approaches in the literature to approximate a real deployment scenario. Conventional
sensor network usually uses wireless communication standard with low power consump-
tion [58], such as IEEE 802.15.4 Zigbee (with a maximum transmitting distance of 100 m) or
the 802.11n [28] (with a transmitting distance of 70 m). Therefore, based on the wireless
communication standards used by regular wireless networks, in this experiment, we as-
sume that network nodes have a transmission range of Tr = 70 m. We use the classic Unit
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Disk Graph (UDG) connectivity model [59] where communication links are symmetric,
i.e., a wireless communication link exists between two nodes i and j if they are within
each other’s transmission range (Dist(i, j) ≤ Trj ∧Dist(j, i) ≤ Tri). The energy model used
is described in Section 5, node has 1 joule of initial energy and the size of a data packet
is l = 100 bytes. The k-hop clustering decreases the number of reconfiguration events
that may occur inside the cluster [20]. Therefore, instead of using a periodic CH rotation
for load balancing. In this study, the CH rotation occurs when the weight of the current
CH is exceeded by one of its k-hop neighbors, which means that the current cluster has
undergone a considerable topology changes. This mechanism avoids the quick alternation
of CHs and further reduces the number of clustering messages generated. The experiment
parameters are listed in Table 4. Increasing the number of communication hops inside each
cluster generates long routing paths which may extensively increase the data transmission
delay. Thereby, the performance of our clustering algorithm is analyzed by considering
k ∈ {1, 2, 3}. The k-hop constraint ought to be specified depending on the application
requirements to improve the network performance. The proposed scheme is experimented
with varying maximum hop values and different nodes density to analyze the network
performance under different scenarios.

Table 4. Simulation parameters used in the experiment setting.

Parameter Value

Network size (∆2) 1000 × 1000 m2

Node density δ ∈ [40, 1300]
Distribution of nodes Random
connectivity model Unit Disk Graph (UDG [59])

Transmitting range (Tr) 70 m
Maximum hop constraint k {1, 2, 3}

α, β, γ 1/3, 1/3, 1/3
Eelec 50 nJ/bit
εFS 10 pJ/ bit/ M2

εM f s 0.0013 pJ/ bit/ M4

Data packet size 100 bytes
Initial energy 1 Joule

In the following section, the performance of our approach DC2HC is compared with
two ubiquitous and recent protocols that belong to the same family of multi-hop clustering.
MH-LEACH [46] and Mezghani protocol [34] are both used for the k-hop intra-clustering
and their primary objective is to reduce the waste of energy and the number of generated
clusters. Owing to these characteristics, these protocols are selected for the performance
comparison to our proposed protocol.

Five parameters are used for the performance analysis of the simulated protocols,
namely, the cluster heads cardinality, the energy consumption, number of exchanged
messages, the average network lifetime and the number of dead nodes. The same param-
eters are used to compare the three protocols. Each simulation result is the average of
10 measurements for each used metric with varying density and node distributions.

8.2. Experimental Results
8.2.1. Cluster Head Cardinality

It represents the average number of generated clusters. This metric allows the eval-
uation of clustering efficiency. Low CHs cardinality reveals good characteristics of the
clustering scheme as it represents the number of communication channels established with
the BS. Moreover, reducing the CHs cardinality limits the usage of long-range communica-
tion channels which reduces the risk of congestion and improve the energy consumption.
Figure 12 shows the average number of cluster heads generated by DC2HC, Mezghani [34]
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and MH-LEACH [46] protocols under different nodes density δ ∈ [40, 1300]. We observe
that MH-LEACH generates the highest cardinality. Indeed, MH-LEACH uses a proba-
bilistic technique for load balancing the CH task among nodes. This technique does not
consider the residual energy or the surrounding environment of nodes. When the density
converges from 200 to 800 (δ ∈ [200, 800]) with k ∈ {2, 3}, the environment tends to be
more connected which enlarges the set of neighbors within the transmitting range Tr of
each node. Therefore, in Figure 12b,c, we observe that clusters cardinality of MH-LEACH
start to decrease in the range between δ ∈ [400, 800] because the coverage of CHs regroups
more nodes. Mezghani protocol considers the residual energy of nodes which improves
the cardinality when k = 1 (improved by an average of 43.7% compared to MH-LEACH).
However, the clustering process only considers the average one-hop degree of nodes,
accordingly, when k ∈ {2, 3}, the protocol slightly degrades in performance. The proposed
scheme uses the k-hop clustering which minimizes the CHs cardinality and avoids having
remote nodes within a forced singleton clusters. According to Figure 12, the proposed
scheme shows better performance, it reduces the cardinality by an average of 18.3% and
62% when compared to Mezghani and MH-LEACH respectively. Table 5 shows the average
gain of DC2HC compared to Mezghani and MH-LEACH in terms of CHs cardinality.

(a) (b)

(c)

Figure 12. Average cluster head cardinality using the k-hop intra-clustering (a) k = 1, (b) k = 2, (c) k = 3.

Table 5. Synthesis of the average CH’s cardinality gains compared with Mezghani and MH-LEACH.

Clustering Algorithm Intra-Cluster Topology

Single-hop Two-hop Three-hop

Mezghani 6.9% 21.1% 27%
MH-LEACH 55.3% 64.2% 67.3%

8.2.2. Average Exchanged Messages and Consumed Energy

As wireless communication is the most expensive operation in wireless networks
and depletes most of nodes energy, the number of exchanged messages and the con-
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sumed energy are strongly associated and have a significant impact on devices lifespan.
Figures 13 and 14, respectively, show the average energy consumed by network nodes and
the average number of exchanged messages during the clustering process with according
to nodes density increase and considering k ∈ {1, 2, 3}. The curves’ shape show that the en-
ergy consumed by network devices is proportional to the number of exchanged messages.
In general, as the density increases the energy consumed and the number of messages,
generated by the three approaches, increase as well. The multi-hop communications reduce
the energy consumption by reducing the communication distance from CMs to their CH,
especially when the size of the network scales. Figure 13 demonstrates that whatever
the number of deployed nodes, DC2HC consumes less energy than the other protocols.
This improvement can be attributed to the small number of elected CHs and reduced CH
rotation that decreases the number of clustering messages exchanged. The number of
exchanged messages is reduced by 36.5% and 6.9% compared to Mezghani protocol and
MH-LEACH protocol respectively. The energy consumption is also reduced by an average
of 21.7%, which is suitable for increasing the network lifetime. Table 6 summarizes the
gains obtained by DC2HC when compared to Mezghani and MH-LEACH in terms of
energy consumption.

(a) (b)

(c)

Figure 13. Average energy consumption of the three approaches with (a) k = 1, (b) k = 2, (c) k = 3.

Table 6. Synthesis of energy consumption gains compared with Mezghani and MH-LEACH.

Clustering
Algorithm Intra-Cluster Topology

Single-hop Two-hop Three-hop

Mezghani 28.7% 37% 37.1%
MH-LEACH 10.6% 13.8% 3.1%
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(a) (b)

(c)

Figure 14. Average number of exchanged messages during the clustering process (a) k = 1, (b) k = 2, (c) k = 3.

8.2.3. Average Network Lifetime

Several works define the network lifetime as the period from network initialization to
the round when the last node dies [9,46]. This parameter is important because it shows how
long network nodes are able to run the protocol. Moreover, the early death of nodes can
lead to a disconnection of some part of the network. Therefore, to evaluate the lifetime of
the network, we considered the round at which the first node die (FND) and last node die
(LND). Figure 15 shows the time at which the first node died according to different level
of density. Typically, when the density increases, the connectivity among nodes increases,
which reduces the CHs cardinality and balances the energy consumption among CMs. In
MH-LEACH nodes die quickly because the protocol does not consider the residual energy
of nodes. According to Figure 15, when the density is greater than 200 (δ ≥ 200) the FND
round of MH-LEACH tends to stabilize between 1400 and 1600 rounds. Mezghani protocol
reveals better performance compared to MH-LEACH (improved by 45.2%) due to the
reduced number of generated CHs (Figure 12) and to the usage of Khalimsky theory [34]
to elaborate an energy efficient cluster topology. According to Figure 15a, DC2HC shows
the highest durability, where the FND node reached 2876 round, whereas, in Mezghani
and MH-LEACH it only reached 2591 and 1565 rounds, respectively. When increasing the
maximum hop constraint (k > 1), the performance of the three simulated protocols increase
due to the usage of the multi-hop clustering, which reduces the energy consumption. The
curve allure of DC2HC in Figure 15b shows an improvement in performance compared
to the other approaches. Indeed, the proposed scheme generates a low cardinality of
dense clusters based on the neighborhood TCR value. DC2HC uses the two hop neighbors
information to favor nodes located in a well-connected region to be elected as a CH, it uses
a multi-hop routing tree inside each cluster to improve the intra-cluster communications.
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Therefore, the connectivity among clusters is improved which reduces the waste of energy
devoted to wireless transmission. Consequently, D2MHC achieves a gain factor of 13.3%
and 58.5% compared to Mezghani and MH-LEACH respectively.

(a) (b)

Figure 15. First node death according to different nodes density with (a) single-hop, (b) multi-hop.

Figure 16 shows the round at which all network nodes died versus the network
density (δ ∈ [40, 1300]) considering k ∈ {1, 2, 3}. In MH-LEACH, the role of CHs is rotated
randomly and periodically which reduces the number of setup messages, therefore, MH-
LEACH behaves better than Mezghani protocol. However, using DC2HC allows a further
extension of nodes lifetime since it minimizes the set of cluster heads and, thus, it reduces
the waste of energy devoted to long range communications. Moreover, it limits the number
of CH rotation which reduces the clustering messages and the overall energy consumption
offering the network a longer lifetime. Our proposed protocol outperforms Mezghani and
MH-LEACH protocols in terms of network lifetime by 26.3% and 13.3% respectively.

Figure 17 depicts the total number of nodes that remain alive over execution time
considering the number of deployed nodes δ = 1000. Although the performances of the
three protocols initially look similar, we observe that DC2HC has more alive nodes than
the other algorithm with the growth of rounds. MH-LEACH selects the set of CHs based
on random probabilities and does not consider nodes residual energy, which results in
a faster death of network nodes. At the end of the clustering process only few nodes
are remaining alive. Nevertheless, using our protocol allows network nodes to last for
longer period. Whereas with the other protocols, nodes died faster. Table 7 summarizes
the gains obtained by DC2HC when compared to Mezghani and MH-LEACH in terms of
energy consumption.

Table 7. Network lifetime gains compared with Mezghani and MH-LEACH.

Clustering Algorithm Intra-Cluster Topology

FND LND

Single-hop Multi-hop Single-hop Multi-hop

Mezghani 30.5% 24.2% 16.4% 10.2%
MH-LEACH 14.4% 14.7% 75.1% 41.8%
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(a) (b)

(c)

Figure 16. Last node death according to different nodes density with (a) k = 1, (b) k = 2, (c) k = 3.

(a) (b)

(c)

Figure 17. Average number of alive nodes over execution time with δ = 1000 deployed nodes and (a) k = 1, (b) k = 2,
(c) k = 3.

9. Conclusions and Future Works

Energy consumption is a challenging design in the conception of wireless networks.
Long distance communication channels used by cluster heads to reach the base station
consume a significant amount of energy and accelerate the appearance of dead nodes and
congestion problems. In this context, we present a new distributed approach for k-hop
intra-clustering called Distributed Clustering based 2-Hop Connectivity (DC2HC) for large
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networks. The approach optimizes the set of representative cluster heads and extends the
network lifetime. The cluster heads election is performed based on the two-hop neighbors
connectivity of nodes to strength the cluster connectivity. It also considers the residual
energy of nodes to balance the energy consumption among larger clusters. We proved that
the proposed approach has a linear time complexity of O(|V|+ k) rounds, where |V| is the
number of nodes in the network. Various simulation experiments have been performed to
evaluate the performance of the proposed scheme with different parameters. Simulation
results show that the proposed algorithm provides better performance compared to similar
algorithms. The cluster heads cardinality is reduced by 40.1%, the energy consumption is
enhanced by 21.7% and the network lifetime is extended by 20.8%. As future work, we plan
to study the effect of introducing the State of Health (SoH) of rechargeable batteries [60]
during the clustering and integrating an optimized attack prevention schemes [61] to avoid
the sudden death of network device and further increase the network durability.
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