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Abstract: With the advances in sensor technology, big data, and artificial intelligence, unobtrusive
in-home health monitoring has been a research focus for decades. Following up our research on
smart vehicles, within the framework of unobtrusive health monitoring in private spaces, this work
attempts to provide a guide to current sensor technology for unobtrusive in-home monitoring by a
literature review of the state of the art and to answer, in particular, the questions: (1) What types of
sensors can be used for unobtrusive in-home health data acquisition? (2) Where should the sensors
be placed? (3) What data can be monitored in a smart home? (4) How can the obtained data support
the monitoring functions? We conducted a retrospective literature review and summarized the
state-of-the-art research on leveraging sensor technology for unobtrusive in-home health monitoring.
For structured analysis, we developed a four-category terminology (location, unobtrusive sensor,
data, and monitoring functions). We acquired 912 unique articles from four relevant databases
(ACM Digital Lib, IEEE Xplore, PubMed, and Scopus) and screened them for relevance, resulting
in n = 55 papers analyzed in a structured manner using the terminology. The results delivered
25 types of sensors (motion sensor, contact sensor, pressure sensor, electrical current sensor, etc.)
that can be deployed within rooms, static facilities, or electric appliances in an ambient way. While
behavioral data (e.g., presence (n = 38), time spent on activities (n = 18)) can be acquired effortlessly,
physiological parameters (e.g., heart rate, respiratory rate) are measurable on a limited scale (n = 5).
Behavioral data contribute to functional monitoring. Emergency monitoring can be built up on
behavioral and environmental data. Acquired physiological parameters allow reasonable monitoring
of physiological functions to a limited extent. Environmental data and behavioral data also detect
safety and security abnormalities. Social interaction monitoring relies mainly on direct monitoring of
tools of communication (smartphone; computer). In summary, convincing proof of a clear effect of
these monitoring functions on clinical outcome with a large sample size and long-term monitoring is
still lacking.

Keywords: sensor; smart home; health monitoring; elderly; patient; ambient assisted living

1. Introduction

Living environments with limited public access, such as a home or a privately-owned
car, form private spaces where people spend much time on daily activities [1]. In many
cases, private spaces imply far more than ordinary living. For patients with chronic diseases
or patients post-operationally discharged, their homes are places for not only living but also
rehabilitation, and—in the future—could also facilitate medical diagnosis and therapy [2–4].
Health monitoring in private spaces will benefit the subjects who require assistance, such
as the elderly, patients, and disabled persons.
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The Internet of things (IoT) and ambient assisted living (AAL) enable the sensing of
many aspects of our life, particularly including health-relevant information [5]. A sensor-
enhanced private space can provide unobtrusive health monitoring. We defined unobtru-
sive health monitoring as ambient using sensor technology to collect human health-related
data without introducing any inconveniences to everyday life [6]. Given this definition,
wearable devices are not considered unobtrusive, as the adherence to wearing them intro-
duces an additional burden to the users. Even in the case of a user-friendly integration of
the sensors into a smart watch or wristband, they still need to be recharged or configured.
Within the framework of unobtrusive health monitoring in private spaces, our previous
work investigated the up-to-date research on leveraging sensor technology in smart vehi-
cles [7]. In this work, we extend this thematic series in the framework of unobtrusive health
monitoring by focusing on the sensor-enhanced private spaces, namely, smart homes.

A pivotal feature of unobtrusive health monitoring is continuity. Conventional ap-
proaches collect health information (e.g., morphological and functional performance assess-
ments) at the point-of-care over time intervals ranging from months to years. In contrast, a
smart home can continuously or over shorter time intervals monitor its resident’s health
status while the resident is doing daily activities, unaffected by the measurements. This
monitoring may capture a comprehensive picture of a person’s health and functional status
and critical changes or events [8]. As is known, the activities of daily living (ADLs) reflect
the behavioral routines. However, a human may not be able to pay close attention to how
well an individual performs the ADLs and therefore spot subtle changes that may signal a
pattern of decline [9]. Continuous health monitoring could ensure that subtle changes are
not overlooked. Besides, studies have shown that the ambient in-home health monitoring
technologies are feasible and well-accepted [10,11].

Smart home research and relevant topics have been reviewed from different perspec-
tives in the past. Demiris et al. categorized health-related smart home technologies into
physiological monitoring, functional monitoring or emergency detection and response,
safety monitoring and assistance, security monitoring and assistance, social interaction
monitoring and assistance, and cognitive and sensory assistance [12]. Majumder et al.
analyzed the smart home monitoring technologies for the elderly and summarized the
monitoring of resident activity, the home environment, resident health, and home appli-
ances [13]. Liu et al. assessed the level of evidence in using smart home technology to
support different health concerns, such as ADL monitoring, chronic obstructive pulmonary
disease (COPD), cognitive decline and mental health struggles, fall prevention, and mon-
itoring heart conditions; and concluded that the technology readiness for smart home
and health monitoring is still low [14]. Cedillo et al. explored the relation between health
concerns and different AAL technology [15]. Rashidi et al. summarized the AAL tools
(smart homes, wearable sensors, and robotics) for older adults [16]. Recently, Rodrigues
et al. addressed the requirements for the development of smart healthcare environments
for physiological and behavior monitoring [17]. Stavropoulos et al. examined IoT wear-
able sensors and some smart home devices in elderly care, and categorized the sensing
approaches according to healthcare aspects, ranging from specific ailments to general
eldercare [18]. In addition, the authors proposed a case study classification taxonomy,
which can be a reference for similar work.

The concept of unobtrusive health monitoring aims at measuring health parameters
without interfering with the subject. However, this concept is not on the focus of existing
reviews. A review of the current sensor technology for unobtrusive in-home monitoring is
yet in demand. Therefore, this literature review aims to provide a snapshot of the state-of-
the-art sensor technology in unobtrusive health monitoring. We focus on the subject groups
of the elderly, patients, and disabled individuals, who need to be paid close attention in
their everyday lives. In particular, the following questions will be answered: (1) What
types of sensors can be used for unobtrusive in-home health data acquisition? (2) Where
should the sensors be placed? (3) Which data can be monitored in the smart home? (4)
How can the obtained data support the monitoring functions?
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2. Methods
2.1. Terminology of Unobtrusive In-Home Health Monitoring

The term ADLs is defined as the self-care activities that are necessary for health
maintenance and independent living [19]. Basic and instrumental ADLs (BADLs and
IADLs) are the typical classes. The BADLs refer to life-sustaining self-care activities (e.g.,
feeding, grooming, bathing, dressing, toileting, and ambulation); the IADLs are more
complex activities necessary for independent living (e.g., using telephones, preparing
meals, shopping, managing finances, taking medications, and driving) [19]. ADLs indicate
an individual’s health status, as the performance of ADLs depends on cognitive (e.g.,
reasoning and planning), motor (e.g., balance and dexterity), and perceptual abilities (e.g.,
hearing and seeing) [20].

Conventionally, we assess the ability to perform ADLs with clinical instruments, such
as the Barthel index or the Lawton IADL scale [21,22]. Interactions with many in-home
objects (e.g., toilet, oven, bed, or telephone) are unavoidable while performing ADLs.
Thereby, we believe that sensors attached/integrated to these objects can enable automatic
assessments of ADLs to a certain extent. To comprehensively understand different ap-
proaches, we have to consider the monitoring context, including sensor placement and data
sources [23]. Accordingly, we propose a terminology that covers unobtrusive sensors, their
locations, the data that can be obtained, and the potential monitoring functions (Figure 1).
Hereby the term unobtrusive is regarded as unnoticed—i.e., the acquiring of health data is
accomplished while the monitored individual is doing everyday activities as usual. For
instance, heart rate can be measured without notice when a person is watching TV while
sitting on a sofa integrating capacitive electrocardiography (ECG) electrodes.

• Location refers to the objects where the sensors can be unobtrusively deployed or
integrated. It can be broken down into:

– Room areas, which denotes rooms and other large spaces such as a hallway;
– Static facilities, which consist of objects with fixed locations but usually without

any electrical supply—e.g., furniture, windows, toilets, and sink,;
– Electric appliances have electricity, but may be fixed (e.g, oven) or unfixed

(e.g., phone).

• Unobtrusive sensors refer to the sensing devices that can be unobtrusively deployed
in the locations introduced above, consisting of mechanical, electro-magnetic, optical,
acoustic, and air sensors [13].

• Data are the outputs directly from the sensors or derived values from data processing
or analysis. Physiological, behavioral, and environmental data can be acquired from
the sensors.

• Functions refer to the possible services that can be delivered through the monitoring
system. We formalized the functions based on Demiris’ definitions [12].

– Physiological monitoring (Phy) refers to the data collection and analysis of phys-
iological measurements (e.g., heart rate, respiration rate, and body temperature).

– Functional monitoring (Fx) refers to the data collection and analysis on func-
tional measurements of BADLs and IADLs (e.g., activity level, motion, gait, and
meal intake).

– Emergency detection (Em) refers to detecting abnormal or critical situations that
need immediate intervention (e.g., falls).

– Safety and security detection (SaSe) refers to the detection of environmental
hazards (e.g., fire and gas leak) and human threats (e.g., intruders).

– Social interaction monitoring (Soc) refers to social interactions (e.g., phone calls,
visitors, and social activities).
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Electric appliances
• Coffee machine
• Computer
• Fridge
• Stove/oven
• Lamp

• Microwave oven
• Television (TV)
• Phone
• Radio
• Water kettle

Static facilities
• Floor (specific area)
• Wall (specific)
• Window
• Sink
• Toilet

• Chair/sofa/couch
• Bed
• Door
• Shelf/cabinet/drawer

Room areas
Living room

Kitchen

Bedroom

Bathroom

Hallway

Study room

Locations

Acoustic
• Microphone
• Ultrasonic sensor

Electro-magnetic
• Contact sensor
• Electrocardiography (ECG) 

sensor
• Power meter
• Radar

Optical
• PIR motion sensor
• Infrared camera
• Video camera
• Depth camera

Mechanical
• Accelerometer
• Bed sensor
• Scale
• Pressure sensor 
• Vibration sensor

Unclassified
• Water flow sensor
• Computer monitoring (software)
• Phone monitor

Unobtrusive sensors

Physiology
• Body temperature
• Blood pressure
• Body mass
• ECG
• Heart rate
• Respiration rate

Behavior
• Activity level 
• Computer usage
• Gait parameters
• Phone usage
• Presence
• Time spent on activities
• Out of home
• Walking speed 

Environment
• Gas concentration 
• Humidity
• Temperature
• Sound
• Others

Data

Functions

Air-relevant
• Gas/dust sensor
• Humidity sensor
• Thermometer

• Safety/security monitoring (SaSe)
• Social interaction monitoring (Soc)

• Physiological monitoring (Phy)
• Functional monitoring (Fx)
• Emergency detection (Em)

Unobtrusive
In-home Health Monitoring

Figure 1. Terminology of unobtrusive in-home health monitoring.

2.2. Literature Retrieval

The search string we developed reflects two aspects (Appendix A):
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Unobtrusive monitoring technologies consist of terms on the technologies applied for
unobtrusive sensor monitoring, such as “smart home”; “in-home monitoring”; “home-based
monitoring”; “continuous assessment”; “ambient assisted living”; “intelligent monitoring.”

People that are monitored consist of the terms on the target groups who need health-
care support in their everyday life, such as “patient”; “disability”; “disabled”; “elderly”;
“older people.”

We constructed the search term by connecting the terms within and across each aspect
with logic operators OR and AND, respectively. We applied the search string to four
databases, i.e., ACM Digital Lib, IEEE Xplore, PubMed, and Scopus. To reflect only up-
to-date research, we defined the publishing date span as the last decade (May 2010–April
2020). We restricted the query to results written in English. Subsequently, we combined all
returned records, removed duplicates, and screened the titles and abstracts according to
the Review Criteria and excluded irrelevant records. Afterward, we analyzed the full texts
with the Terminology of Unobtrusive In-Home Health Monitoring.

2.3. Review Criteria

As several persons performed a two-stage review, we defined the following criteria to
maintain consistency:

• Inclusion

– Unobtrusive sensors were part of the method;
– The sensors were used to collect either behavioral, physiological, or environmen-

tal health-relevant data;
– The monitoring method was implemented in a smart home, either a smart home

laboratory or a real living home.

• Exclusion

– No sensor technology was applied;
– Only wearable/implanted sensors were applied;
– Sensor data were not used for health monitoring;
– The work only focused on human–computer interaction;
– The work presented a design/idea only, but no implementation, test, or evaluation;
– Research was not on humans;
– Review/survey/vision papers.

When analyzing the full texts, we focused on extracting three sorts of information,
i.e., the types of sensors used in the research and their placement (location), the sensor
outputs, including physiological signals/parameters, behavioral and environmental infor-
mation (data), and the main monitoring functions. Besides, we investigated (i) whether a
sensor network was formed and what the communication channel was; (ii) the number of
subjects participating in the test/evaluation; (iii) whether the experiment was conducted
in a real living environment or a smart home laboratory; and (iv) whether privacy issues
were taken into account.

3. Results

The search string on the four databases resulted in 912 records after removing 163 du-
plicates, of which 133 papers remained after screening titles and abstracts (Figure 2). After
reviewing the full texts, we excluded 78 papers as they did not match the criteria, and
finally included 55 papers for in-depth text analysis.

Results of the text analysis are given in Tables 1 and 2. The included papers are sorted
by ascending publish year. With the terminology (Figure 1), we extracted the sensors and
their deployed locations (represented with the syntax sensor [location]), the acquired data,
and the functions of the monitoring system. Additionally, we also examined the type
of sensor network, the subject information, and experiment settings, if the information
is available.
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Table 1. Recent research on in-home health monitoring. NA: not available. RH: real home. SHL: smart home laboratory.

Ref. Year Sensors & Locations Data Functions Sensor Network Subject Info Experiment Setting

[24] 2010 Contact sensor [doors, windows, cabinets, sinks, toilets, and electric/electronic
appliances (e.g., ovens & fridge)

Presence (use of objects) Fx: ADL recognition & monitoring Yes, wireless, not
specified

2, 30-year and 80-year RH, 14 days

[25] 2010 {Thermometer, humidity sensor} [above cooking area], flow-meter [water
flowing], contact sensor [shelves, fridge, drawers], motion sensor [kitchen],
camera [kitchen ceiling]

Actions and events during cooking, increased/decreased
temperature/humidity, position

Fx: ADL and nutritional habits NA 1, unkown info SHL, duration NA

[26] 2011 Infrared camera [wall in living room], scale [floor], pressure sensor [floor,
living room]

Body temperature, body weight, presence Phy: vital sign monitoring for heart disease
patients

Yes, not specified 28, 13 with heart disease, and 15
healthy

SHL, < 1 hour

[27] 2011 Motion sensors [room areas, sofa, kitchen area, toilet, bed], contact sensor
[(exit/entry) doors, fridge]

Presence, walking speed, out of home (absence) Fx: Assessment of aging Yes, wireless, X10 265, elderly persons RH, average 33 months

[28] 2011 Electrical current sensor [microwave oven, kettle, TV, toaster, bed lamp],
pressure sensor[bed]

Time spent on act. (duration of using appliances) Fx: ADL monitoring for elderly Yes, Xbee based on
Zigbee

1, healthy volunteer RH, 24 hours

[29] 2011 Motion sensor [room areas], contact sensor [front&back doors] Presence Em: Abnormal behavior Yes, not specified 1, info NA RH, 1.5 years
[30] 2012 Motion sensor [room areas] Presence, time on act. Fx: Anomaly detection of behavioral patterns Yes, wired, X10 1, healthy volunteer SHL, 2 months
[31] 2012 Electrical current sensor [toaster, oven, kettle, TV, lamp], pressure sensor

[bed, chair, toilet], contact sensor [fridge, cabinet], water flow sensor [bath]
Presence, time on act. (duration of using appliances) Fx: Wellness assessment Yes, ZigBee 4, elderly RH, 6 days

[32] 2012 Electrical current sensor [toaster, oven, kettle, TV, lamp], pressure sensor
[bed, chair, toilet], contact sensor [fridge, cabinet], water flow sensor [bath]

Presence, time on act. (duration of using appliances) Fx: Sleeping activity monitoring, forecasting
sleeping tendency

Yes, ZigBee 1, elderly RH, 8 weeks

[33] 2012 Electrical current sensor [toaster, oven, kettle, TV, lamp], pressure sensor
[bed, chair, toilet], contact sensor [fridge, cabinet], water flow sensor [bath]

Presence, time on act. (duration of using appliances) Fx: assessing performance of basic behaviors Yes, ZigBee 4, elderly RH, 6 days

[34] 2012 Video camera [bed room] Video of ADL Em: Fall detection No NA, healthy volunteers RH, duration NA
[35] 2012 Video camera [living room] Video of ADL Em: Fall detection No 15, healthy volunteers RH, duration NA
[36] 2012 Motion sensor [room areas], bed sensor [bed], thermometer [stove] Activity level in apt. and in bed (bed restlessness), heart

rate (low pulse), respiration rate (low breathing)
Phy: Early illness recognition for older adults Yes, X10 6, elderly RH, 1 month -– 2 years

[37] 2013 Thermometer [stove], Doppler radar sensors [NA], depth camera (MS
Kinect) [NA], motion sensor [room areas], bed sensor (pneumatic strip)
[bed]

Activity level in apt. and in bed (bed restlessness),
heat rate (low/high pulse), respiration rate, time on
act. (stove usage), gait (velocity and step time)

Fx, Phy: Detect changes in health status Yes, X10 49, 24 discharged, 25 remained RH, 1 year

[38] 2013 Smart lamp (motion sensor, thermometer, humidity sensor, gas sensor)
[room areas], + wearable (smart watch)

Presence, gas leak, temperature, humidity Safety/SaSe: for down syndrome Yes, ISM 868MHz NA SHL, 2 days

[39] 2013 Electrical current sensor [room heater, kettle, toaster, microwave, TV, and
dishwasher], pressure sensor [bed, couch, chair, toilet], contact sensor
[fridge, cabinet]

Presence, time on act. (duration of using appliances) Fx: Predicting the quantitative well-being of
an elderly

Yes, ZigBee 1, elderly person RH, 8 weeks

[40] 2013 Motion sensor [room areas], contact sensor [cupboard], light sensor [stor-
age, door], thermometer [stove, bathroom], electrical current sensor [kettle,
toaster, wash machine], water flow sensor [sink in kitchen & bathroom],
humidity [bathroom]

Presence, appliance use, temperature, humidity, bright-
ness

Fx: ADL monitoring Yes, wireless, pro-
prietary protocol

1, elderly RH, duration NA

[41] 2013 Pressure sensor [bed, toilet, couch, chair], electrical current sensor [TV,
heater, kettle, toaster, microwave], contact sensor [cupboard]

Presence, time spent on act. (appliances) Fx: ADL monitoring yes, wireless, Xbee
(Zigbee-based)

4, elderly RH, 10 weeks

[42] 2014 (Low-resolution) cameras [room areas] (low resolution) images, similarity heatmaps Fx: ADL monitoring Yes, wired, not
specified

1, 80-year, with hearing impair-
ment and walking abnormalities

RH, 14 days

[43] 2014 Bed sensor [bed], pressure sensor [chair cushion], contact sensor [door],
+ wearable sensor

Presence (bed, chair, entry/exit) SaSe & Fx: ADL monitoring of patients with
AD

Yes, wireless, Zig-
Bee

14, patients with AD RH, duration NA

[44] 2014 Pressure sensor [carpet in bedroom], contact sensor [door], bed sensor (air
pressure sensor) [bed], motion sensor [NA], + wearable (RFID tags)

Presence, out of home, fall Fx: ADL and emergency monitoring Yes, Xbee 6, healthy volunteers SHL, a few mins

[45] 2014 {Contact sensor, accelerometer} [cabinet (pill box)], phone sensor [phone],
contact sensor [coffee maker]

Presence (medication taking, coffee making), phone us-
age

Fx: ADL monitoring Yes, wireless, not
specified

Study-1: 2 older women; study-2:
12 older adults, living alone.

RH, 10 months

[46] 2015 Motion sensor [room areas], contact sensor [doors], bed sensor [bed], + wear-
able sensors

Activity level (# sensor firings, # of transition between
rooms, in-bed movements), time on act. (time spent per
location)

Fx: ADL monitoring Yes, not specified 7, info NA SHL, 4 days
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Table 1. Cont.

Ref. Year Sensors & Locations Data Functions Sensor Network Subject Info Experiment Setting

[47] 2015 Video camera [kitchen], electric current sensor [TV, iron, vacuum, cooking devices,
boiler, radio], contact sensor [TV, iron, vacuum, fridge door, drug cabinet, drug box],
motion sensor [kitchen, bathroom], bed sensor [bed], + wearable (Jawbone)

Images, sleep interruption, out of home, presence Fx: ADL monitoring Yes, wireless 1, 76 years old, female RH, 3 months

[48] 2016 Motion sensor [room areas], gas sensor (CO, air quality, smoke) [room areas], hu-
midity sensor [room areas], thermometer [room areas], sound sensor [room areas]

Presence, humidity, temperature, gas concentration (CO level),
sound level.

SaSe: detect or prevent domestic emergency/abnormal
situations

Yes, Ethernet, WiFi,
GPRS

7, healthy volunteers RH, 15 days

[49] 2016 Motion sensors [room areas], + wearable sensors Presence Fx: ADL tracking Yes, Bluetooth 20, healthy volunteer, 20–79 years RH, duration NA
[50] 2016 Motion sensor [room areas], contact sensor [doors], phone sensor [phone], computer

(monitoring software)
Out of home, walking speed, phone usage, time on act. (com-
puter)

Soci: assessing/predicting loneliness Yes, WiFi, USB cable 16, older adults (>62), living alone RH, 8 months

[51] 2016 Motion sensor [room areas], contact sensor [fridge, cabinet], pressure sensor [bed,
chair], water flow sensor [valve], electric current sensor [TV, radio]

Presence Fx: Profile nighttime routines, detecting wandering Yes, Z-wave, WiFi 1, healthy volunteer RH, 3 months

Table 2. Recent research on in-home health monitoring (continued). NA: not available. RH: real home. SHL: smart home laboratory.

Ref. Year Sensors & Locations Data Functions Sensor Network Subject Info Experiment Setting

[52] 2016 Bed sensor (EarlySense piezoelectric sensor) [bed, under the mattress] Heart rate, respiration rate (rapid and shallow respi-
ration duration), activity level

Phy: Assessing change of physiological pat-
terns correlate with readmission

Yes, LAN or WiFi 30, patients with systolic left ven-
tricular dysfunction, and those
with preserved ejection fraction

RH, 640 nights

[53] 2017 Accelerometer [blanket in bed], pressure sensor [chair, bed, floor tile in bath-
room], ECG sensor (capacitive electrodes) [chair at dining table, couch]), ECG
sensor (dry electrodes) [floor tile in bathroom], Infrared thermometer [at TV]

ECG, heart rate, respiration rate, weight, body tem-
perature, BCG (at the chair), blood pressure

Phy: perceptions of seniors with heart failure Yes, wireless, not
specified

26, heart failure, >65 years, liv-
ing alone

SHL, <1 h

[54] 2017 pressure sensor (handrail) [wall of hallway to toilet] Presence, walking speed Fx: ADL monitoring No 1, elderly (88-year) RH, 14 months
[55] 2017 Motion sensor [room areas, bed], contact sensor [doors, fridge] Activity level (activity distribution per location) Fx: correlation between activity distribution

and MCI
Yes, X10 68, aged > 70, living indepen-

dently, some experiencing MCI)
RH, average 3 years

[56] 2017 Thermometer [room areas], gas sensor (CO2) [room areas], humidity sensor
[rooms areas]

Temperature, humidity, gas level (CO2), presence Fx: Residence position Yes, WiFi 1, volunteers RH, a few hours

[57] 2017 Motion sensor [room areas], electrical current sensor [stove/oven, kettle, mi-
crowave, etc.], accelerometer [bed], contact sensor [doors], water flow sensor
(acoustic) [water sink], temperature/humidity sensor [room areas]

Presence, time spent on act., temperature, humidity,
out of home

Fx: ADL routine NA 5, age > 70 RH, 181 days

[58] 2017 Depth camera [room areas] Depth image, motion trajectory Fx: ADL monitoring, abnormal detection NA 4, elderly, cognitive problem,
Parkinson’s disease

RH, 40–78 days

[59] 2017 Contact sensor [doors, cupboard, toilet flush tank, garderobe, water faucet],
pressure sensor [chair, bed], thermometer [oven], motion sensor [bath], light
sensor [room areas], flame sensor [kitchen curtain], rain sensor [kitchen win-
dow]

Presence, environmental data (light, rain, flame) SaSe & Fx: ADL monitoring, forgotten situa-
tions

Yes, wireless, Xbee 1, living alone RH, duration NA

[60] 2018 Motion sensor [room areas, chairs, bed, stove, sink, and fridge] Time on act. (cooking, eating, relaxing movements,
and hygiene act., night toilet, out of home, sleep),
gait (walking distance)

Fx: assessing functional health decline Yes, ZigBee 29, older adults, 13 cognitively
healthy, 10 at risk of cognitive dif-
ficulties, 6 cognitive difficulties

RH, >2 years

[61] 2018 Depth cameras (MS Kinect) [-], accelerometer (floor tile in kitchen] Depth images (walking, standing, sitting, falls, posi-
tion), presence (via accelerometer)

Fx & Em: In-home ADL recognition and track-
ing, fall detection

Yes, ZigBee 6, volunteers SHL, duration NA

[62] 2018 Motion sensor [door, sink in kitchen], electric current sensor [kettle, rice cooker,
microwave, TV]

Time on act. Fx & Em: ADL monitoring Yes, wireless 2.4G
ISM Bands

4, elderly RH, 7 weeks

[63] 2018 Motion sensor [room areas, bed], contact sensor [doors, drawer, wardrobe],
electric current sensor [lamps, TV, coffee machine]

Presence Fx: ADL prediction to support older adults Yes, Z-Wave, xCom-
fort

10, elderly patients RH, up to 17 weeks
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Table 2. Cont.

Ref. Year Sensors & Locations Data Functions Sensor Network Subject Info Experiment Setting

[64] 2018 Motion sensor [room areas, chairs, bed, stove, sink, and fridge] Time on act. (cooking, eating, relaxing movements, and
personal hygiene activities, night toilet, sleep), out of home,
walking distance

Fx: Symptom prediction of AD patients Yes, ZigBee 29, older adults, 13 cognitively
healthy, 10 at risk of cognitive dif-
ficulties, 6 cognitive difficulties

RH, >2 years

[65] 2018 Motion sensor [room areas], vibration sensor [bed], thermometer [bed room] Presence, temperature Fx: Detecting early symptoms of MCI NA 50, info NA RH, 6 months
[66] 2018 Contact sensor [doors, medicine cabinet], motion sensor [bed room], pressure sensor

[couch], photo sensor [TV], + wearable (BodyMedia)
Presence, time spent on act. Fx: ADL monitoring, adhere to self-management

regimens
Yes, wireless, not
specified

2, 82-year old, male; 60-year-old fe-
male; both with type II diabetes

RH, 1–2 months

[67] 2018 Motion sensor [room areas], contact sensor [door, drawer, cabinet], smart switch [elec-
trical appliances]

Presence Fx: ADL routine Yes, wireless, not
specified

7, average 82-year RH, 8 weeks

[68] 2018 Motion sensor [room areas], contact sensor [doors], thermometer [NA], light sensor
[NA]

Presence, time spent on act., activity level Functional monitoring: ADL monitoring, health
prediction

NA 10, elderly (80–91), five with MCI RH, a few months

[69] 2019 Motion sensor [room areas], pressure sensor [chair, bed], contact sensor [door], + wear-
able sensors

Presence (kitchen, bathroom, hall), time on act. (bed, chair),
out of home

Fx: Tracking activity and sleep patterns Yes, wired, phone
lines

10, female, living alone, average 86.5 RH, 3 months

[70] 2019 {Thermometer / air quality (gas) sensor} [room areas], conductive cushion sensors
[wheelchair], camera [bed room]

Temperature, humidity, gas concentration (VoC, fine dust,
pollution level), presence, images

Em& SaSe: Unsafe situation detection Yes, WiFi 1, healthy volunteer SHL, duration NA

[71] 2019 Motion sensor [room areas], pressure sensor [slipper, sofa, bed, toilet, chair] Presence, time on atc. Fx & Em: ADL monitoring, abnormal activities
detection

Yes, WiFi, Bluetooth 1, healthy volunteer RH, 48 hours

[72] 2019 Depth camera (MS Kinect) [room areas] (Depth) images, presence Fx and Em: out of home Yes, wired, not speci-
fied

# NA, healthy volunteers SHL, duration NA

[73] 2019 Motion sensor [room areas], electric current sensor [coffee maker, toaster], contact sensor
[drawer, fridge, cupboards]

Time spent on act. (some areas usage time) Fx: Measuring the performance of specific tasks Yes, Z-Wave 48, 26 cognitive healthy, 22 MCI SHL, ca. 4 hours

[74] 2019 (1) Motion sensor [room areas, chairs and bed, stove, sink and fridge]; (2) contact sensor
[door, cupboards], pressure sensor [couch, bed, drawer], motion sensor [room areas],
water flow sensor [toilet]

Presence (use of obj.) Fx: ADL monitoring, activity routines (1) Yes, Zigbee (2)
Yes, RFM wireless net-
work

1, healthy adult RH, 1 month

[75] 2019 Motion sensor [room areas], contact sensor [doors], + wearable sensors Presence Fx: ADL monitoring patients with Parkinson’s dis-
ease

Yes, Zigbee 4, 2 male, 2 female, age 65–70, PD
disease duration 10 - 14 years

RH, 4 weeks

[76] 2019 Electric current senor [electronic appliances], contact sensor [drug box, water can],
motion sensor [room areas], bed sensor [bed], depth camera [NA], + wearable (Jawbone)

Images, depth data, gestures, activities, devices in use,
presence, time spent on atc. (sleep), activity level (steps)

Fx: ADL monitoring of patients with cognitive im-
pairment

Yes, wireless, NA 18, 12 MCI, 6 AD, >70 years RH, 4–12 months

[77] 2019 Contact sensor [door], motion sensor [room areas], electric current sensor [NA] Behavior routine Fx: ADL monitoring, routine monitoring Yes, wireless, NA 19, stroke survivors, 9 female and 10
male, mean age 71 (SD 11)

RH, 8 weeks

[78] 2019 Motion sensor [bathroom, bed, dining table, desk], thermometer [hallway] Presence (sleep, meal, TV) Fx: ADL monitoring Yes, Wifi 1, female, 68 years RH, 5 days
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Records through 
ACM Lib (n = 40)

Unique records, 
title + abstract screened (n = 912)

Full-text screened (n = 133)

Full-text analysis (n = 55)

Not relevant (n = 779)

Records through 
IEEE Xplore (n = 286)

Records through 
PubMed (n = 277)

Not match criteria (n = 78)

Retrieved records (n = 1075)

Duplicates (n = 163)

Records through 
Scopus (n = 472)

Figure 2. Review flowchart.

3.1. Sensors and Locations

A Sankey diagram [79] provides an overview of the connections between sensors
and their locations (Figure 3). We found a total of 25 types of sensors in the 55 included
papers. Passive infrared (PIR) motion sensors, contact sensors, pressure sensors, and
electrical current sensors were the most popularly reported sensing devices, which can
be found in 34, 30, 17 and 15 papers, respectively (Figure 4). Many studies used these
sensors to monitor human behavior, such as presence and time spent on activities (time
on) [26,37,50,60,62,64,76–78]. For instance, PIR motion sensors frequently monitored pres-
ence in certain room areas. In some cases, however, the motion sensors also detected pres-
ence at some specific locations, e.g., stove/oven, toilet, sink, and table/desk [27,60,64,78].
In line with their working principle, contact sensors mostly detected the operations on
facilities with doors, such as fridges, shelves, cabinets, and windows [24,51]. Pressure
sensors were usually attached to the objects that can undergo pressure due to human’s
standing, sitting, or lying. Furniture such as a chair/couch/sofa and bed are the common
locations for this kind of sensor [26,41,43,71,76]. As an electrical current sensor detects
electric current, we could monitor any electric appliance in theory. In the included work,
stoves/ovens and water kettles, which can indicate nutrition activities, were of particular
interest [33,47,62,73]. Besides PIR motion sensors, video cameras and air-relevant sensors
also monitored room areas [34,35,48,56]. Some research designed customized sensors to
monitor the operations of some specific objects. For instance, water flow sensors mon-
itored the use of water supply facilities, a phone integrated with a monitor component
monitored its usage, and similarly, monitoring software recorded the computer users’
activities [25,45,50,51]. In addition, we also observed that wearable sensors were also in
use in combination with ambient sensors in 10 included papers. The wearable devices are
frequently embedded with accelerometers [69,75,76] and radio-frequency identification
(RFID) tags [44].
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Figure 3. Connections between sensors and their locations. A wider connection indicates more included papers supporting
the connection in this review. The terms in the same category are illustrated in the same color.
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3.2. Data

We obtained 20 data types through the introduced combinations of sensors and
locations. In line with the sensor occurrence distribution (Figure 4), behavioral data were
the most common outputs, with the presence being the most frequent data type (n = 39).
As the sensors that can detect human–object contact shall deliver presence information, the
setups for detecting presence typically included optical sensors, such as PIR motion sensors;
contact sensors; and mechanical sensors, such as pressure sensors, accelerometers, and bed
sensors. Based on presence data, the time spent on activities was also frequently derived
in behavior monitoring (n = 18). Besides, a customized placement design of PIR motion
sensors estimated the specific metric, the walking speed [27]. Surprisingly, we found rare
research on unobtrusively collecting physiological data collection (n = 5). Dry or capacitive
electrodes appeared to be an alternative solution for capturing ECG signals, from which
the heart rate was derived [53]. The body weight (body mass) can be easily measured
through a pressure sensor [26]. Besides, research has also derived the blood pressure from
the ballistocardiograph (BCG) signal through a pressure sensor [53]. A bed sensor, as an
integrated sensor system, successfully delivered heart rate and respiration rate [52]. In room
areas, environmental sensors and microphones measured environmental parameters such
as gas concentration and sound level, which were used for in-door positioning [48,56].

3.3. Monitoring Functions

Most included work focused on functional monitoring (n = 44). Only a few covered
emergency monitoring (n = 10), physiological monitoring (n = 5), safety and security
monitoring (n = 5), and social interaction monitoring (n = 1) (Figure 5). Intuitively,
functional monitoring needed behavioral data, including presence, time spent on activities,
walking speed, gait parameters, and time spent out of home. Emergency monitoring relied
on video/images, presence detection, and abnormal detection of harmful gas concentra-
tions [29,34,35,61]. Safety and security monitoring used environmental data and presence
at the entry door [38,43,48,70]. Only one paper covers the social interaction, in which the
phone and computer usage was monitored as the indicator [50].

44

10

5 5

1
0

5

10

15

20

25

30

35

40

45

50

Fx Em Phy Sase Soc

# 
of

 o
cc

ur
re

nc
es

Figure 5. Distribution of smart home functions.

3.4. Sensor Network

As multiple sensors were used, most works set up a sensor network (n = 47) for data
transmission, for which 37 papers applied wireless communication. The presented wireless
communication protocols include Zigbee, WiFi, Z-Wave, Bluetooth, and ISM bands, found
in 14, 8, 3, 2, and 2 papers, respectively (Figure 6).
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Figure 6. Distribution of wireless sensor networks.

3.5. Subjects and Experimental Settings

The majority of studies (n = 36) recruited patients or elderly, whereas some only tested
their system with healthy volunteers, e.g., students or developers themselves. Among the
research with patients or elderly adults, the number of subjects ranged from one to 265 [27].
The average number was 13.64 without considering the outlier 265 (Figure 7). The 25% and
75% quantiles were 2.0 and 19.25, respectively. Most of the research with patient or elderly
adults deployed the monitoring systems in real homes. Only three were used in smart
home laboratories. Besides general aging issues, the diseases involved in the included
papers were dementia, heart disease, and stroke [26,52,53,60,73,77].

Overall, most research adopted real home settings (n = 44), either with real pa-
tients/elderly adults or healthy volunteers. The monitoring duration in real homes was
much longer than in smart home laboratories. In real home settings, some papers (n = 19)
reported that the monitoring duration was between one month and one year, while several
lasted longer than one year (n = 8). In contrast, for the research conducted in smart home
laboratories, only one exceeded one month, and the rest were up to one week.
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Figure 7. Distribution of number of patients and elderly adults.

3.6. Privacy Issues

Only less than half (n = 21) of the included papers mentioned privacy issues. Cameras
were referred to in several papers as invasive monitoring [37,38,40,54]. Due to the intruding
of privacy, some actions were taken regarding sensor selection and sensor placement. Some
cases did not take cameras or vision sensors into account [30,31,33,38]. Due to privacy,
the toilet could be sensor-free [72]. For data security, some research has adopted different
solutions: raw data were not transmitted [35,76], a sensor network was isolated [42], data
transmission was encrypted [50], and data access was authorized [40,43].
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3.7. Data Sources

Despite most research collecting data using their own monitoring systems, a few
(n = 8) applied their algorithms on existing datasets [24,30,36,41,55,64,68,74]. The reused
external datasets are (i) MavHome and CASAS dataset [80,81] (n = 5), (ii) the MIT
dataset [82] (n = 1), (iii) ORCATECH dataset [27] (n = 1), and (iv) TigerPlace dataset [83]
(n = 1).

4. Discussion

To sample relevant literature, in this work, we performed a search with a limited
search space on four databases, namely, ACM Digital Lib, IEEE Xplore, PubMed, and
Scopus, for acquiring the work in the field of in-home health monitoring published in the
past decade. This search strategy might not be able to provide an exhaustive and compre-
hensive literature coverage; however, we assume that the sampled literature adequately
reflects the current state of the research on the topic of unobtrusive health monitoring in
smart homes. The high sensitivity of this retrieval strategy is indicated by the fact that
approximately 6% of the initially returned records were included for in-depth text analysis
(55/912 = 6.03%). We developed a structured terminology for unobtrusive in-home health
monitoring (Figure 1). Based on the terminology, we reviewed the included literature in a
structured manner. Returning to the initial questions proposed at the beginning (Section 1),
we answer them as follows:

• What types of sensors can be used for unobtrusive in-home health data acquisition?
To unobtrusively monitor behavior, we can use PIR motion sensors, contact sensors,
pressure sensors, and electrical current sensors. Bed sensor systems (respiration rate
and heart rate) and dry or capacitive electrodes (ECG, heart rate) are the alternatives to
unobtrusively deliver physiological parameters. Apart from that, force-based sensors
cal also acquire physiological parameters such as heart rate or blood pressure that can
be derived from BCG. Gas sensors, humidity sensors, thermometers, and microphones
can be easily unobtrusively deployed for environment monitoring.

• Where should the sensors be placed? Electric appliances and static facilities are the
positions for unobtrusively placing the sensors. When monitoring room areas, PIR
motion sensors or other optical sensors, and environmental sensors should be placed
at appropriate locations according to the sensor fact data. To monitor the presence at a
specific location, (i) the facilities with doors are the locations best used to attach contact
sensors; (ii) the power supply (e.g., plugin) of a monitored appliance must be able to
sustain an electrical current sensor; (iii) a pressure sensor must be beneath the area
where force is applied when standing, sitting, walking, or lying; (iv) a position from
which a PIR motion sensor can point at the monitored location must be determined to
place the sensor according to its fact data. To monitor certain physiological parameters
such as heart rate or respiration rate, the positions (e.g., chair and bed) where a person
maintains stable contact with the body are appropriate for attaching dry or capacitive
electrodes. In this case, acceptable textile layers are the precondition. These locations
also qualify for BCG sensors.

• What data can be monitored in the smart home? Behavioral data (presence, time
spent on activities, activity level) can be easily acquired through the ambient, sensors
such as motion, contact, and pressure sensors. Human functional data such as gait
velocity and step time can be derived from depth videos. By customizing the place-
ment of PIR motion sensor, the walking speed can also be estimated. Even though
physiological parameters cannot be unobtrusively obtained as easily as behavioral
data, heart rate can be derived from BCG (pressure sensor, bed sensor) or ECG (dry
or capacitive ECG electrodes), respiration rate can be delivered by bed sensors, and
body temperature from an infrared thermometer. Air-relevant and sound sensors can
offer environmental data, such as gas concentrations, humidity, and sound level.

• How can the obtained data support the monitoring functions? All five functional
categories can be supported by the data from unobtrusive in-home health monitoring
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systems. Functional monitoring is the easiest one to implement as the variety and the
readiness of sensor technology for behavioral monitoring. Emergency monitoring
can be built up on behavioral data (e.g., in-door positioning, time-spent on activities,
and activity level) and environmental data (e.g., gas level). The physiological data
(BCG or ECG) collected from the objects with stable contact (e.g., bed and chair) can
deliver heart rate and respiratory rate, leading to partly physiological monitoring.
Besides contributing to functional and emergency monitoring, environmental data and
behavioral data detect safety and security abnormalities. Social interaction monitoring
relies mainly on monitoring social interaction tools, such as phones and computers.

4.1. Implications of In-Home Health Monitoring Terminology

The developed terminology of unobtrusive in-home health monitoring (Figure 1) was
applied to the structured text analysis in the current work. We expect to generalize the
text analysis mechanism to future relevant work. It may serve as a basis for developing a
guideline for sensor deployment in this context. Furthermore, it may assist in designing a
monitoring system and analyzing it comprehensively. As technology is continuously being
developed in sensors and computing, the terminology remains open, and new entries can
be added to any dimension.

4.2. The Demand for Customized and Hybrid Sensor Technology

Even though many efforts have explored different sensors for in-home health monitor-
ing, many sensors in use, however, are not originally designed for health monitoring. For
example, PIR motion sensors are designed initially for presence detection [84], and basic
home automation functions like switching on/off lights according to the presence. They
may have either blind spots or overlaps in the sensing areas when used for behavioral
monitoring, downgrading their value for health monitoring. The sensor systems dedicated
designed for unobtrusive health monitoring such as the EarlySense bed sensor [52] are
still in demand. Mature products are very likely to improve user experience and enable
reliable outputs. Smart building developments will enrich the variety of such simple
and non-health-focused sensors, which can yet be used to extract health-related data by
sensor fusion. In addition to the static objects that were on the focus of this work, ambi-
ent sensors may also be embedded in the mobile objects on which some special groups
continuously rely in daily life, for instance, the wheelchairs and crutches for disabled
individuals [85,86]. Hence, the monitoring might be extended to other private spaces, such
as a smart vehicle [7], and beyond private spaces.

4.3. Wearables as Complements to Ambient Sensors

We focused on ambient (non-wearable) sensors that can collect data in an unnoticeable
way in this work. Some cases, however, involved wearable sensors as well. For instance,
activity monitoring task frequently adopts wearable accelerometers, which can deliver
more precise results (e.g., activity level) than ambient sensors [69,75,76]. RFID tag may
address the issue of distinguishing multiple individuals under monitoring [44], especially
when cameras are absent. Although the ambient sensors have certain advantages, they
are also more sensitive to external noise [87]. Given the limited scale of research on
physiological monitoring, wearable sensors are advantaging in doing the task. For instance,
the commercially available smart watches, smart wristbands (e.g., Jawbone and Fitbit), and
smart rings (e.g., Aura) integrated with a photoplethysmogram (PPG) sensor can deliver
heart rate, heart rate variability (HRV), respiratory rate, and body temperature [18,88].
Therefore, in current stage, a combination of both types of sensors would be logical if the
effort to use wearable sensors can be kept at a minimal level.

4.4. The Demand for Appropriate Data Interpretation and Medical Value

In-home health monitoring involves a variety of sensors (Section 3.1) and delivers rich
data (Section 3.2). Our results reveal that the majority of research focused on functional
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monitoring of the elderly or the patients with mental health problems such as Alzheimer’s
disease (AD), for whom behavioral changes reflect health status (Section 3.3). Only a few
(n = 3) papers involved patients with heart disease for whom monitoring physiologi-
cal parameters (e.g., heart rate) is necessary. The phenomenon might be caused by the
difficulty of unobtrusively monitoring physiological parameters, as shown in the results
(Section 3.2). Physiological, behavioral, and environmental data are the directly obtainable
data. Psychological data or information can be derived from physiological and behavioral
data and be affected by environmental factors. Finding a common approach to interpret
different sensor data is unfeasible. However, linking the categorized sensor data to the
scales of clinical instruments might be possible.

So far, studies with a large sample size and long-term monitoring were rarely con-
ducted (Section 3.5). Convincing evidence for the impact of in-home health monitoring
on clinical outcomes is still lacking. However, we identified, despite the limited sample
size, recent studies showing promising clues in the direction of evidence, particularly
in supporting cognitive impairment. Lussier et al. found that the measures based on
sensor-based observations (motion, contact, and electric sensors) associated with daily
functional performance of older adults and concluded that sensor technology hold poten-
tial in detecting MCI [73]. By conducting an observational study, Lazarou et al. concluded
that unobtrusive health monitoring has positive impact on guiding intervention to the
caring of patients with cognitive impairment [76]. As some disease progression can be
slow, randomized clinical trials aiming to demonstrate improved patient health outcomes
shall be conducted for many years to reach statistical significance [89]. We encourage
evidence-oriented research to offer meaningful medical values of unobtrusive in-home
health monitoring [90].

4.5. Wireless vs. Wired Sensor Networks

Wireless communication is a dominant approach to form a sensor network (Section 3.4).
Many advantages make wireless communication superior, such as simplified installation,
flexibility to the building structure, low costs, and good support for IoT sensors. While all
of these advantages popularize wireless sensors, short-term projects (like pilot studies) do
not allow permanent installation in scales of building usage duration (typically 30 years).
Therefore, wired sensors come into play. They allow an efficient and unobtrusive long-
term integration of a broad range of sensors and actuators with the reliability needed by
health-related applications and the scalability required for large and long-term trials [91]. A
hybrid model would bring both into full play. Secondarily using existing sensors, installed
by housing companies or homeowners for comfort or safety and security reasons, to
collect in-home health data [92], and then fusing with wearable sensor data, could be a
realistic model.

4.6. The Demand for Open Data Sources

We also observed that some papers were based on publicly accessible datasets. In
contrast to the open data availability in public health or bioinformatics, there are still
rare datasets of in-home health monitoring shared within the research community. The
reason for that is evident: Collecting sensor data in the real life of patients or the elderly
is expensive, particularly, from the perspective of time. The secondary usage of existing
data shall be encouraged to promote the advancement, above all, in developing machine
learning methods. Open data policy in levels could be a feasible approach. For example,
some datasets in MavHome/CASAS are free to download, whereas some can only be
accessed by proposing an application [93]. To ensure the usability, open data sources must
provide well-defined and de-identified metadata as well.

4.7. On Data Processing

This work focused on giving an overview of sensor technology and measured health-
relevant data in state-of-the-art unobtrusive health monitoring applications. However,
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we did not focus on the processing techniques when extracting the health information
from the measured data. The reason for that lies within the fact the majority of works
focuses on sensor data collection and on data processing only to a lesser extent. This is
underlined by the fact that 20% of works did not report on the data processing technique.
Therefore, there is no clear picture of the used techniques for data processing. In some
cases, straightforward techniques (thresholds, frequency distributions, distance functions)
or statistical measures (nearest neighbor, linear regression) are applied. Rare cases used
machine learning techniques, such as support vector machines and recurrent neural net-
works. Their dependence on training data, which are costly and time-consuming to acquire
in the unobtrusive health monitoring, could explain the fact.

To our knowledge, physiological data collection in unobtrusive in-home monitoring is
usually over a long-term. Meanwhile, real life introduces noise sources (e.g., movements),
resulting in low signal quality. Data quality assessment methods are required. Therefore,
collecting high-quality, large-scale training data in an open format that allows mapping
this data to other projects effortlessly is an avenue for future work.

4.8. On Privacy Issues

Last but not least, privacy issues are unavoidable in implementing health monitoring
in a private space. Sensors that can intrude privacy shall be avoided. In the papers in
this work, a video camera was not used in any research that has done monitoring for
longer than a month in real homes. However, a depth camera could be an alternative
sensor to balance privacy protection and the richness of delivered information. Only less
than half of the included papers considered privacy issues, which may also explain the
general few numbers of subjects and short duration of monitoring (Section 3.5). In a design
stage, the well-known Fair Information Practice Principles may serve as a guideline or
reference for protecting privacy, including seven principles on openness and transparency,
individual participation, collection limitation, data quality, use limitation, reasonable
security, and accountability [94,95]. Additionally, the Model for the Ethical Evaluation of
Socio-Technical Arrangements (MEESTAR) [96] offers a structured way to identify ethically
problematic effects.

5. Final Remarks

• The terminology of unobtrusive in-home health monitoring enables a structured
analysis of health monitoring in the smart home environment, and may contribute to
guiding sensor deployment in in-home health monitoring, designing a monitoring
system, and analyzing it comprehensively.

• Locations in a home environment, categorized into room areas, electric appliances,
and static facilities, can unobtrusively hold a diversity of sensors (mechanical, electro-
magnetic, optical, etc.).

• While behavioral data can be easily acquired, only limited types of physiological
parameters are unobtrusively measurable. Physiological sensor technology needs to
be further developed to enable more reliable outputs for an ambient placement.

• A combination use of the sensor data makes the smart home a platform for functional,
emergency, physiological, safety and security, and social interaction monitoring.

• Convincing proof of a clear effect of these monitoring functions on some clinical
outcome using a large sample size and long-term monitoring is still lacking. Sensor
data need to be interpreted with corresponding medical concerns to obtain insights.

• Open data policies in this research field should be encouraged to enrich the available
data to develop and evaluate new methods.

• Privacy issues must be guided by frameworks that are convincing for multiple stake-
holders for the sake of long-term monitoring in practice.
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AAL Ambient Assisted Living
AD Alzheimer’s Disease
ADLs activities of daily living
BADLs basic ADLs
BCG ballistocardiograph
CASAS Center for Advanced Studies in Adaptive Systems
CO carbon monoxide
COPD chronic obstructive pulmonary disease
CO2 carbon dioxide
ECG Electrocardiography
Em Emergency detection
GPRS General Packet Radio Service
HRV heart rate variability
IADLs instrumental ADLs
IoT Internet of Things
ISAAC Intelligent Systems for Detection of Aging Changes
ISM industrial, scientific and medical
LAN local area network
MCI Mild Cognitive Impairment
MEESTAR Model for the Ethical Evaluation of Socio-Technical Arrangements
MIT Massachusetts Institute of Technology
NA not available
ORCATECH Oregon Center for Aging & Technology
Phy physiological monitoring
PIR passive infrared
PPG photoplethysmogram
RH real home
RFID Radio-frequency identification
SaSe safety and security detection
SHL smart home laboratory
SoC social interaction monitoring
TV television

Appendix A. Search String

Appendix A.1. ACM Digital Lib

(“in-home monitoring OR home monitoring” OR “home-based monitoring” OR “un-
obtrusive monitoring” OR “continuous assessment” OR “smart home” OR “smart homes”
OR “AAL” OR “ambient assisted living” OR “assistive living” OR “aging in place” OR
“intelligent monitoring”)

AND
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(“patient” OR “patients” OR “disease” OR “diseases” OR “illness” OR “disabled” OR
“geriatric” OR “aging” OR “elderly” OR “senior” OR “seniors” OR “older adults” OR “old
adults” OR “people with”)

Appendix A.2. IEEE Xplore

(“Document Title”:in-home monitoring OR “Document Title”:home monitoring OR
“Document Title”:home-based monitoring OR “Document Title”:unobtrusive monitor-
ing OR “Document Title”:continuous assessment OR “Document Title”:smart home OR
“Document Title”:smart homes OR “Document Title”:AAL OR “Document Title”:ambient
assisted living OR “Document Title”:assistive living OR “Document Title”:aging in place
OR “Document Title”:intelligent monitoring)

AND
(“Document Title”:patient OR “Document Title”:patients OR “Document Title”:disease

OR “Document Title”:diseases OR “Document Title”:illness OR “Document Title”:disabled
OR “Document Title”:geriatric OR “Document Title”:aging OR “Document Title”:elderly
OR “Document Title”:senior OR “Document Title”:seniors OR “Document Title”:older
adults OR “Document Title”:old adults OR “Document Title”:people with)

Appendix A.3. PubMed

(in-home monitoring[Title] OR home monitoring[Title] OR home-based monitor-
ing[Title] OR unobtrusive monitoring[Title] OR continuous assessment[Title] OR smart
home[Title] OR smart homes[Title] OR AAL[Title] OR ambient assisted living[Title] OR
assistive living[Title] OR aging in place[Title] OR intelligent monitoring[Title])

AND
(patient[Title] OR patients[Title] OR disease[Title] OR diseases[Title] OR illness[Title]

OR disabled[Title] OR geriatric[Title] OR aging[Title] OR elderly[Title] OR senior[Title] OR
seniors[Title] OR older adults[Title] OR old adults[Title] OR people with[Title])

Appendix A.4. Scopus

TITLE ( ( “in-home monitoring” OR “home monitoring” OR “home-based monitoring”
OR “unobtrusive monitoring” OR “continuous assessment” OR “smart home” OR “smart
homes” OR “AAL” OR “ambient assisted living” OR “assistive living” OR “aging in place”
OR “intelligent monitoring” )

AND
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AND
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, “PSYC” ) OR EXCLUDE ( SUBJAREA , “MATH” ) OR EXCLUDE ( SUBJAREA , “BIOC”
) OR EXCLUDE ( SUBJAREA , “ARTS” ) OR EXCLUDE ( SUBJAREA , “ENER” ) OR
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) AND ( LIMIT-TO ( PUBYEAR , 2020 ) OR LIMIT-TO ( PUBYEAR , 2019 ) OR LIMIT-TO
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