
sensors

Article

Fast Multi-Focus Fusion Based on Deep Learning for
Early-Stage Embryo Image Enhancement

Vidas Raudonis 1 , Agne Paulauskaite-Taraseviciene 2,* and Kristina Sutiene 3

����������
�������

Citation: Raudonis, V.;

Paulauskaite-Taraseviciene, A.;

Sutiene, K. Fast Multi-Focus Fusion

Based on Deep Learning for

Early-Stage Embryo Image

Enhancement. Sensors 2021, 21, 863.

https://doi.org/10.3390/s21030863

Academic Editor: Arcangelo Merla

Received: 26 November 2020

Accepted: 25 January 2021

Published: 28 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Automation, Kaunas University of Technology, Studentu 48, 51367 Kaunas, Lithuania;
vidas.raudonis@ktu.lt

2 Department of Applied Informatics, Kaunas University of Technology, Studentu 50, 51368 Kaunas, Lithuania
3 Department of Mathematical Modelling, Kaunas University of Technology, Studentu 50,

51368 Kaunas, Lithuania; kristina.sutiene@ktu.lt
* Correspondence: agne.paulauskaite-taraseviciene@ktu.lt

Abstract: Background: Cell detection and counting is of essential importance in evaluating the quality
of early-stage embryo. Full automation of this process remains a challenging task due to different
cell size, shape, the presence of incomplete cell boundaries, partially or fully overlapping cells.
Moreover, the algorithm to be developed should process a large number of image data of different
quality in a reasonable amount of time. Methods: Multi-focus image fusion approach based on deep
learning U-Net architecture is proposed in the paper, which allows reducing the amount of data up
to 7 times without losing spectral information required for embryo enhancement in the microscopic
image. Results: The experiment includes the visual and quantitative analysis by estimating the image
similarity metrics and processing times, which is compared to the results achieved by two well-
known techniques—Inverse Laplacian Pyramid Transform and Enhanced Correlation Coefficient
Maximization. Conclusion: Comparatively, the image fusion time is substantially improved for
different image resolutions, whilst ensuring the high quality of the fused image.

Keywords: image fusion; multi-focus; embryo development; data reduction; deep learning; convolu-
tional neural networks; laplacian pyramid; correlation coefficient maximization

1. Introduction

The tracking of live cell activity is getting more and more important task for the
investigation of cell biology. The information about cell activity gives us a valuable
understanding of dynamic cellular phenomena. One of the most challenging tasks-in vitro
fertilization (IVF). The success of IVF procedures is closely linked to many biological and
technical issues. The fertilisation and in vitro culturing of embryos are dependent upon
an environment that should be stable and correct with respect to temperature, air quality,
light, media pH and osmolality. At the end of this procedure, there are several embryos,
which consequently leads to a problem of choosing the best embryo that is likely to give the
greatest success of pregnancy and should be transferred to the uterus. Typically, a healthy
embryo progresses consistently through known development stages, has a low percentage
of cell fragmentation, neither multinucleation nor asymmetric or reverse cleavage are
observed. Embryo selection on Day 2 or 3 is usually based on morphological appearance,
assessing the size of cells in blastomere, morphokinetics and the degree of fragmentation.
For instance, if the number of cells is four, the fragmentation percent is less than 10 percent
and the cells are symmetrical, then the quality of embryo is considered as the best one.
Transferring embryos at the blastocyst stage (from Day 5 to 6) has a high potential for
pregnancy, whilst keeping a low probability of multiple pregnancy [1]. However, to make
a decision manually about the quality of embryo from its visual information is not an
easy task. Therefore, the computer-assisted algorithms could be developed for automated
embryo quality assessment by taking different factors into account.
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The information about cell activity gives us a valuable understanding of dynamic
cellular phenomena but the automatic tracking of cells remains a challenging problem in
computer vision due to several factors, such as the topological changes of cells (rapid cells
deformation), artifacts, noise or blurred parts in the image. Recently deep learning ap-
proaches have been recognised as an impressive tool for solving various biomedical image
processing problems [2,3]. Embryo assessment based on convolutional neural networks
(CNNs) allows to achieving high accuracy results > 0.98 classifying them into two classes:
good- and poor-quality embryos [4,5]. However, even CNN based approaches encounter
difficulties for a multi-class prediction problem, since the embryo quality assessment in
a > 2-cell stage is still challenging [6–8]. Reasons for this may be due to the noise in the
image, highly overlapped cells or poor quality of the image. Image processing algorithms
detect the embryo based on its size, relative darkness compared to the surrounding area
(edge detection), and the diversity of its texture, therefore the results strongly depend on
the embryo images. Moreover, often solutions are made based on a single image, however
it has been noticed that all cells may not be accurately visible in a single image. One of the
reasons is that some cells are focused at a particular distance from the camera, whereas oth-
ers may be defocused and blurred. This may lead to classification errors, especially when
we have 3 and more cells in the image. The cleavage of cells may appear in different 3D
directions during embryo development, and different focal planes (FP) highlight different
details of embryo. The sharp edges of individual embryo cell usually are not clearly visible
in all focal planes. For example, Figure 1 demonstrates that in 8-cell embryo stage only five
cells are clearly visible in FP6 focal plane. Therefore, to identify the exact number of cells,
each image from different focal plane must be analysed separately. Approximately more
than 120 thousand of images are generated, which means that the analysis of such amount
of data may require more than one day for one embryologist, given that each image has to
be individually evaluated.

One of the possible solutions is to capture a sequence of images focused at different
positions and fuse them into a single all-in-focus image. As such, the most direct approach
to solve this problem is to use a multi-focus image fusion. By employing the image fusion
technique, it is possible to combine two or more images which have some defocused and
blurred regions in order to create an all-in-focused image.

Figure 1. Examples of 8-cell embryo captured in FP0, FP2, FP4 and FP6 focal planes.

To automate this process, we contribute to this field by proposing a fast and effective
data reduction approach that is based on the fusion of multi-focus images. The fusion of the
images involves the usage of deep artificial neural network that ensures data reduction up
to seven times and fast fusion time. The data reduction is done by fusing each individual
focal plane images in one highly detailed image, which keeps all-important details from
each focal plane. The focal fusing is acquired using U-Net (autoencoder) architecture of
deep neural networks. The empirical evidence shows that the proposed approach, being
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comparatively fast, is able to preserve the information relevant to cell detection, even the
data amount is reduced up to seven times.

2. Related Works

Recently, many techniques have been developed in the field of image processing [9].
Particularly, all these approaches can be classified into three groups: spatial domain (based
on pixel value), transform domain (based on frequency components), and deep learning
methods. Spatial domain image fusion methods select pixels or regions from the focused
parts in the spatial domain to compose the final image [10,11]. Different transform domain
methods are used for image resolution enhancement through the transformation of the
source image into different scales, which then are composed into one fused image [12].
Commonly used techniques are wavelet, curvelet and contourlet transforms, neighbour
distance, Laplacian pyramid or gradient pyramid [13,14]. Deep learning methods (specif-
ically CNN based approaches) are often incorporated to solve blurring-effect problems
through the ability to learn the focus measure to recognize the focused and defocused pixels
or regions in source images [15,16]; to learn the fusion operation to fuse a pair without
the need for ground truth fused images [17,18]; to learn the direct mapping between the
high-frequency and low-frequency images of the source and fusion images [19], and so
forth. All these methods can be used to obtain the best focus image from a set of captured
microscopic images, but the performance time is the essential factor for the embryo selec-
tion task. Speed of microscopic image processing by focus stacking is highlighted by many
researchers [11,20], but not less relevant are image spectral information, features to be
retrieved or similarity based metrics. For our problem, the latter metrics are important as
far as it can affect the correct embryo identification regarding the number of cells. Existing
algorithms have proven to be effective in obtaining the best-in-focus image; however,
the processing time highly depends on the image objects, visual and color complexity of the
image. Moreover, even super-fast methods demonstrate their superiority within specific
problem domain. For example, two images of 460 × 610 resolution can be fused in 0.16 s
(256 × 256 images per 0.03 s), but the approach is applicable only for merging pairs of
different sources-visible and infrared images with different contrast, brightness and sharp-
ness level [21], and usually fails to determine the perfect boundaries for multiple images.
Moreover, the review of published papers revealed that most investigations have been per-
formed using images of single object or a few well-separated objects. For example, ρ-CNN
approach resulted in average processing time of 7.5 s on four pairs of 640 × 480 image
fusion [15]; a region-based algorithm can process seven images of 640 × 480 resolution
in 2 s [22]. The performance time estimated for 10 images of 320 × 240 resolution is 4.6 s
using a robust sparse representation model with a Laplacian regularization, but the time
jumps up to 31.6 s if the stock is increased to 20 images [23]. For microscopic images,
some techniques allow reducing the processing time to 1.35 s (using seven layers Laplacian
pyramid for 720 × 480 images) [13].

3. Multi-Focus Image Fusion Framework

The detailed explanation on multi-focus acquisition hardware is given in this section.
Then, the fusion method and the architecture of the built U-Net deep neural network
are presented. Two alternatives methods, that is, Inverse Laplacian Pyramid Transform
and Enhanced Correlation Coefficient Maximization, which are used to compare with the
proposed approach, are described as well. The section ends with a brief description of
quantitative metrics used in this study to determine the similarity between a pair of images.

3.1. Hardware Setup for the Acquisition of Multi-Focus Images

The images captured with ESCO MIRI Time-Lapse (TL) incubator are used in this re-
search. TL incubator is a multi-room incubator with a built-in camera and microscope. This
incubator provides high quality time-lapse images of embryo development in a real-time
without a need for external manual inspection under microscope. Ongoing monitoring
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of early-stage embryo provides detailed morphokinetic data throughout embryo devel-
opment, which is not available on routine spot microscopic evaluation. TL incubator
has a monochrome 8bit video camera with the resolution of 1280 × 1024 pixels. Built-in
microscope has magnification of 20× times, using Zeiss optics. The image recordings of
embryo development is executed up to five days with five min intervals in seven different
focal planes. The functional scheme of image acquisition process is shown in the Figure 2.

Figure 2. Image capturing process.

Modern time-lapse incubators, such as ESCO Miri TL, have optical microscopes that
capture images of a human embryo at seven different focal planes. The images of each
focal plane are taken as fast as possible (tn+1 ≤ tn+2 ≤ ... ≤ tn+7) at the different focal
distance, that is, from f d1 to f d7. Each set of focal planes represents 3D object (early-stage
embryo) with 7 images. Therefore, each image taken at different focal plane has different
information and details about early-stage embryo development at different stages of growth
(see Figure 2). Embryologists must evaluate each individual image in the sequence and
decide which embryo has abnormal behavior. It is a complicated task because not only
the embryo can behave in an unpredicted manner, but also because of the massive image
data set which is very difficult to analyse manually. Fully loaded Esco Miri TL6 incubator
can generate up to 120 thousand of images per one IVF cycle (84 (number of individual
embryos) × 120 (h) × 60 (min)/5 (minutes interval)).

3.2. Data Preparation

The experimental study has been carried out using 4000 sets of images that represent
200 individual embryos in different stages, ranging from Zygota up to 8-cell stage. The
entire image data set has been partitioned randomly into two subsets, with 80% for training
and 20% for test. One data set consists of seven images taken at seven different focal planes
and one focus-stacked image, which was generated using Laplacian pyramids [14].

The focus-stacked images were used as target vector in this research study. The data set
was prepared by skilled embryologists. All images in the data set were carefully examined
and labeled. All irrelevant data (images of very low resolution, images without embryo,
or images with occluded embryo with a material that does not belong to embryo) were
excluded. The training and testing data sets were formed by randomly selecting sample
(images) of each cell stage. These images were fed into the proposed model, which has
been trained and tested using NVidia GeForce GTX 1080 GPU processor and implemented
in an open-source machine learning TensorFlow framework (version 1.15).
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3.3. Multi-Focus Image Fusion Approach Using U-Net Architecture

The basic concept behind the proposed method is the use of autoencoder, such as
U-Net, which takes seven focal planes as an input signal and generates one image as an
output IU . The output image is a result of focal stacking that preserves all import details
for each focal plane (see Figure 3).

Figure 3. Functional diagram of multi-focal image fusion method.

U-Net convolution network was developed for biomedical image segmentation [24].
This model is based on encoder-decoder framework with skip connections included. In gen-
eral, the architecture consists of the four phases: convolution with max-pooling, upsam-
pling, concatenation, and again convolution. U-Net structure is organized in two paths:
the down-sampling path (encoder) and the up-sampling (decoder) (see Figure 4). Down-
sampling path captures the contextual information, while up-sampling recovers the spatial
information. The input layer in down-sampling path receives seven images of embryo,
therefore it has a shape of 640 × 640 × 7 (in case of 640 × 640 image). Input layer is
then followed by two 3 × 3 convolution ReLu layers. The next layer is max-pooling of
2 × 2 window size and a stride value of 2.

Down-sampling basically means converting a high resolution image to a low resolu-
tion image. In the experiments, the images of four different resolutions have been tested:
480 × 480, 512 × 512, 640 × 640, and 720 × 720. Therefore, the image before pooling,
for example, the size of 640 × 640 × 64, is mapped into 320 × 320 × 128 image after
max-pooling is applied. The size of the image gradually reduces, while the depth gradually
increases, until the image size is 40 × 40 × 1024. Finally, so called “bottleneck” is reached
in a fifth layer, which is between the down-sampling and up-sampling paths. It is built
from two convolutional layers with 0.5 probability dropout layer.

In up-sampling (right-hand side) path, a low resolution image is converted to a high
resolution image. A skip connection is used to transfer local information by concatenating
feature maps from the down-sampling path with feature maps from the up-sampling
path. After every concatenation two consecutive regular convolution layers are inserted.
This group of layers is repeated starting from group six to group nine. The last layer is a
convolution layer with one filter of size 1 × 1 and the result is a fused 640 × 640 × 1 image
IU . In total, 29 layers are involved in this architecture including 20 convolutional + ReLU
layers, 4 max-pooling layers, 4 up-convolutional layers, and 1 output layer. This model
was compiled with Adam optimizer, with the loss function defined as mean squared error.
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Figure 4. Structure of U-Net architecture (in case of 640 × 640 image).

3.4. Alternative Image Fusion Approaches

In this section, two alternatives to the proposed approach are briefly presented: (1) in-
verse Laplacian Pyramid transform and (2) Enhanced Correlation Coefficient maximization,
which both could be used to implement image fusion.

3.4.1. Inverse Laplacian Pyramid Transform

The basic principle of Laplacian pyramids (LP) based approach is the decomposition of
the raw image into regions (or sub-images) with different spatial resolution [14]. The fused
image is constructed from the sub-images with higher spatial resolution. The Laplacian
pyramid is computed from the Gaussian pyramid that is a multi-scale representation of
image, which is recursively filtered using different low-pass filters. Gaussian pyramids
consist of filtered down sampled images, constructed using separable 1D kernel h and a
down-sampling factor of 2 (in each direction). Over-complete decomposition is based on
difference of low-pass filters, and the image is recursively decomposed into low-pass and
high-pass bands. Each level of LP is the difference between two adjacent low-pass images
of the Gaussian pyramid [I0, I1, ..., IN ], that is,

bk = Ik − EIk+1; (1)

where bk is k level of Laplacian pyramid and EIk+1 is an up-sampled smoothed version of
Ik+1 (so that it will have the same dimension as Ik).

An important property of the Laplacian pyramid is that pyramids completely describe
the original image. Laplacian pyramids represent the image edges at every level; so by
comparing the corresponding pyramid levels of two images, it is possible to generate the
fused image, which merge their respective high-contrast details and keep the fused image
as rich as possible. The basic framework of image fusion based on Laplacian pyramid
transform is shown in Figure 5.
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Figure 5. The framework of fusion method based on Laplacian Pyramid transform.

Figure 5 illustrates fusion of two images only, but the same approach can be applied
for seven images of each focal plane. The fusion of FP0 and FP1 images is done in three
main steps: (1) Laplacian transformation is applied to each input image, (2) corresponding
pyramid levels of FP0 and FP1 images are fused together, and Laplacian pyramid of
fused image is acquired, (3) the fused image is reconstructed based on Laplacian pyramid
inverse transformation.

3.4.2. Enhanced Correlation Coefficient Maximization

Enhanced Correlation Coefficient (ECC) maximization algorithm is a gradient-based
image registration algorithm. This algorithm achieves high sub-pixel accuracy, because of
gradient information. ECC algorithm is invariant to a global illumination variation, be-
cause it is based on zero-mean normalized cross correlation (ZNCC). Basically, ZNCC is a
similarity value between two images I1 and I2 and is given by

ZNCC =
1/NM

[
∑N

i=1 ∑M
j=1 (I1(i, j)− µ1)∑N

i=1 ∑N
j=1 (I2(i, j)− µ2)

]
σ1σ2

; (2)

where N is the number of rows in the image, M is the number columns in the image.
For k = 1, 2, the average value µk and the standard deviation σk of the image are given by

µk =
1

NM

N

∑
i=1

M

∑
j=1

Ik(i, j) (3)

and

σk =

√√√√ 1
NM

N

∑
i=1

M

∑
j=1

(Ik(i, j)− µk)
2. (4)

ECC based fusion of two images is executed throughout two main steps: (1) the
input images are aligned based on 2D geometric transformation, which is estimated based
on ECC algorithm, (2) the aligned images are fused based on the average values of the
corresponding pixels.
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3.5. Image Similarity Metrics

Image similarity metrics are developed to quantitatively assess the similarity of images,
but there is no universal measure which could be used in all applications [25]. Therefore,
some of widely accepted quantitative metrics are used in the study to measure the simi-
larity between two images. In case of application, the similarity metrics were computed
between the images generated by the proposed focus-stacking algorithm and the test
images which were not used for training. Specifically, both test images and training images
were generated using LP approach. Suppose IX and IY denote a pair of these images in
general. Then, the image similarity metrics are briefly presented as follows.

• Root Mean Squared Error (RMSE) is commonly used to estimate the difference be-
tween two images by directly computing the variation in pixel values. The smaller
value of RMSE represents better similarity [26]. Its value is defined as

RMSE =

√√√√ 1
MN

M

∑
i=1

N

∑
j=1

(IX(i, j)− IY(i, j)2; (5)

where M and N is the width and the height of image.
• Spectral Angle Mapper (SAM) determines the spectral similarity between two spectra

by calculating the angle between the spectra and treating them as vectors in a space
with dimensionality equal to the number of bands. Small angles between the two
spectrums indicate high similarity, where the ideal value of zero indicates the best
spectral quality [27]. It is calculated using the following formula

SAM = acos

 ∑L
i=1uivi√

∑L
i=1u2

i

√
∑L

i=1v2
i

; (6)

where L is the number of bands, u and v are two adjacent spectra.
• Peak Signal-to-Noise Ratio (PSNR) is calculated based on RMSE, taking into account

maximum possible pixel value of the image. For 8-bit representation, acceptable
values for wireless transmission quality loss are considered to be around 20 dB to
25 dB, while in a lossy image range between 30 and 50 dB, where higher is better [28].
The value of PSNR is obtained using

PSNR = 20 log10
max

RMSE
; (7)

where max is the maximum possible value a pixel can take. The value of max = 255
is set when the pixels are represented using 8 bits.

• Universal Quality Index (UQI) represents brightness distortion, contrast distortion
and correlation difference between two images. The best value is 1 if the images are
equal [29]. The mathematical form of UQI is

UQI =
4σIX IY µIX µIY(

σ2
IX
+ σ2

IY

)(
µ2

IX
+ µ2

IY

) ; (8)

where µI is the mean value of the image, σI is the standard deviation the image,
and σIX IY is the covariance between two images IX and IY.

• Structural Similarity Index Method (SSIM) determines the local patterns of pixel
intensities between two images taking into account three estimates of luminance,
contrast, and structure [30]. The value ranges between −1 and 1, where the ideal
value is 1. The value of SSIM is given by
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SSIM =

(
2µIX µIY + C1

)(
2σIX IY + C2

)(
µ2

IX
+ µ2

IY
+ C1

)(
σ2

IX
+ σ2

IY
+ C2

) ; (9)

where µI is the mean value of the image, σI is the standard deviation of image, σIX IY

is the covariance between two images, while C1 and C2 are constants. In this study,
the values C1 = 0.01 and C2 = 0.03 have been chosen by default.

• Multi-Scale Structural Similarity Index Method (MS-SSIM), which is more advanced
form of SSIM, determines the quality based in the terms of image luminance, contrast
and structure at multiple scales. The ideal value is 1. The computations are typically
performed in a sliding N × N (by default 11 × 11) Gaussian-weighted window [31].

4. Experimental Results

The proposed multi-focus image fusion approach using U-Net architecture has been
tested using seven focal stack images of embryo captured by adjusting the camera at differ-
ent positions. In Figure 6, seven images of 4-cell embryo are depicted for the demonstration
purposes. It can be observed that all seven images capture different focus, consequently the
number of visible cells varies from three to four (see Figure 6a–g). Accordingly, the output
image IU combines the relevant information from all images into a single fused image IU
(Figure 6h) depicting four cells.

Figure 6. A fused 4-cell embryo image (h) generated from seven focal stack images (a–g).

All three approaches have been tested on the same image pairs including 1-cell, 2-cell,
4-cell and 8-cell embryos (see Figure 7). No obvious difference is seen when looking at the
fused images generated by U-Net approach and LP method. Both these methods provide
images with sharp edges of cells, clearly visible fragmentation and surrounding arte-
facts. Comparatively, the fused images generated by ECC differ significantly, with strong
blurriness visible relative to the previous set of images.

To validate the proposed approach, the quantitative metrics (see Section 3.5) are
computed to assess the similarity between two images, that is, image ILP generated by
inverse Laplacian pyramid transform (see Section 3.4.1) and image IU generated using the
proposed approach employing deep learning technique—U-Net convolutional network
architecture. Based on these metrics, the higher similarity between images is achieved
when (a) RMSE and SAM close to zero; (b) PSNR obtains higher value; (c) UQi, SSIM,
and MS-SSIM approaches to one. In the experiment, the mean values of the aforementioned
metrics and their confidence intervals for a considered sample are estimated and depicted
in Figure 8.
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Figure 7. Fused embryo images using U-Net, Laplacian pyramids (LP) and Enhanced Correlation Coefficient (ECC)
approaches: (a) one cell, (b) two cells, (c) four cells, (d) eight cells.

Figure 8. Similarity metrics against cell number for different image resolutions.
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From Figure 8, one can observe that images of higher resolution are quantified with
better similarity. In most cases, the metrics are substantially improved when the image
resolution is higher, such as 720 × 720 pixels. Another important observation is that the
metrics seemed to be invariant to cell number in the image, especially when the image
resolution is high. However, for low resolution images the metrics tend to vary for lower
number of cells. Furthermore, the estimated confidence intervals for a mean are quite
narrow, which implies the precision of a particular estimate, allowing us to be confident
about the experimental results.

Next important question to be addressed in this study—the processing time of the
proposed approach. In particular, Figure 9 shows the distribution of processing times for
different image resolutions.

480 × 480

512 × 512

640 × 640

720 × 720

0.05 0.10 0.15 0.20 0.25
Seconds

Resolution

480 × 480

512 × 512

640 × 640

720 × 720

Figure 9. Processing times of the proposed approach for different image resolutions.

As it was expected, higher image resolution requires more processing time (see Figure 9).
Comparatively, the time estimated for the highest resolution, on average, is nearly three
times larger than the time estimated for the lowest resolution. On the other hand, the mean
values of processing times are less than 165 ms, which is really fast in comparison to
the published results (see Section 2), especially also having in mind that a deep learning
technique has been employed.

5. Discussion

The automation of early-stage embryo detection not only requires to be precise but
also fast, having in mind that the algorithm should process a large number of image files
of different qualities in a reasonable amount of time. Moreover, the embryo detection is
complicated by its topological changes during the development. Therefore, in this section
we additionally explore the computational time required for image fusion. In particular,
we compare the fusion time of the proposed multi-focus image fusion approach using
U-Net architecture with alternative approaches presented in Section 3.4. Notably, all three
approaches have been fed with the same image set.

As can be seen from Figure 10, the average running times required for image fusion
processing using are comparatively similar for Laplacian pyramid transform and ECC
method. However, ECC method performs faster on average 10%. In fact, these observations
reveal that the proposed multi-focus image fusion approach using U-Net architecture is
super fast since the processing time has been substantially improved despite the use of
deep learning technique, which is typically time consuming. For demonstration purposes,
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Figure 11 visually compares the output from the proposed approach and its two alternatives
for 2-cell and 4-cell embryos.

Figure 10. Comparison of fusion times using the proposed multi-focus image fusion approach using
U-Net architecture, and its two alternatives such as Laplacian pyramid transform and ECC method
for different resolution images.

Figure 11. Comparison of the fused images using the proposed multi-focus image fusion approach
using U-Net architecture, LP transform and ECC method for 2-cell and 4-cell embryos.

From Figure 11, it can be observed that ECC approach resulted in a blurry image fading
out the contours of the cell. Comparatively, the fused images based on Laplacian pyramid
transform have the highest contrast and brightness level, while the images obtained using
the proposed approach have relatively sharper contours with blurred parts observed in
the image, from a subjective evaluation of view point. This is the price we pay for the
fast image fusion processing time, which is not so high having in mind that the estimates
of similarity metrics (see Section 4) have confirmed the strong similarity, especially for
high resolution (720 × 720) images. The narrow application area is the biggest limitation
of our fusion method presented in this paper. Notably, the proposed approach is limited
by the dedicated training dataset, which consists of entirely early-stage embryo images.
Therefore, the presented approach can be applied to other types of images after adaptation
only. It should be also noted that the direct comparison of methods mentioned in SOTA is
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complicated due the fact that already published papers on deep structures of the neural
networks include mostly two images as inputs and generate one fused image. We propose
U-Net based algorithm, which generates one focus-stacked image from seven images taken
at seven different focal planes (one input per image). The major modification of SOTA
structures of deep neural networks is needed in order to provide the adequate comparison.
Therefore, the method developed in the current paper is compared with those that can
work up to seven images.

Additionally, we demonstrate why the images of all seven focal planes are important
for early-stage embryo image enhancement. The images of 4-cell embryo and 7-cell embryo
are shown in Figure 12. It is clearly visible that cells captured in FP1 image or in FP7 image
have fuzzy edges and unclear boundaries Figure 12A,B. The focus-stacking algorithm
presented in the paper preserves individual properties from all FP images and presents
them in one fused image (see Figure 12C), where all cells are surrounded by clear and
sharp boundaries.

Figure 12. (A) early-stage embryo taken at the first focal plane (FP1), (B) early-stage embryo taken at the seventh focal plane
(FP7), (C) fused image using the proposed algorithm (FS).

The proposed focus-stacking algorithm reconstructs the embryo image correctly with-
out losing any information. The future work will include more detailed investigation of
reconstruction accuracy, which involves manual evaluation of fused images by several
embryologists. Our primary research with two experienced embryologists has shown that
the whole development of single early-stage embryo has been evaluated on average three
times faster analyzing the fused image instead of seven focal planes separately.

6. Conclusions

The present study has addressed the challenges that are known in order to automate
early-stage human embryo detection in time-lapse microscopy image sequences. The com-
plexity comes from the data processing, which is due to cell overlapping, background
clutters, inhomogeneous intensities, and image artifacts. Moreover, the algorithm is also
challenged by a large number of images, which needs to be processed relatively quickly.
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Therefore, we proposed a new approach for data reduction and fast fusion by employ-
ing deep neural networks, specifically U-Net architecture (autoencoder). In the study, this
approach was verified in different ways. First, the results of this proposed framework were
compared with images generated by inverse Laplacian pyramid transform and Enhanced
Correlation Coefficient Maximization. Based on the selected similarity metrics, it was
concluded that the differences between images tend to diminish to a minimum if a higher
resolution image was fed to the algorithm. Secondly, by exploring the similarity metrics
against the cell number, it was observed that the proposed approach becomes invariant
to the cell number if the image of higher resolution was considered. This implies the
consistent performance of this approach despite the certain stage of embryo development.
Finally, it was determined that the mean values of image fusion process using the proposed
approach for different image resolution are substantially reduced comparing them with
times achieved by two alternatives approaches implemented on the same data sample.
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CNNs Convolutional Neural Networks
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SAM Spectral Angle Mapper
SSIM Structural Similarity Index Method
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UQI Universal Quality Index
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