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Abstract: Highly sensitive silver (Ag) modified zinc oxide (ZnO) humidity sensors were pre-
pared by hydrothermal synthesis and the mechanism was studied. Experimental results show
that Ag-modified ZnO can effectively enhance the performance of a humidity sensor. Large number
of oxygen vacancies and many active sites are generated on the surface when molar ratio of Ag+ to
Zn2+ is 1:100, which can accelerate the decomposition of water molecules on surface of the mate-
rial, thereby improving the response of humidity sensor. Moreover, the linearity of ZnO humidity
sensor is greatly improved by silver nanoparticles. Compared with previously reported ZnO-based
humidity sensors, Ag/ZnO humidity sensors have a better response (151,700%), good linearity, low
hysteresis (3%), and short response/recovery time (36/6 s). At the same time, it is found that the
light had little effect on the performance of Ag/ZnO. Therefore, this kind of ZnO sensor with stable
performance and excellent performance is expected to be used in the detection of relative humidity
in conventional environments.

Keywords: Ag-modified ZnO; humidity sensor; response; light

1. Introduction

Recently, humidity sensors have been developed rapidly and have attracted much
attention in many fields such as agriculture, food safety, industrial production, medical
treatment and so on [1–3]. Among the many sensor types, resistive sensors are the most
common sensitive components. The applicability is greatly expanded due to its simple
manufacturing, high detection sensitivity, and low production cost. A resistive humidity
sensor is obtained by covering a substrate with a film made of a humidity-sensitive material.
The resistance of the component will change when a water molecule is adsorbed onto
the sensitive film under different relative humidity environments, so as to achieve the
purpose of relative humidity detection [4,5]. In terms of the structure of the resistance
humidity sensor, the selection of sensitive materials is still the key to improving the
performance of the relative humidity sensor. Recently, metal oxides, polymers, and carbon
materials are often used in the design and manufacture of humidity sensors. Among
many materials, SnO2 [6,7], TiO2 [8,9], WO3 [10,11], ZnO [12,13] and other metal oxide
semiconductor materials [14–16] are widely used in the preparation of sensors because
of their simple preparation process, low price, wide source of raw materials and good
biological compatibility. Among them, ZnO nanostructures have become a potential
sensing material due to their high activity and large specific surface area [17,18], which has
attracted widespread attention. Furthermore, ZnO nanostructures exhibit morphologically
dependent sensing characteristics [19,20], so the morphological structure also plays a key
role in the performance of ZnO sensors.

ZnO as a sensitive material shows poor linearity and low sensitivity for relative humid-
ity detection, which limits its application as a humidity sensor. With the in-depth research
requiring the sensitivity of the humidity sensor, the linearity stability needs to be further
improved. To improve the responsiveness of ZnO humidity sensors, noble metal doping
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(Au, Ag, Pd and Pt) is a frequently used method [21,22]. Silver (Ag) is one of the most
conductive materials, and its low cost and good catalytic performance have been widely
used in sensors. The introduction of modified silver nanoparticles into ZnO can control the
surface morphology and crystal structure of ZnO, which is expected to improve the per-
formance of humidity sensors. Moreover, after Ag is introduced into ZnO, the adsorption
sites on the surface of the material will increase, and the number of surface defects will
increase. On the one hand, large adsorption sites and high surface defects can make water
molecules adsorbed on surface of the material decompose quickly, and hence improves
the response speed of the sensor. On the other hand, silver particles have good electrical
conductivity, which is beneficial to improve linearity of the sensor, so Ag/ZnO composite
material can provide a new idea for the preparation of high-performance humidity sensors.

In this work, we successfully prepared an Ag/ZnO humidity sensor using the hy-
drothermal method, and response of the sensor under different light conditions was studied.
Experimental results show that an Ag/ZnO humidity sensor exhibits high sensitivity, low
hysteresis and short response/recovery time when a molar ratio of Ag+ to Zn2+ is 1:100.
This is mainly because in this case there are a large number of oxygen vacancies and active
sites on the surface of ZnO. Under the action of oxygen vacancies and active sites, the
water molecules on the surface of the Ag/ZnO-2 humidity sensor are rapidly decomposed,
thereby increasing response of the humidity sensor. Compared with pure ZnO, such a
relative humidity sensor based on modified silver has better linearity.

2. Experimental
2.1. Experimental Materials and Test Equipment

The main materials and reagents used in this experiment were zinc acetate dihydrate
(Zn (CH3COOH)2·2H2O), ethanol (C2H5OH), ethanolamine (MEA) and silver nitrate
hexahydrate (AgNO3·6H2O). All the above materials were purchased from Sangon Biotech
(Shanghai, China, www.sangon.com). The chemical reagents used were of analytical grade,
and deionized water (DI) was used throughout the experiments. Morphology of the sample
was tested by a field emission scanning electron microscope (FESEM (Hitachi, Japan)).
Crystal structure of the material was tested by an X-ray powder diffractometer XRD (Bruker,
Karlsruhe, Germany). Absorption spectrum was tested by UV-Vis (PerkinElmer, Waltham,
MA, USA) spectrophotometer. Elemental composition of the sample was analyzed by
X-ray photoelectron spectroscopy (XPS) (Thermo Fisher Scientific Corporation, Waltham,
MA, USA). The electrochemical characteristics of the humidity sensor were tested on the
Zennium workstation (CIMPS-2, Zahner, Kronach, Germany).

2.2. Preparation of ZnO Microparticles

All reagents were of analytical grade without further purification. The specific ex-
perimental details are described as follows. Zinc acetate dihydrate (0.230 g) and sodium
hydroxide (0.364 g) were mixed together in 25 mL of deionized water and 10 mL of ethanol
was magnetically stirred at 65 ◦C for 10 min to form a transparent solution. 1 mL of MEA
was added dropwise to the above mixed solution and stirred for 2 h. Finally, the gel was
dried in a 60 ◦C drying oven for 2 h, and the annealing process was carried out in a tube
furnace at 600 ◦C for 2 h under nitrogen protection.

2.3. Preparation of Ag-doped ZnO Microparticles (Ag/ZnO)

In total, 2.3 g of Zn (CH3COOH)2·2H2O and AgNO3 with different molar ratios (molar
ratio of Ag+ to Zn2+ is 1:10, 1:100, 1:1000) were dissolved into a mixed solution of 25 mL of
deionized water and 10 mL of ethanol, heated up to 65 ◦C with magnetically stirring for
10 min, 1 mL of ethanolamine (MEA) was added and magnetically stirred for 2 h to obtain
a uniform white sol, which was left to stand at room temperature for 48 h. Then, the gel
was dried in a 60 ◦C drying oven for 2 h. Finally, chemical vapor deposition (CVD) was
used to anneal for 2 h at 600 ◦C under nitrogen protection in a tube furnace. We named the
above samples Ag/ZnO-1, Ag/ZnO-2 and Ag/ZnO-3, respectively.

www.sangon.com
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2.4. Relative Humidity Sensitive Characteristics Test

During the measurement of humidity characteristics, different humidity environments
were controlled by saturated salt solutions of LiCl, MgCl2, Mg(NO3)2, NaCl, KCl and
KNO3, corresponding to relative humidity of 11%, 33%, 54%, 75%, 85% and 95% [19].
In conventional humidity measurement, humidity usually refers to relative humidity,
which is a generally accepted method of measuring humidity, and so in this article, relative
humidity is used for measurement. Sprayed ZnO, Ag/ZnO and water was mixed on the
Ag-Pd interdigital electrode (IDE) and then put it in a 60 ◦C constant temperature oven to
dry for 1 h to form a humidity sensor. Throughout the measurement processes, the test
voltage was set to be AC 1V, measurement frequency was 40 Hz to 100 kHz, and the whole
test process was carried out at room temperature (25 ◦C). The test details of the humidity
sensor are shown in Figure 1.
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Figure 1. The testing process of the Ag/ZnO humidity sensor.

3. Results and Discussion

Figure 2 shows XRD patterns of ZnO, Ag/ZnO-1, Ag/ZnO-2 and Ag/ZnO-3, which
can be used to analyze crystal structures of all the samples. The diffraction peaks of all
samples at 2θ of 31.8◦, 34.2◦, 36.3◦, 47.5◦, 56.7◦, 62.7◦, 66.4◦, 68.1◦ and 69.1◦ are similar to the
ones of typical hexagonal wurtzite structures consistent (JCPDS No. 36–1451). Compared
with ZnO, the weaker diffraction peaks corresponding to (111), (200), and (311) crystal
planes in Ag/ZnO-1, Ag/ZnO-2 and Ag/ZnO-3 belong to Ag crystals of face centered
cubic (fcc) structure. The appearance of (111), (200), and (311) crystal plane diffraction
peaks indicate the successful recombination of Ag and ZnO. Compared with Ag/ZnO-1,
the intensity of diffraction peak of Ag in Ag/ZnO-2 and Ag/ZnO-3 gradually becomes
weaker, which is mainly due to the gradually decreasing Ag content in the sample.
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Figure 3 shows the scanning electron microscope images of ZnO and Ag/ZnO. In
Figure 3a,b, ZnO and Ag/ZnO-1 exhibit irregular microparticles with a diameter of about
50–70 nm and 130–160 nm, and these irregular microparticles are agglomerated. Ag/ZnO-2
are irregular microparticles with a diameter of about 70–90 nm, and the particles are evenly
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distributed and dispersed without agglomeration (Figure 3c). The structure of Ag/ZnO-2
is evenly distributed and more dispersed. Compared with the other three structures, it
can provide more adsorption sites for water molecules, making more water molecules
adsorb to the surface of the material. This structure plays a vital role in the humidity sensor.
In Figure 3d, Ag/ZnO-3 is also of irregular particles with a diameter of about 60–70 nm,
and the particles are slightly agglomerated. In general, compared with the other three
structures, Ag/ZnO-2 may show better humidity sensing performance.
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Figure 3. SEM of (a) ZnO and (b) Ag/ZnO-1, (c) Ag/ZnO-2 and (d) Ag/ZnO-3.

In Figure 4, the optical absorption characteristics of all the samples are given by UV-vis
absorption spectrum. In the ultraviolet region as shown in Figure 4a, the strong absorptions
for all of ZnO, Ag/ZnO-1, Ag/ZnO-2 and Ag/ZnO-3 indicate that all the samples are wide
bandgap direct semiconductors. The strong absorption peak located at 350 nm belongs
to intrinsic absorption of ZnO. Because ZnO has strong absorption in ultraviolet light
and weak absorption in visible light, there is a sharp decrease at 390 nm. Compared
with ZnO, there is blue shift for all the absorption peaks of Ag/ZnO-1, Ag/ZnO-2 and
Ag/ZnO-3, which indicates that the band gap of the samples gradually becomes smaller.
The absorption peaks of Ag/ZnO-1, Ag/ZnO-2 and Ag/ZnO-3 at 480 nm are gradually
weakened with the decreasing of Ag content. Figure 4b shows the band gaps of ZnO,
Ag/ZnO-1, Ag/ZnO-2 and Ag/ZnO-3 calculated by the Kubelka–Munk formula (αhν)2

= A (hν − Eg), where α is the absorption coefficient, hν is the photon energy, Eg is the
band gap energy, and A is a constant. The band gaps of ZnO, Ag/ZnO-1, Ag/ZnO-2 and
Ag/ZnO-3 are 3.00 eV, 1.94 eV, 2.80 eV and 2.92 eV, respectively. With the increase of the
doped Ag content, the forbidden band width of the sample gradually decreases, which
is consistent with the analysis result as in Figure 4a. The lower the band gap energy of
the material, the lower the energy it should generate, which is beneficial to improving the
conductivity of the humidity sensor.
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In order to further determine the state of oxygen on the material surface, the O 1s peak
XPS spectra of ZnO and Ag/ZnO are fitted in Figure 5. The O 1s of all samples are fitted to
three peaks, namely O1, O2 and O3. The O1 peak at 529.3 eV is the O2− bonded to Zn2+,
the O2 peak at 530.2 eV is the defect oxygen on the zinc oxide surface, and the O3 peak at
531.2 eV is some adsorbed oxygen on the zinc oxide surface. After calculation, it was found
that the defect oxygen area ratios of the four samples are 27.8%, 24.1%, 38.9% and 25.6%,
respectively. It can be seen that the number of oxygen vacancies on the Ag/ZnO-2 surface
is the largest. It is well known that oxygen vacancies can accelerate the decomposition of
water molecules into conductive ions [23,24]. For Ag/ZnO-2, recombination of Ag leads to
the most oxygen vacancies to dissociate water molecules adsorbed on the surface of zinc
oxide to form H3O+ conductive ions, hence improving humidity sensitivity.
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Figure 6a shows the response curves of ZnO, Ag/ZnO-1, Ag/ZnO-2 and Ag/ZnO-3.
We found that the performance of humidity sensor became worse with the increase of Ag+

concentration. The humidity sensor shows a good response and the resistance changes
more than three orders of magnitude when the molar ratio of Ag+: Zn2+ is 0.01 (Ag/ZnO-2).
It is reported that R11%−R95%

R95%
× 100% is defined as the response of the sensor [14,25], so

it can be calculated that the responses of ZnO, Ag/ZnO-1, Ag/ZnO-2 and Ag/ZnO-3
are 64,300%, 1510%, 151,700% and 10,200%, respectively. Compared with the rGO/ZnO
nanorods/Cu humidity sensor (97.79%) reported by Kuntal et al. and the Er:ZnO humidity
sensor (impedance change of about three orders of magnitude) reported by Zhang et al., the
Ag/ZnO-2 humidity sensor showed a better response [26,27]. The response of Ag/ZnO-2
is probably due to the large amount of oxygen vacancy on surface of ZnO when molar ratio
of Ag+: Zn2+ is 0.01. As an active site, oxygen vacancy can accelerate the decomposition
of water molecules adsorbed on surface of ZnO, which makes more water molecules
decompose into conductive ions, thus improving the response of Ag/ZnO-2 humidity
sensor. In addition, the uniformly dispersed sheet structure of Ag/ZnO-2 can also be
used for more water molecules to be adsorbed, which increases the amount of water
absorbed on surface of the material and can also enhance the performance of the humidity
sensor. Compared with Ag/ZnO-2, ZnO, Ag/ZnO-1 and Ag/ZnO-3 have poorer response.
On one hand, there are not enough oxygen vacancies on the surface, which limits the
decomposition of water molecules. On the other hand, ZnO, Ag/ZnO-1 and Ag/ZnO-3
particles are agglomerated, resulting in relatively few adsorbed water molecules, which in
turn affects humidity sensor response.
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In order to determine the optimal test frequency of the Ag/ZnO-3 humidity sensor,
we tested the response of Ag/ZnO-1 at 40 Hz, 100 Hz, 1 kHz, 10 kHz and 100 kHz under
different relative humidity, and the test results are shown in Figure 6b. Although the
response of Ag/ZnO-2 humidity sensor is high at 40 Hz, the overall linearity of the sensor
is poor, so 40 Hz cannot be selected as the best test frequency. At 1 kHz, 10 kHz and 100 kHz,
the response and linearity of the sensor are poor because the water molecules cannot be
polarized at high frequencies, and the polarization of water molecules adsorbed by the
sensor cannot keep up with the direction of electric field change in the high-frequency
region. Only when the test frequency is 100 Hz, Ag/ZnO-3 humidity sensor shows high
response and good linearity. Therefore, we choose 100 Hz as the best test frequency, and all
subsequent tests are conducted at this frequency.

The hysteresis, response/recovery time, and repeatability of the humidity sensor
are also the main factors that determine the performance of the sensor. Figure 7a shows
the hysteresis test of Ag/ZnO-2 humidity sensor in the range of 11% RH to 95% RH.
When the environmental RH changes from 11% to 95% RH, the process of the sensor
continuously adsorbing water molecules is an adsorption process. Conversely, when the
RH is changed from 95% to 11% RH, the process by which the sensor continuously separates
from water molecules is a desorption process. It can be observed that the resistance value
of adsorption process is almost higher than that of desorption process in whole detection
range, which is mainly caused by the endothermic desorption process of water molecules
on Ag/ZnO-2 surface is slower than the exothermic adsorption process. The hysteresis
error can be calculated according to γH = ±∆Hmax/2FFS, where ∆Hmax is the maximum
hysteresis value and FFS is the full range output of the sensor [28]. It can be calculated that
the maximum hysteresis error of the Ag/ZnO humidity sensor is 3%. Compared with
previously reported ZnO humidity sensor, the Ag/ZnO-2 humidity sensor also has a low
hysteresis error. Ag/ZnO-2 humidity sensor response/recovery time and repeatability test
is shown in Figure 7b. It is well known that the time required for the sensor response or
recovery process resistance to reach 90% is defined as response or recovery [29]. Response
time and recovery time of Ag/ZnO-2 humidity sensor are 36 s and 6 s, respectively.
The faster response and recovery speed of Ag/ZnO-2 is mainly due to the abundant
oxygen vacancies on its surface, which causes a large number of water molecules to be
decomposed quickly. In addition, the distribution of Ag/ZnO-2 is uniform, and the absence
of agglomeration will also cause water molecules to quickly detach from the surface of the
material. We have continuously tested the adsorption and analysis process of Ag/ZnO-2
humidity sensor in two cycles, and we can see that adsorption and desorption process of
the sensor in the two cycles are almost the same, which shows that Ag/ZnO-2 humidity
sensor has good repeatability. All the above properties show that Ag/ZnO-2 humidity
sensor has the potential to develop a high-performance humidity sensor, and also provides
a new idea for the preparation of a new humidity sensor.
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Figure 8 shows the resistance response curve under different lights. This section
studies the effects of light with different wavelength on the resistance of Ag/ZnO-2 and
judges the sensing characteristics of the humidity sensor from the situation of the resistance
response curve, taking into account that the use of different illuminations can make the
surface of the sample obtain a certain amount of energy, and that a small amount of
photoelectrons may be generated on the surface of the sample, thereby increasing the
conductivity of ZnO. In the experiments, visible (5 W), red (5 W, 546 nm), blue (5 W,
465 nm), and ultraviolet light (5 W, 365 nm) were used to illuminate Ag/ZnO-2 sensors at
different relative humidity. We found that in the absence of light, the sensors showed the
best response and the best linearity, reflecting that the light affects the performance of the
Ag/ZnO-2 humidity sensor, and in the absence of lighting, the synthesis cost of the sensor
can undoubtedly be reduced.
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The humidity sensing mechanism of Ag/ZnO-2 was studied by complex impedance
spectra, as show in Figure 9. At low humidity (11%, 33%, 54% RH), complex impedance
spectrum approaches a semicircular shape. In this process, a small amount of water
molecules is adsorbed on Ag/ZnO surface in forms of physical and chemical adsorption.
The rich oxygen vacancies on the Ag/ZnO-2 surface can accelerate the dissociation of
adsorbed water molecules into OH− and H+. At this time, a small amount of H3O+ will be
formed, and the protons will conduct jump on the Ag/ZnO surface. When the humidity
reaches 75%, 85% and 95% RH, complex impedance spectrum becomes smaller in the
semicircle in low frequency region and a straight line gradually appears at the tail. At this
time, when a large amount of water molecules is adsorbed on Ag/ZnO-2 surface in the
form of chemisorption, a continuous water film is formed. With the increasing number
of water molecules and the formation of an ion transport mechanism, H3O+ continues to
migrate onto the surface of the material, enhancing conductivity of the material, thereby
improving the performance of the sensor.
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4. Conclusions

An Ag modified ZnO humidity sensor was successfully prepared, and effects of dif-
ferent Ag concentration on performance of the humidity sensor was studied. Experimental
results show that when the molar ratio of Ag+: Zn2+ in the sample is 1:100, the uniformly
distributed Ag particles on ZnO make ZnO have abundant active sites on the surface and
more oxygen vacancies, which can capture more water molecules and accelerate the de-
composition to form conductive ions, thereby increasing the humidity of Ag/ZnO-2 sensor
performance. In the range of relative humidity from 11% to 95%, Ag/ZnO humidity sensor
shows better response (151,800%), smaller lag error (3%), faster response and recovery time
(36/6 s) and better repeatability. This research has laid the foundation for the development
of high-performance metal semiconductor humidity sensors, which are expected to be used
for efficient measurement of moisture in the environment.
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