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Abstract: This paper presents a novel decentralized multi-robot collision avoidance method with
deep reinforcement learning, which is not only suitable for the large-scale grid map workspace
multi-robot system, but also directly processes Lidar signals instead of communicating between the
robots. According to the particularity of the workspace, we handcrafted a reward function, which
considers both the collision avoidance among the robots and as little as possible change of direction
of the robots during driving. Using Double Deep Q-Network (DDQN), the policy was trained in the
simulation grid map workspace. By designing experiments, we demonstrated that the learned policy
can guide the robot well to effectively travel from the initial position to the goal position in the grid
map workspace and to avoid collisions with others while driving.

Keywords: robot learning; deep reinforcement learning; grid map workspace

1. Introduction

Multi-robot navigation is widely used in multi-robot search and rescue, autonomous
warehouses, intelligent robot systems for sorting, navigation through human crowds, and
other fields. With the development of robotics and artificial intelligence, researchers [1–3]
have studied how to apply advanced algorithms in artificial intelligence to multi-robot
navigation. The core part of multi-robot navigation is to make the robot travel from the
initial position to the target position efficiently, avoiding collision with others [4].

Researchers [1–8] have studied the decentralized multi-robot collision avoidance algo-
rithm and some fruitful results have been achieved, such as collision avoidance with deep
reinforcement learning (CADRL) [1], socially aware CADRL (SA-CADRL) [2], reciprocal
velocity obstacle (RVO) [5]. The methods mentioned above were designed for cluttered
workspaces. In all positions in an obstacle-free environment, the robot can move in any
direction. In the real world, there are scenes where multiple robots work in a grid map
workspace, such as autonomous warehouses and sorting robot systems (Figure 1a). How-
ever, the grid map workspace has constraints on robot behavior (Figure 2). When the robot
is in the state shown in Figure 2a, it can only move forward and backward. When it is in
the state shown in Figure 2b, the robot can only move forward, backward, walk left, walk
right, and stop. When the robot is in the state shown in Figure 2c, it can only walk left and
right. Therefore, the decentralized method mentioned above is not suitable for the grid
map workspace.

On the contrary, centralized methods [9–13] have been explored by some researchers,
assuming that a central server fully understands the workspace information and the
environmental perception information around each controlled robot. Using a planning
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algorithm, the central server produces a path that allows the robot to avoid collisions
with others. Most of these methods are applicable to grid map workspaces. However,
these methods heavily rely on the communication network between the central server
and the robot [8]. Moreover, they can be computationally prohibitive for large multi-
robot systems [14]. If the central server and/or the communication network crashes, the
multi-robot system will be paralyzed.
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We developed a novel decentralized multi-robot collision avoidance method with deep
reinforcement learning, which is not only suitable for the large-scale grid map workspace
multi-robot system, but also directly processes Lidar signals instead of communicating
between the robots.

The related work of multi-robot collision avoidance policy is outlined in Section 2.
Section 3 shows the mathematical framework of the problem. The reinforcement learning
framework is described in detail in Section 4. The process of designing experiments and
verifying results is explained in Section 5. Finally, we provide the conclusion in Section 6.

2. Related Work

Many researchers have conducted extensive research on the problem of multi-robot
motion planning, achieving some good results. Some of the work related to this prob-
lem has been reviewed in paper [15,16]. The research can be classified into centralized
methods [17–19] and decentralized methods [20–23]. Assuming that information about the
position, velocity, and target position of all agents can be obtained, centralized methods
treat the motion planning problem as an optimization problem. The former approach
includes four categories: A* search expansion [24,25], increasing cost tree search [26],
conflict-based search [27,28], and protocol-based [9]. The goal of optimization is to guide
all agents to their target positions, while avoiding collisions with one another and minimiz-

http://www.sd.chinanews.com/2/2018/0606/59838.html
http://www.sd.chinanews.com/2/2018/0606/59838.html
https://baijiahao.baidu.com/s?id=1637276211094569677&wfr=spider&for=pc
https://baijiahao.baidu.com/s?id=1637276211094569677&wfr=spider&for=pc


Sensors 2021, 21, 841 3 of 15

ing goals such as energy or time. Augugliaro et al. [18] regarded the problem of multi-robot
motion planning as a non-convex optimization problem, which can be solved using contin-
uous convex programming. Based on linear programming, a centralized algorithm was
proposed by Yu et al. in [9]. The purpose was to minimize the arrival time of the last agent,
the maximum (single-agent) traveled distance, the total arrival time, and the total distance.
Tang et al. [17] divided the problem into two stages to solve it. First, a geometric algorithm
was used to find the piecewise linear trajectories of each robot, and then these trajectories
were refined into high-order piecewise polynomials. However, for solving a large-scale
optimization problem, computational complexity of centralized methods is inevitable as
the number of agents increases. In addition, centralized methods rely heavily on the com-
munication between the central server and the agent. Before this, many researchers have
conducted a lot of work on decentralized algorithms and have achieved some good results.
The decentralized methods are divided into learning-based methods [1–4] and traditional
methods [5,20,29–31]. Traditional methods were discussed in paper [15], such as reciprocal
velocity obstacle (RVO) [5] and optimal reciprocal collision avoidance (ORCA) [20]. As-
suming that each agent has perfect knowledge about its neighbor’s shape, position, and
velocity, the agent uses the optimal reciprocal collision avoidance (ORCA) [20] algorithm
to calculate a velocity to keep it safe over the next time horizon.

The learning-based method, which benefits from advances in machine learning
technology, is considered to be a promising direction to solve the problem. Some re-
searchers [1,2,8] have formulated the multi-agent collision avoidance problem as a se-
quential decision-making problem in the reinforcement learning framework. The CADRL
algorithm was proposed by Chen et al. in [1] based on a deep reinforcement learning
framework, which offloads expensive real-time motion planning calculations to the offline
training process. Long et al. in [4] developed a deep reinforcement learning framework. By
training this framework, a decentralized sensor-level collision avoidance network can be
obtained. The steering command of each agent can be calculated by feeding the raw Lidar
sensor data to the network. Everett et al. in [8] proposed the GA3C-CADRL (GPU/CPU
Asynchronous Advantage Actor-Critic for Collision Avoidance with Deep reinforcement
learning) algorithm, which showed good performance for solving path planning problems.
However, the decentralized methods mentioned above are only applicable to cluttered
workspaces and cannot be used in grid map workspaces. We developed a novel deep
reinforcement learning framework that can learn a decentralized collision avoidance policy
in the grid map workspace. It was proved by experiments that agents can easily avoid
collisions with others and can effectively complete tasks in the grid map workspace.

3. Problem Formulation

This section introduces the mathematical framework for collision avoidance among
robots. All robots were modeled as squares with side length D working in a grid workspace.
The problem could be treated as N robots moving in the grid map workspace. The robot
could move one grid distance at a constant speed v or stay in the original position (center
of the grid) within each time period T.

The core of the problem was to find a policy that could guide the robot to travel from
the initial position to the target position, to avoid collisions with others during driving, and
to minimize the number of direction changes during the completion of the task. Reducing
the direction during driving can reduce the running time of the robot in reality.

In this scenario, at time kT (k = 0, 1, 2, . . . ), each robot i in state si
kT took an action ai

kT

according to the policy π that drove the robot from the current position pi
kT to the goal gi

while avoiding collision with others. State skT was composed of three parts (Equation (1)):
state so

kT (so
kT ∈ R3 × 128) contained a total of 3 × 128 data, which were composed of the

distance data scanned by the Lidar sensor (which was placed at the center of the robot to
obtain 128 distance data of the 360-degree environment around the robot) at times (k − 2)T,
(k − 1)T, and kT, respectively; sg

kT was the relative target position of the robot, and sa
kT
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represented the last action performed by the robot. Table 1 shows the correspondence
between sa

kT and the last action.

skT =
{

skT
o , skT

g , skT
a

}
(1)

Table 1. The correspondence between the last action and sa
kT.

Last Action Forward Backward Left Right Stop

sa
kT (0,1) (0,−1) (−1,0) (1,0) (0,0)

There were five choices of action akT (move forward, move backward, move left, move
right, or stop) for the robot to perform at time kT during the movement. It was assumed
that the robot needed time T to travel from the center position of the grid at time kT to
the central location of the adjacent grid at a constant speed v. The action space, which
contained five elements, was therefore finite. The set As of the action space was expressed
as follows:

As = {(v, 0), (−v, 0), (0, v), (0,−v), (0, 0)} (2)

After collecting the data of skT, the robot calculated the action instructions akT based
on the learned policy π:

akT ∼ πθ(akT
∣∣∣skT), k = 0, 1, 2 . . . (3)

where θ refers to the parameters in the policy model. We assumed that the last action of the
robot at the initial position was stop, with li representing the path of the i-th robot, and the
set of N robot paths was expressed as follows:

L = {li, i = 1, 2, . . . , N|
akT

i ∼ πθ(akT
i

∣∣∣skT
i ),

pkT
i = p(k−1)T

i + T · a(k−1)T
i

k = 0, 1, 2, . . . , pi = [pix, piy],
∀j ∈ [1, N], j 6= i :

‖pix − pjx‖+ ‖piy − pjy‖ ≥ D
}

(4)

where pi represents the position of the i-th robot.
The i-th robot needed ki

gT time to travel from its initial position to the goal position.
We expected all robots to use the same policy πθ to travel from the initial position to the
target position in as short a distance as possible while avoiding collisions with one another.

The robots’ states at this moment were only determined by their states and decisions
(actions) in the last moment. The set of states and actions were expressed as follows:

Sd = {(smT
i , amT

i )m=0:kg
i
}

i=1,2,...,N
(5)

where Sd represents the sequential decisions consisting of states and actions. Therefore,
we could treat the above problem as a partially observable sequential decision-making
problem, which can be formulated as a partially observable Markov decision process
(POMDP) solved with reinforcement learning [4].

4. Algorithm Framework and Training

As mentioned above, we considered the problem as a POMDP and solved it by
designing a reinforcement learning framework. A POMDP is formally defined by a seven-
tuple (S, A, Pr, R, O, Z, γ), where S is the state space, A is the action space, Pr is the state
transition function, R is the reward function, γ ∈ [0,1] is the discount factor, O is a finite set
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of observations (o ∈ O), and Z is an observation function (o~Z(s)). The state space sokT and
the action space akT were described in Section 3. Next, we introduce the reward function
in the reinforcement learning framework, network architecture, and training procedure.

4.1. Reward Design

The design of rewards is a key part of the reinforcement learning framework. In this
section, we designed rewards for the optimization problems mentioned above. The reward
function was designed as follows:

rkT
i = (gr)kT

i + (cr)kT
i (6)

where ri
kT represents the reward of the i-th robot at time kT. (gr)i

kT rewarded the robot to
reduce the number of direction changes and to move toward the goal, and (cr)i

kT rewarded
the robot to prevent collisions.

When the robot reached the goal, (gr)i
kT = rarrival. In order to reduce the number of

direction changes, the value of (gr)i
kT was designed as shown in Table 2, where mx

kT or
my

kT indicate, respectively, whether the robot was closer or farther from the target on the x
or y axis at time (k − 1) T to kT. w1 and w2 (w2 > w1) were weighting factors.

mkT
x = ‖p(k−1)T

ix − gix‖ − ‖pkT
ix − gix‖ (7)

mkT
y = ‖p(k−1)T

iy − giy‖ − ‖pkT
iy − giy‖ (8)

Table 2. The first part of the reward calculation.

akT

(gr)i
kT

sa
kT

(0,1) (0,−1) (1,0) (−1,0)

(0,v) w2 × my
kT w2 × my

kT w1 × my
kT w1 × my

kT

(0,−v) w2 × my
kT w2 × my

kT w1 × my
kT w1 × my

kT

(v,0) w1 × mx
kT w1 × mx

kT w2 × mx
kT w2 × mx

kT

(−v,0) w1 × mx
kT w1 × mx

kT w2 × mx
kT w2 × mx

kT

The calculation of (cr)i
kT was as follows:

diskT
ij = ‖pkT

ix − pkT
jx ‖+ ‖pkT

iy − pkT
jy ‖ (9)

(cr)kT
i =

{
rcollision i f diskT

ij < D
0 otherwise

(10)

where disij
kT represents the Manhattan distance between the i-th robot and the j-th robot at

time kT. During the training of this work, we set rarrival as 1 and rcollision as −1.

4.2. Network Architecture and Training Procedure

The neural network mapped the input data s and the output Q (s, a) values (Figure 3).
After the robot obtained the value of Q (s, a) in state s, it executed the action a with the
highest Q (s, a) value.
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Figure 3. The structure diagram of the neural network. so
kT, sg

kT, and sa
kT were used as the input of the network structure,

and the output of the network structure was the Q value of five actions. ReLU [32] was used as the non-linear activation
function. Conv1D, convolutional neural network; FC, fully connected neural network.

Figure 4 shows how each robot exploited the same policy to generate actions and
interacted with the environment to get rewards and the next state. The obtained sets
(si

(k+1)T, ai
kT, ri

kT, and si
kT) were stored in a fixed-size memory. Sampling by the parallel

execution strategy was adopted in the training process. This method dramatically reduced
the time of sample collection.
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The training procedure, outlined in Algorithm 1, had two major steps: collecting data
in parallel and updating policy. Double Deep Q-Network (DDQN) [33] was used in this
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process. The network was trained by back-propagation to minimize a quadratic regression
error Re (Equation (12)) with the sample random batch of sets from the memory in every
episode. Adaptive moment estimation (Adam) [34] was used as the optimization method
of the network model training in this work.

yk = rkT + γQ(s(k+1)T , argmax
a(k+1)T

Q(s(k+1)T , a(k+1)T ; θ); θ−) (11)

Re = (yk −Q(skT , akT ; θ))
2

(12)

where θ- represents the second set of weights.

Algorithm 1: DQN with Multiple Robots in Grid Map

1 Initialize replay memory D to capacity Ca;
2 Initialize action-value function Q with random weights θ;
3 Initialize target action-value function Q with weights θ_ = θ;
4 For episode = 1, 2,... do
5 // Collect data in parallel
6 For robot i = 1, 2,..., N do
7 Run Ti timesteps
8 With probability ε select a random action at
9 otherwise select at = argmaxa Q(φ(st), a; θ), where t∈[0, Ti]
10 Execute action at emulator and observe reward rt and st+1
11 Preprocess φt+1 = φ(st+1)
12 Store transition (φt, at, rt, φt+1) in D
13 break, if ∑N

i=1 Ti > Tmax
14 End For
15 //Updata policy
16 if the state in step j+1 is terminnated then
17 yj = ri
18 else
19 yj = ri + γmaxa’ Q(φj+1, a’; θ_)
20 end

21
Perform a gradient descent step on (yj−Q(φj, aj; θ))2 with respect to the

network parameters θ

22 Every C steps reset Q = Q
23 End For

5. Experiment

In this section, we describe the training scenario designed in this work and demon-
strate that the learned policy had good performance in the grid map workspace.

5.1. Training Scenarios

In this work, we used PyTorch to implement our algorithm. We designed training
scenarios for four and eight robots in the grid map workspace based on the Stage (http:
//rtv.github.io/Stage/) mobile robot simulator. During the training process, the initial
position and the goal were set within 16 × 16 of the domain size (without limiting the
robots’ range of motion). In the training scene, each robot randomly generated initial
and target positions. The algorithm proposed in this article was trained on a computer
equipped with an E5-1620 CPU and an Nvidia GTX1060 GPU. The size of the mini-batches
was set to 1024. The size of the fixed-size memory D was 2048 in this experiment. Step C
in Algorithm 1 was 20. The algorithm used an ε-greedy policy, where ε decayed linearly
from 0.5 to 0.3 in the first 3000 training episodes, and remained 0.3 thereafter. Using our
proposed framework, Policy_1 was obtained by training the algorithm in the scenario of four
robots, and Policy_2 was obtained by training the algorithm in the scenario of eight robots.

http://rtv.github.io/Stage/
http://rtv.github.io/Stage/
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Policy_1 and Policy_2 were trained on approximately 500,000 samples and 1,000,000 samples,
respectively. Figure 5 shows the reward curves during the training process.
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5.2. Simulation Results

To evaluate the policy learned by our proposed deep reinforcement learning frame-
work, we designed random experimental scenarios.

In this scenario, the number of robots was gradually increased from two to nine. In
the case of each quantity, the experiment was designed to complete 500 cases randomly
generated with uniform distribution (the initial positions and goals of each robot were
set within 16 × 16 of the domain size). When the robots were guided by policy (Policy_1
or Policy_2), traveling from the initial position to the goal position within a certain time
and avoiding collisions with others while traveling, the case was completed successfully.
Policy_1 and Policy_2 were tested by using 312,925 and 269,440 samples, respectively. Each
case contained a different number of samples. Table 3 shows the success rate of the case
and the number of samples used in the test.

Table 3. Success rate of the cases with different numbers of robots.

Num Policy_1 Policy_2

2 500/500 (9910) 100% 500/500 (9385) 100%
3 500/500 (16,605) 100% 500/500 (15,460) 100%
4 493/500 (22,505) 98.60% 500/500 (21,895) 100%
5 487/500 (29,420) 97.40% 500/500 (27,250) 100%
6 486/500 (37,845) 97.20% 495/500 (36,580) 99.00%
7 483/500 (48,985) 96.60% 493/500 (42,145) 98.60%
8 483/500 (65,555) 96.60% 492/500 (52,000) 98.40%
9 479/500 (82,100) 95.80% 490/500 (64,725) 98.00%

The success rate of the different policies (Policy_1 and Policy_2) for completing cases in random scenarios. Among
them, in the form of 493/500 (22,505), denominator represents the number of successfully completed cases,
molecular represents the total number of tested cases, and the number in brackets represents the total number of
tested samples.

When the robots were guided by Policy_1 or Policy_2 to complete the task and the
number of robots in the scene was not more than three or five, respectively, there were no
collisions during the experiment. When the number of robots in the scene was three or
more, Policy_2 could guide robots to avoid collisions better than Policy_1. Therefore, it was
concluded that the policy trained with more robots in the training scenario can better guide
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the robots to avoid collisions because deep reinforcement learning relies on interaction
with the environment during the training process.

Since all of the states existing in the environment could not be encountered in the
training process, the success rate slowly decreased as the number of robots in the scene
increased. However, even if there were nine robots in the scenario, they were guided by
Policy_1, which was learned from the scenario of four robots, to complete the task with
a high success rate. Moreover, the hybrid control architecture proposed by [35] can be
used to make up for this shortcoming, which found the emergent scenario based on the
measurements of the Lidar sensor and designed a safe policy for this scenario. Combining
the safety policy and the learned policy can achieve collision-free travel between robots.

5.3. Compared with Centralized Methods

The centralized methods, using a planning algorithm, produced a path that allowed a
robot to avoid collisions with others. Although these methods had good performance, they
relied heavily on the communication between the central server and the robots, and can be
computationally prohibitive for large multi-robot systems.

First, six cases were designed (Figure 6). Three centralized methods—Enhanced Partial
Expansion A* (EPEA*) [25], Increasing Cost Tree Search (ICTS) [26], and Conflict-Based
Search (CBS) [27]—and our policy were used to calculate the time required to complete the
task path. The equipment used in this experiment was a computer with CPU E5-1620. For
our policy, it took 9.5 ms for each robot to perform every step. Figure 7 shows the trajectory
diagram of using Policy_2 to guide the robot to complete the task in Figure 6a. The two
robots performed a total of 30 steps to complete the task, and it took 285 ms to calculate the
trajectory using Policy_2. The experimental results are shown in Table 4.
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Table 4. Time consumption, in milliseconds (ms). CBS, Conflict-Based Search; ICTS, Increasing Cost
Tree Search; EPEA*, Enhanced Partial Expansion A*.

Policy a b c d e f

CBS 73.2 493.1 3545.8 18,168.3 94,618.5 564,439.2
ICTS 13.58 81.75 1860 135,365 >600,000 >600,000

EPEA* 2.61 299.3 148,224.7 >600,000 >600,000 >600,000
Policy_1 285 627 959.5 1339.5 1862 1947.5
Policy_2 285 570 855 1140 1425 1710

Table 4 and Figure 8 show that in cases (c)–(f), the time consumed by Policy_1 and
Policy_2 to calculate the trajectory was much lower than that of the centralized methods.
As mentioned above, it was difficult for the centralized methods to calculate the trajectory
of a large-scale multi-robot system. In addition, in cases (a) and (b), the time consumed was
lower than our policy, but the centralized methods relied heavily on the communication
between the central server and the robot. If the central server or communication system
crashed, it would have caused the entire multi-robot system to crash. The policy we
proposed does not require a central server and does not rely on communication, which
greatly improves the robustness of the multi-robot system.
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The policy we proposed can also guide robots to complete tasks in a large-scale grid
map workspace. Figure 9 shows the trajectories of using Policy_2 to guide 96 robots to
complete tasks in the large-scale grid map workspace (the initial and target positions of
each robot were randomly generated).
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We used ret, which represents the ratio of actual time to ideal time, as the evaluation
algorithm performance metric, calculated as follows:

ret =
1
N

N

∑
i=1

kg
i

(‖p0·T
ix − gix‖+ ‖p0·T

iy − giy‖)/D
(13)

where (pix
0 T, piy

0 T) represents the initial position of the i-th robot, and (gi
x, gi

y) represents
the target position of the i-th robot.

Three cases were designed to compare our strategy with CBS. Figure 10 shows the
resulting trajectories, where a1, a2, and a3 in our policy had the same performance as the
centralized methods in case a.
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Figure 10. (a–c) Schematic diagrams of the start and end positions of the three cases. The position pointed to by the arrow is
the end position of each robot. In cases (b,c), the robots gathered in the center. (a1–c1), (a2–c2), and (a3–c3) are the robot
trajectories, which used different methods to guide the robot to complete the case, where hexagons mark the starts. The
policies used in (a1–c1), (a2–c2), and (a3–c3) are Policy_1, Policy_2, and CBS respectively.
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These cases were designed using ret to evaluate the performance of different methods
(Table 5). The performance of CBS was better than our policy, especially in robot-intensive
scenarios, because the learned policy focusing on local collision avoidance could not replace
a global path planner. However, our policy did not rely on the communication between the
robot and the central server, and was computationally feasible for large-scale multi-robot
systems. In the case of dense robots, Policy_2 could guide robots to complete tasks better
than Policy_1, such as in cases (b) and (c). As mentioned in the previous section, the
policy trained with more robots in the training scenario could better guide the robots to
avoid collisions.

Table 5. The performance metric in the different cases.

Cases CBS Policy_1 Policy_2

a 1.0 1.000 1.000
b 1.104 1.917 1.479
c 1.084 1.986 1.514

6. Conclusions

We developed a novel decentralized multi-robot collision avoidance method with
deep reinforcement learning, suitable for the large-scale grid map workspace multi-robot
system that directly processes Lidar signals instead of communicating between the robots.
The learned policy guided robots to complete tasks with a high success rate. Robots could
be guided by the learned policy to complete tasks in a large-scale grid map workspace.
Although the performance was lower than when using the centralized methods, the learned
policy did not rely on communication with the central server. The method we proposed
overcame the limitations of the distributed method (which cannot be used in the grid map
workspace) and of centralized methods (which depends on communication and cannot be
applied to the limitation of the large-scale grid map workspace). Future work will consider
how to improve the performance of the method.
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Abbreviations
The following abbreviations are used in this manuscript:

DDQN Double Deep Q-Network
Adam Adaptive moment estimation
Conv1D convolutional neural network
FC fully connected neural network
EPEA* Enhanced Partial Expansion A*
ICTS Increasing Cost Tree Search
CBS Conflict-Based Search
CADRL collision avoidance with deep reinforcement learning
RVO reciprocal velocity obstacle
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ORCA optimal reciprocal collision avoidance

GA3C-CADRL
GPU/CPU Asynchronous Advantage Actor-Critic for Collision Avoidance
with Deep reinforcement learning

SA-CADRL socially aware CADRL
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