
sensors

Article

Non-Communication Decentralized Multi-Robot Collision
Avoidance in Grid Map Workspace with Double Deep
Q-Network

Lin Chen 1,2,†, Yongting Zhao 1,†, Huanjun Zhao 1,2 and Bin Zheng 1,*

����������
�������

Citation: Chen, L.; Zhao, Y.; Zhao, H.;

Zheng, B. Non-Communication

Decentralized Multi-Robot Collision

Avoidance in Grid Map Workspace

with Double Deep Q-Network.

Sensors 2021, 21, 841. https://

doi.org/10.3390/s21030841

Received: 13 November 2020

Accepted: 29 December 2020

Published: 27 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences,
Chongqing 400700, China; chenlin18@cigit.ac.cn (L.C.); zhaoyongting@cigit.ac.cn (Y.Z.);
zhaohuanjun@cigit.ac.cn (H.Z.)

2 School of Computer Science and Technology, University of Chinese Academy of Sciences,
Beijing 100049, China

* Correspondence: zhengbin@cigit.ac.cn
† These authors contributed equally.

Abstract: This paper presents a novel decentralized multi-robot collision avoidance method with
deep reinforcement learning, which is not only suitable for the large-scale grid map workspace
multi-robot system, but also directly processes Lidar signals instead of communicating between the
robots. According to the particularity of the workspace, we handcrafted a reward function, which
considers both the collision avoidance among the robots and as little as possible change of direction
of the robots during driving. Using Double Deep Q-Network (DDQN), the policy was trained in the
simulation grid map workspace. By designing experiments, we demonstrated that the learned policy
can guide the robot well to effectively travel from the initial position to the goal position in the grid
map workspace and to avoid collisions with others while driving.

Keywords: robot learning; deep reinforcement learning; grid map workspace

1. Introduction

Multi-robot navigation is widely used in multi-robot search and rescue, autonomous
warehouses, intelligent robot systems for sorting, navigation through human crowds, and
other fields. With the development of robotics and artificial intelligence, researchers [1–3]
have studied how to apply advanced algorithms in artificial intelligence to multi-robot
navigation. The core part of multi-robot navigation is to make the robot travel from the
initial position to the target position efficiently, avoiding collision with others [4].

Researchers [1–8] have studied the decentralized multi-robot collision avoidance algo-
rithm and some fruitful results have been achieved, such as collision avoidance with deep
reinforcement learning (CADRL) [1], socially aware CADRL (SA-CADRL) [2], reciprocal
velocity obstacle (RVO) [5]. The methods mentioned above were designed for cluttered
workspaces. In all positions in an obstacle-free environment, the robot can move in any
direction. In the real world, there are scenes where multiple robots work in a grid map
workspace, such as autonomous warehouses and sorting robot systems (Figure 1a). How-
ever, the grid map workspace has constraints on robot behavior (Figure 2). When the robot
is in the state shown in Figure 2a, it can only move forward and backward. When it is in
the state shown in Figure 2b, the robot can only move forward, backward, walk left, walk
right, and stop. When the robot is in the state shown in Figure 2c, it can only walk left and
right. Therefore, the decentralized method mentioned above is not suitable for the grid
map workspace.

On the contrary, centralized methods [9–13] have been explored by some researchers,
assuming that a central server fully understands the workspace information and the
environmental perception information around each controlled robot. Using a planning

Sensors 2021, 21, 841. https://doi.org/10.3390/s21030841 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21030841
https://doi.org/10.3390/s21030841
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21030841
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/3/841?type=check_update&version=2

Sensors 2021, 21, 841 2 of 15

algorithm, the central server produces a path that allows the robot to avoid collisions
with others. Most of these methods are applicable to grid map workspaces. However,
these methods heavily rely on the communication network between the central server
and the robot [8]. Moreover, they can be computationally prohibitive for large multi-
robot systems [14]. If the central server and/or the communication network crashes, the
multi-robot system will be paralyzed.

Sensors 2021, 21, x FOR PEER REVIEW 2 of 16

On the contrary, centralized methods [9–13] have been explored by some researchers,
assuming that a central server fully understands the workspace information and the en-
vironmental perception information around each controlled robot. Using a planning al-
gorithm, the central server produces a path that allows the robot to avoid collisions with
others. Most of these methods are applicable to grid map workspaces. However, these
methods heavily rely on the communication network between the central server and the
robot [8]. Moreover, they can be computationally prohibitive for large multi-robot systems
[14]. If the central server and/or the communication network crashes, the multi-robot sys-
tem will be paralyzed.

(a) (b)

Figure 1. Grid map workspace application scenarios: (a) a sorting robot system, cited in web
(http://www.sd.chinanews.com/2/2018/0606/59838.html), (b) an autonomous warehouse, cited on
the web (https://baijiahao.baidu.com/s?id=1637276211094569677&wfr=spider&for=pc).

(a) (b) (c)

Figure 2. Schematic diagram of the constraints in the grid map workspace: (a–c) the three states of
the robot working in the grid map workspace.

We developed a novel decentralized multi-robot collision avoidance method with
deep reinforcement learning, which is not only suitable for the large-scale grid map work-
space multi-robot system, but also directly processes Lidar signals instead of communi-
cating between the robots.

The related work of multi-robot collision avoidance policy is outlined in Section 2.
Section 3 shows the mathematical framework of the problem. The reinforcement learning
framework is described in detail in Section 4. The process of designing experiments and
verifying results is explained in Section 5. Finally, we provide the conclusion in Section 6.

2. Related Work
Many researchers have conducted extensive research on the problem of multi-robot

motion planning, achieving some good results. Some of the work related to this problem
has been reviewed in paper [15,16]. The research can be classified into centralized meth-
ods [17–19] and decentralized methods [20–23]. Assuming that information about the po-
sition, velocity, and target position of all agents can be obtained, centralized methods treat
the motion planning problem as an optimization problem. The former approach includes
four categories: A* search expansion [24,25], increasing cost tree search [26], conflict-based

Figure 1. Grid map workspace application scenarios: (a) a sorting robot system, cited in web (http://www.sd.chinanews.
com/2/2018/0606/59838.html), (b) an autonomous warehouse, cited on the web (https://baijiahao.baidu.com/s?id=1637
276211094569677&wfr=spider&for=pc).

Sensors 2021, 21, x FOR PEER REVIEW 2 of 16

On the contrary, centralized methods [9–13] have been explored by some researchers,
assuming that a central server fully understands the workspace information and the en-
vironmental perception information around each controlled robot. Using a planning al-
gorithm, the central server produces a path that allows the robot to avoid collisions with
others. Most of these methods are applicable to grid map workspaces. However, these
methods heavily rely on the communication network between the central server and the
robot [8]. Moreover, they can be computationally prohibitive for large multi-robot systems
[14]. If the central server and/or the communication network crashes, the multi-robot sys-
tem will be paralyzed.

(a) (b)

Figure 1. Grid map workspace application scenarios: (a) a sorting robot system, cited in web
(http://www.sd.chinanews.com/2/2018/0606/59838.html), (b) an autonomous warehouse, cited on
the web (https://baijiahao.baidu.com/s?id=1637276211094569677&wfr=spider&for=pc).

(a) (b) (c)

Figure 2. Schematic diagram of the constraints in the grid map workspace: (a–c) the three states of
the robot working in the grid map workspace.

We developed a novel decentralized multi-robot collision avoidance method with
deep reinforcement learning, which is not only suitable for the large-scale grid map work-
space multi-robot system, but also directly processes Lidar signals instead of communi-
cating between the robots.

The related work of multi-robot collision avoidance policy is outlined in Section 2.
Section 3 shows the mathematical framework of the problem. The reinforcement learning
framework is described in detail in Section 4. The process of designing experiments and
verifying results is explained in Section 5. Finally, we provide the conclusion in Section 6.

2. Related Work
Many researchers have conducted extensive research on the problem of multi-robot

motion planning, achieving some good results. Some of the work related to this problem
has been reviewed in paper [15,16]. The research can be classified into centralized meth-
ods [17–19] and decentralized methods [20–23]. Assuming that information about the po-
sition, velocity, and target position of all agents can be obtained, centralized methods treat
the motion planning problem as an optimization problem. The former approach includes
four categories: A* search expansion [24,25], increasing cost tree search [26], conflict-based

Figure 2. Schematic diagram of the constraints in the grid map workspace: (a–c) the three states of the robot working in the
grid map workspace.

We developed a novel decentralized multi-robot collision avoidance method with deep
reinforcement learning, which is not only suitable for the large-scale grid map workspace
multi-robot system, but also directly processes Lidar signals instead of communicating
between the robots.

The related work of multi-robot collision avoidance policy is outlined in Section 2.
Section 3 shows the mathematical framework of the problem. The reinforcement learning
framework is described in detail in Section 4. The process of designing experiments and
verifying results is explained in Section 5. Finally, we provide the conclusion in Section 6.

2. Related Work

Many researchers have conducted extensive research on the problem of multi-robot
motion planning, achieving some good results. Some of the work related to this prob-
lem has been reviewed in paper [15,16]. The research can be classified into centralized
methods [17–19] and decentralized methods [20–23]. Assuming that information about the
position, velocity, and target position of all agents can be obtained, centralized methods
treat the motion planning problem as an optimization problem. The former approach
includes four categories: A* search expansion [24,25], increasing cost tree search [26],
conflict-based search [27,28], and protocol-based [9]. The goal of optimization is to guide
all agents to their target positions, while avoiding collisions with one another and minimiz-

http://www.sd.chinanews.com/2/2018/0606/59838.html
http://www.sd.chinanews.com/2/2018/0606/59838.html
https://baijiahao.baidu.com/s?id=1637276211094569677&wfr=spider&for=pc
https://baijiahao.baidu.com/s?id=1637276211094569677&wfr=spider&for=pc

Sensors 2021, 21, 841 3 of 15

ing goals such as energy or time. Augugliaro et al. [18] regarded the problem of multi-robot
motion planning as a non-convex optimization problem, which can be solved using contin-
uous convex programming. Based on linear programming, a centralized algorithm was
proposed by Yu et al. in [9]. The purpose was to minimize the arrival time of the last agent,
the maximum (single-agent) traveled distance, the total arrival time, and the total distance.
Tang et al. [17] divided the problem into two stages to solve it. First, a geometric algorithm
was used to find the piecewise linear trajectories of each robot, and then these trajectories
were refined into high-order piecewise polynomials. However, for solving a large-scale
optimization problem, computational complexity of centralized methods is inevitable as
the number of agents increases. In addition, centralized methods rely heavily on the com-
munication between the central server and the agent. Before this, many researchers have
conducted a lot of work on decentralized algorithms and have achieved some good results.
The decentralized methods are divided into learning-based methods [1–4] and traditional
methods [5,20,29–31]. Traditional methods were discussed in paper [15], such as reciprocal
velocity obstacle (RVO) [5] and optimal reciprocal collision avoidance (ORCA) [20]. As-
suming that each agent has perfect knowledge about its neighbor’s shape, position, and
velocity, the agent uses the optimal reciprocal collision avoidance (ORCA) [20] algorithm
to calculate a velocity to keep it safe over the next time horizon.

The learning-based method, which benefits from advances in machine learning
technology, is considered to be a promising direction to solve the problem. Some re-
searchers [1,2,8] have formulated the multi-agent collision avoidance problem as a se-
quential decision-making problem in the reinforcement learning framework. The CADRL
algorithm was proposed by Chen et al. in [1] based on a deep reinforcement learning
framework, which offloads expensive real-time motion planning calculations to the offline
training process. Long et al. in [4] developed a deep reinforcement learning framework. By
training this framework, a decentralized sensor-level collision avoidance network can be
obtained. The steering command of each agent can be calculated by feeding the raw Lidar
sensor data to the network. Everett et al. in [8] proposed the GA3C-CADRL (GPU/CPU
Asynchronous Advantage Actor-Critic for Collision Avoidance with Deep reinforcement
learning) algorithm, which showed good performance for solving path planning problems.
However, the decentralized methods mentioned above are only applicable to cluttered
workspaces and cannot be used in grid map workspaces. We developed a novel deep
reinforcement learning framework that can learn a decentralized collision avoidance policy
in the grid map workspace. It was proved by experiments that agents can easily avoid
collisions with others and can effectively complete tasks in the grid map workspace.

3. Problem Formulation

This section introduces the mathematical framework for collision avoidance among
robots. All robots were modeled as squares with side length D working in a grid workspace.
The problem could be treated as N robots moving in the grid map workspace. The robot
could move one grid distance at a constant speed v or stay in the original position (center
of the grid) within each time period T.

The core of the problem was to find a policy that could guide the robot to travel from
the initial position to the target position, to avoid collisions with others during driving, and
to minimize the number of direction changes during the completion of the task. Reducing
the direction during driving can reduce the running time of the robot in reality.

In this scenario, at time kT (k = 0, 1, 2, . . .), each robot i in state si
kT took an action ai

kT

according to the policy π that drove the robot from the current position pi
kT to the goal gi

while avoiding collision with others. State skT was composed of three parts (Equation (1)):
state so

kT (so
kT ∈ R3 × 128) contained a total of 3 × 128 data, which were composed of the

distance data scanned by the Lidar sensor (which was placed at the center of the robot to
obtain 128 distance data of the 360-degree environment around the robot) at times (k − 2)T,
(k − 1)T, and kT, respectively; sg

kT was the relative target position of the robot, and sa
kT

Sensors 2021, 21, 841 4 of 15

represented the last action performed by the robot. Table 1 shows the correspondence
between sa

kT and the last action.

skT =
{

skT
o , skT

g , skT
a

}
(1)

Table 1. The correspondence between the last action and sa
kT.

Last Action Forward Backward Left Right Stop

sa
kT (0,1) (0,−1) (−1,0) (1,0) (0,0)

There were five choices of action akT (move forward, move backward, move left, move
right, or stop) for the robot to perform at time kT during the movement. It was assumed
that the robot needed time T to travel from the center position of the grid at time kT to
the central location of the adjacent grid at a constant speed v. The action space, which
contained five elements, was therefore finite. The set As of the action space was expressed
as follows:

As = {(v, 0), (−v, 0), (0, v), (0,−v), (0, 0)} (2)

After collecting the data of skT, the robot calculated the action instructions akT based
on the learned policy π:

akT ∼ πθ(akT
∣∣∣skT), k = 0, 1, 2 . . . (3)

where θ refers to the parameters in the policy model. We assumed that the last action of the
robot at the initial position was stop, with li representing the path of the i-th robot, and the
set of N robot paths was expressed as follows:

L = {li, i = 1, 2, . . . , N|
akT

i ∼ πθ(akT
i

∣∣∣skT
i),

pkT
i = p(k−1)T

i + T · a(k−1)T
i

k = 0, 1, 2, . . . , pi = [pix, piy],
∀j ∈ [1, N], j 6= i :

‖pix − pjx‖+ ‖piy − pjy‖ ≥ D
}

(4)

where pi represents the position of the i-th robot.
The i-th robot needed ki

gT time to travel from its initial position to the goal position.
We expected all robots to use the same policy πθ to travel from the initial position to the
target position in as short a distance as possible while avoiding collisions with one another.

The robots’ states at this moment were only determined by their states and decisions
(actions) in the last moment. The set of states and actions were expressed as follows:

Sd = {(smT
i , amT

i)m=0:kg
i
}

i=1,2,...,N
(5)

where Sd represents the sequential decisions consisting of states and actions. Therefore,
we could treat the above problem as a partially observable sequential decision-making
problem, which can be formulated as a partially observable Markov decision process
(POMDP) solved with reinforcement learning [4].

4. Algorithm Framework and Training

As mentioned above, we considered the problem as a POMDP and solved it by
designing a reinforcement learning framework. A POMDP is formally defined by a seven-
tuple (S, A, Pr, R, O, Z, γ), where S is the state space, A is the action space, Pr is the state
transition function, R is the reward function, γ ∈ [0,1] is the discount factor, O is a finite set

Sensors 2021, 21, 841 5 of 15

of observations (o ∈ O), and Z is an observation function (o~Z(s)). The state space sokT and
the action space akT were described in Section 3. Next, we introduce the reward function
in the reinforcement learning framework, network architecture, and training procedure.

4.1. Reward Design

The design of rewards is a key part of the reinforcement learning framework. In this
section, we designed rewards for the optimization problems mentioned above. The reward
function was designed as follows:

rkT
i = (gr)kT

i + (cr)kT
i (6)

where ri
kT represents the reward of the i-th robot at time kT. (gr)i

kT rewarded the robot to
reduce the number of direction changes and to move toward the goal, and (cr)i

kT rewarded
the robot to prevent collisions.

When the robot reached the goal, (gr)i
kT = rarrival. In order to reduce the number of

direction changes, the value of (gr)i
kT was designed as shown in Table 2, where mx

kT or
my

kT indicate, respectively, whether the robot was closer or farther from the target on the x
or y axis at time (k − 1) T to kT. w1 and w2 (w2 > w1) were weighting factors.

mkT
x = ‖p(k−1)T

ix − gix‖ − ‖pkT
ix − gix‖ (7)

mkT
y = ‖p(k−1)T

iy − giy‖ − ‖pkT
iy − giy‖ (8)

Table 2. The first part of the reward calculation.

akT

(gr)i
kT

sa
kT

(0,1) (0,−1) (1,0) (−1,0)

(0,v) w2 × my
kT w2 × my

kT w1 × my
kT w1 × my

kT

(0,−v) w2 × my
kT w2 × my

kT w1 × my
kT w1 × my

kT

(v,0) w1 × mx
kT w1 × mx

kT w2 × mx
kT w2 × mx

kT

(−v,0) w1 × mx
kT w1 × mx

kT w2 × mx
kT w2 × mx

kT

The calculation of (cr)i
kT was as follows:

diskT
ij = ‖pkT

ix − pkT
jx ‖+ ‖pkT

iy − pkT
jy ‖ (9)

(cr)kT
i =

{
rcollision i f diskT

ij < D
0 otherwise

(10)

where disij
kT represents the Manhattan distance between the i-th robot and the j-th robot at

time kT. During the training of this work, we set rarrival as 1 and rcollision as −1.

4.2. Network Architecture and Training Procedure

The neural network mapped the input data s and the output Q (s, a) values (Figure 3).
After the robot obtained the value of Q (s, a) in state s, it executed the action a with the
highest Q (s, a) value.

Sensors 2021, 21, 841 6 of 15

Sensors 2021, 21, x FOR PEER REVIEW 6 of 16

4.2. Network Architecture and Training Procedure
The neural network mapped the input data s and the output Q (s, a) values (Figure

3). After the robot obtained the value of Q (s, a) in state s, it executed the action a with the
highest Q (s, a) value.

Figure 3. The structure diagram of the neural network. sokT, sgkT, and sakT were used as the input of
the network structure, and the output of the network structure was the Q value of five actions.
ReLU [32] was used as the non-linear activation function. Conv1D, convolutional neural network;
FC, fully connected neural network.

Figure 4 shows how each robot exploited the same policy to generate actions and
interacted with the environment to get rewards and the next state. The obtained sets (si(k+1)T,
aikT, rikT, and sikT) were stored in a fixed-size memory. Sampling by the parallel execution
strategy was adopted in the training process. This method dramatically reduced the time
of sample collection.

The training procedure, outlined in Algorithm 1, had two major steps: collecting data
in parallel and updating policy. Double Deep Q-Network (DDQN) [33] was used in this
process. The network was trained by back-propagation to minimize a quadratic regression
error Re (Equation (12)) with the sample random batch of sets from the memory in every
episode. Adaptive moment estimation (Adam) [34] was used as the optimization method
of the network model training in this work.

));;,(maxarg,(-
)1()1(

)1(

)1(θθγ Tk

a

kT
k asQsQry Tk

Tk

Tk ++

+

++= (11)

2));,((Re θkTkT
k asQy −= (12)

where θ- represents the second set of weights.

Figure 3. The structure diagram of the neural network. so
kT, sg

kT, and sa
kT were used as the input of the network structure,

and the output of the network structure was the Q value of five actions. ReLU [32] was used as the non-linear activation
function. Conv1D, convolutional neural network; FC, fully connected neural network.

Figure 4 shows how each robot exploited the same policy to generate actions and
interacted with the environment to get rewards and the next state. The obtained sets
(si

(k+1)T, ai
kT, ri

kT, and si
kT) were stored in a fixed-size memory. Sampling by the parallel

execution strategy was adopted in the training process. This method dramatically reduced
the time of sample collection.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 16

Figure 4. Overview of the process of data collection. At time kT, the i-th robot performed the ac-
tion aikT generated according to the policy π in state sikT.

 Algorithm 1: DQN with Multiple Robots in Grid Map

 1 Initialize replay memory D to capacity Ca;
 2 Initialize action-value function Q with random weights θ;
 3 Initialize target action-value function⎯Q with weights θ_ = θ;
 4 For episode = 1, 2,... do
 5 // Collect data in parallel
 6 For robot i = 1, 2,..., N do
 7 Run Ti timesteps
 8 With probability ε select a random action at
 9 otherwise select at = argmaxa Q(ϕ(st), a; θ), where t [0, ∈ Ti]
10 Execute action at emulator and observe reward rt and st+1
11 Preprocess ϕt+1 = ϕ(st+1)
12 Store transition (ϕt, at, rt, ϕt+1) in D

13 break, if  =
>N

i i TT
1 max

14 End For
15 //Updata policy
16 if the state in step j+1 is terminnated then
17 yj = ri
18 else
19 yj = ri +γmaxa’⎯Q(ϕj+1, a’; θ_)
20 end

21
Perform a gradient descent step on (yj−Q(ϕj, aj; θ))2 with respect to the net-
work parameters θ

22 Every C steps reset ⎯Q = Q
23 End For

5. Experiment

Figure 4. Overview of the process of data collection. At time kT, the i-th robot performed the action
ai

kT generated according to the policy π in state si
kT.

The training procedure, outlined in Algorithm 1, had two major steps: collecting data
in parallel and updating policy. Double Deep Q-Network (DDQN) [33] was used in this

Sensors 2021, 21, 841 7 of 15

process. The network was trained by back-propagation to minimize a quadratic regression
error Re (Equation (12)) with the sample random batch of sets from the memory in every
episode. Adaptive moment estimation (Adam) [34] was used as the optimization method
of the network model training in this work.

yk = rkT + γQ(s(k+1)T , argmax
a(k+1)T

Q(s(k+1)T , a(k+1)T ; θ); θ−) (11)

Re = (yk −Q(skT , akT ; θ))
2

(12)

where θ- represents the second set of weights.

Algorithm 1: DQN with Multiple Robots in Grid Map

1 Initialize replay memory D to capacity Ca;
2 Initialize action-value function Q with random weights θ;
3 Initialize target action-value function Q with weights θ_ = θ;
4 For episode = 1, 2,... do
5 // Collect data in parallel
6 For robot i = 1, 2,..., N do
7 Run Ti timesteps
8 With probability ε select a random action at
9 otherwise select at = argmaxa Q(φ(st), a; θ), where t∈[0, Ti]
10 Execute action at emulator and observe reward rt and st+1
11 Preprocess φt+1 = φ(st+1)
12 Store transition (φt, at, rt, φt+1) in D
13 break, if ∑N

i=1 Ti > Tmax
14 End For
15 //Updata policy
16 if the state in step j+1 is terminnated then
17 yj = ri
18 else
19 yj = ri + γmaxa’ Q(φj+1, a’; θ_)
20 end

21
Perform a gradient descent step on (yj−Q(φj, aj; θ))2 with respect to the

network parameters θ

22 Every C steps reset Q = Q
23 End For

5. Experiment

In this section, we describe the training scenario designed in this work and demon-
strate that the learned policy had good performance in the grid map workspace.

5.1. Training Scenarios

In this work, we used PyTorch to implement our algorithm. We designed training
scenarios for four and eight robots in the grid map workspace based on the Stage (http:
//rtv.github.io/Stage/) mobile robot simulator. During the training process, the initial
position and the goal were set within 16 × 16 of the domain size (without limiting the
robots’ range of motion). In the training scene, each robot randomly generated initial
and target positions. The algorithm proposed in this article was trained on a computer
equipped with an E5-1620 CPU and an Nvidia GTX1060 GPU. The size of the mini-batches
was set to 1024. The size of the fixed-size memory D was 2048 in this experiment. Step C
in Algorithm 1 was 20. The algorithm used an ε-greedy policy, where ε decayed linearly
from 0.5 to 0.3 in the first 3000 training episodes, and remained 0.3 thereafter. Using our
proposed framework, Policy_1 was obtained by training the algorithm in the scenario of four
robots, and Policy_2 was obtained by training the algorithm in the scenario of eight robots.

http://rtv.github.io/Stage/
http://rtv.github.io/Stage/

Sensors 2021, 21, 841 8 of 15

Policy_1 and Policy_2 were trained on approximately 500,000 samples and 1,000,000 samples,
respectively. Figure 5 shows the reward curves during the training process.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 16

In this section, we describe the training scenario designed in this work and demon-
strate that the learned policy had good performance in the grid map workspace.

5.1. Training Scenarios
In this work, we used PyTorch to implement our algorithm. We designed training

scenarios for four and eight robots in the grid map workspace based on the Stage

(http://rtv.github.io/Stage/) mobile robot simulator. During the training process, the initial
position and the goal were set within 16 × 16 of the domain size (without limiting the
robots’ range of motion). In the training scene, each robot randomly generated initial and
target positions. The algorithm proposed in this article was trained on a computer
equipped with an E5-1620 CPU and an Nvidia GTX1060 GPU. The size of the mini-batches
was set to 1024. The size of the fixed-size memory D was 2048 in this experiment. Step C
in Algorithm 1 was 20. The algorithm used an ε-greedy policy, where ε decayed linearly
from 0.5 to 0.3 in the first 3000 training episodes, and remained 0.3 thereafter. Using our
proposed framework, Policy_1 was obtained by training the algorithm in the scenario of
four robots, and Policy_2 was obtained by training the algorithm in the scenario of eight
robots. Policy_1 and Policy_2 were trained on approximately 500,000 samples and
1,000,000 samples, respectively. Figure 5 shows the reward curves during the training
process.

Figure 5. Reward curves during the training process; the orange curve is the training curve of Policy_1, and the blue curve
is the training curve of Policy_2.

5.2. Simulation Results
To evaluate the policy learned by our proposed deep reinforcement learning frame-

work, we designed random experimental scenarios.
In this scenario, the number of robots was gradually increased from two to nine. In

the case of each quantity, the experiment was designed to complete 500 cases randomly
generated with uniform distribution (the initial positions and goals of each robot were set
within 16 × 16 of the domain size). When the robots were guided by policy (Policy_1 or
Policy_2), traveling from the initial position to the goal position within a certain time and
avoiding collisions with others while traveling, the case was completed successfully. Pol-
icy_1 and Policy_2 were tested by using 312,925 and 269,440 samples, respectively. Each
case contained a different number of samples. Table 3 shows the success rate of the case
and the number of samples used in the test.

When the robots were guided by Policy_1 or Policy_2 to complete the task and the
number of robots in the scene was not more than three or five, respectively, there were no
collisions during the experiment. When the number of robots in the scene was three or
more, Policy_2 could guide robots to avoid collisions better than Policy_1. Therefore, it

Figure 5. Reward curves during the training process; the orange curve is the training curve of Policy_1, and the blue curve
is the training curve of Policy_2.

5.2. Simulation Results

To evaluate the policy learned by our proposed deep reinforcement learning frame-
work, we designed random experimental scenarios.

In this scenario, the number of robots was gradually increased from two to nine. In
the case of each quantity, the experiment was designed to complete 500 cases randomly
generated with uniform distribution (the initial positions and goals of each robot were
set within 16 × 16 of the domain size). When the robots were guided by policy (Policy_1
or Policy_2), traveling from the initial position to the goal position within a certain time
and avoiding collisions with others while traveling, the case was completed successfully.
Policy_1 and Policy_2 were tested by using 312,925 and 269,440 samples, respectively. Each
case contained a different number of samples. Table 3 shows the success rate of the case
and the number of samples used in the test.

Table 3. Success rate of the cases with different numbers of robots.

Num Policy_1 Policy_2

2 500/500 (9910) 100% 500/500 (9385) 100%
3 500/500 (16,605) 100% 500/500 (15,460) 100%
4 493/500 (22,505) 98.60% 500/500 (21,895) 100%
5 487/500 (29,420) 97.40% 500/500 (27,250) 100%
6 486/500 (37,845) 97.20% 495/500 (36,580) 99.00%
7 483/500 (48,985) 96.60% 493/500 (42,145) 98.60%
8 483/500 (65,555) 96.60% 492/500 (52,000) 98.40%
9 479/500 (82,100) 95.80% 490/500 (64,725) 98.00%

The success rate of the different policies (Policy_1 and Policy_2) for completing cases in random scenarios. Among
them, in the form of 493/500 (22,505), denominator represents the number of successfully completed cases,
molecular represents the total number of tested cases, and the number in brackets represents the total number of
tested samples.

When the robots were guided by Policy_1 or Policy_2 to complete the task and the
number of robots in the scene was not more than three or five, respectively, there were no
collisions during the experiment. When the number of robots in the scene was three or
more, Policy_2 could guide robots to avoid collisions better than Policy_1. Therefore, it was
concluded that the policy trained with more robots in the training scenario can better guide

Sensors 2021, 21, 841 9 of 15

the robots to avoid collisions because deep reinforcement learning relies on interaction
with the environment during the training process.

Since all of the states existing in the environment could not be encountered in the
training process, the success rate slowly decreased as the number of robots in the scene
increased. However, even if there were nine robots in the scenario, they were guided by
Policy_1, which was learned from the scenario of four robots, to complete the task with
a high success rate. Moreover, the hybrid control architecture proposed by [35] can be
used to make up for this shortcoming, which found the emergent scenario based on the
measurements of the Lidar sensor and designed a safe policy for this scenario. Combining
the safety policy and the learned policy can achieve collision-free travel between robots.

5.3. Compared with Centralized Methods

The centralized methods, using a planning algorithm, produced a path that allowed a
robot to avoid collisions with others. Although these methods had good performance, they
relied heavily on the communication between the central server and the robots, and can be
computationally prohibitive for large multi-robot systems.

First, six cases were designed (Figure 6). Three centralized methods—Enhanced Partial
Expansion A* (EPEA*) [25], Increasing Cost Tree Search (ICTS) [26], and Conflict-Based
Search (CBS) [27]—and our policy were used to calculate the time required to complete the
task path. The equipment used in this experiment was a computer with CPU E5-1620. For
our policy, it took 9.5 ms for each robot to perform every step. Figure 7 shows the trajectory
diagram of using Policy_2 to guide the robot to complete the task in Figure 6a. The two
robots performed a total of 30 steps to complete the task, and it took 285 ms to calculate the
trajectory using Policy_2. The experimental results are shown in Table 4.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 16

Figure 6. (a–f) Schematic diagrams of the start and end positions of the six cases. The position
pointed to by the arrow is the end position of each robot. Three dots indicate that seven rows of
grids were omitted.

Figure 7. Robot trajectories using Policy_2 to guide the robot to complete the task in Figure 6a.

The policy we proposed can also guide robots to complete tasks in a large-scale grid
map workspace. Figure 9 shows the trajectories of using Policy_2 to guide 96 robots to
complete tasks in the large-scale grid map workspace (the initial and target positions of
each robot were randomly generated).

We used ⎯ret, which represents the ratio of actual time to ideal time, as the evaluation
algorithm performance metric, calculated as follows:

 = ⋅⋅ −+−
= N

i
iy

T
iyix

T
ix

g
i

et
gpgp

k
N

r
1 00)/D(

1
 (13)

where (pix0 T, piy0 T) represents the initial position of the i-th robot, and (gix, giy) represents
the target position of the i-th robot.

Three cases were designed to compare our strategy with CBS. Figure 10 shows the
resulting trajectories, where a1, a2, and a3 in our policy had the same performance as the
centralized methods in case a.

Figure 6. (a–f) Schematic diagrams of the start and end positions of the six cases. The position
pointed to by the arrow is the end position of each robot. Three dots indicate that seven rows of grids
were omitted.

Sensors 2021, 21, 841 10 of 15

Sensors 2021, 21, x FOR PEER REVIEW 10 of 16

Figure 6. (a–f) Schematic diagrams of the start and end positions of the six cases. The position
pointed to by the arrow is the end position of each robot. Three dots indicate that seven rows of
grids were omitted.

Figure 7. Robot trajectories using Policy_2 to guide the robot to complete the task in Figure 6a.

The policy we proposed can also guide robots to complete tasks in a large-scale grid
map workspace. Figure 9 shows the trajectories of using Policy_2 to guide 96 robots to
complete tasks in the large-scale grid map workspace (the initial and target positions of
each robot were randomly generated).

We used ⎯ret, which represents the ratio of actual time to ideal time, as the evaluation
algorithm performance metric, calculated as follows:

 = ⋅⋅ −+−
= N

i
iy

T
iyix

T
ix

g
i

et
gpgp

k
N

r
1 00)/D(

1
 (13)

where (pix0 T, piy0 T) represents the initial position of the i-th robot, and (gix, giy) represents
the target position of the i-th robot.

Three cases were designed to compare our strategy with CBS. Figure 10 shows the
resulting trajectories, where a1, a2, and a3 in our policy had the same performance as the
centralized methods in case a.

Figure 7. Robot trajectories using Policy_2 to guide the robot to complete the task in Figure 6a.

Table 4. Time consumption, in milliseconds (ms). CBS, Conflict-Based Search; ICTS, Increasing Cost
Tree Search; EPEA*, Enhanced Partial Expansion A*.

Policy a b c d e f

CBS 73.2 493.1 3545.8 18,168.3 94,618.5 564,439.2
ICTS 13.58 81.75 1860 135,365 >600,000 >600,000

EPEA* 2.61 299.3 148,224.7 >600,000 >600,000 >600,000
Policy_1 285 627 959.5 1339.5 1862 1947.5
Policy_2 285 570 855 1140 1425 1710

Table 4 and Figure 8 show that in cases (c)–(f), the time consumed by Policy_1 and
Policy_2 to calculate the trajectory was much lower than that of the centralized methods.
As mentioned above, it was difficult for the centralized methods to calculate the trajectory
of a large-scale multi-robot system. In addition, in cases (a) and (b), the time consumed was
lower than our policy, but the centralized methods relied heavily on the communication
between the central server and the robot. If the central server or communication system
crashed, it would have caused the entire multi-robot system to crash. The policy we
proposed does not require a central server and does not rely on communication, which
greatly improves the robustness of the multi-robot system.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 16

Figure 8. The time-consuming histogram use different methods to calculate the trajectory of the completed task shown in
Figure 6.

Table 4. Time consumption, in milliseconds (ms). CBS, Conflict-Based Search; ICTS, Increasing Cost Tree Search; EPEA*,
Enhanced Partial Expansion A*.

Policy a b c d e f
CBS 73.2 493.1 3545.8 18,168.3 94,618.5 564,439.2
ICTS 13.58 81.75 1860 135,365 >600,000 >600,000

EPEA* 2.61 299.3 148,224.7 >600,000 >600,000 >600,000
Policy_1 285 627 959.5 1339.5 1862 1947.5
Policy_2 285 570 855 1140 1425 1710

Figure 8. The time-consuming histogram use different methods to calculate the trajectory of the completed task shown in
Figure 6.

Sensors 2021, 21, 841 11 of 15

The policy we proposed can also guide robots to complete tasks in a large-scale grid
map workspace. Figure 9 shows the trajectories of using Policy_2 to guide 96 robots to
complete tasks in the large-scale grid map workspace (the initial and target positions of
each robot were randomly generated).

Sensors 2021, 21, x FOR PEER REVIEW 12 of 16

Figure 9. The trajectories of using Policy_2 to guide 96 robots to complete tasks in the large-scale grid map workspace.
Different colors indicate the trajectories of different robots. The red hexagon is the initial position, and the green dot is the
target position.

Figure 9. The trajectories of using Policy_2 to guide 96 robots to complete tasks in the large-scale grid map workspace.
Different colors indicate the trajectories of different robots. The red hexagon is the initial position, and the green dot is the
target position.

Sensors 2021, 21, 841 12 of 15

We used ret, which represents the ratio of actual time to ideal time, as the evaluation
algorithm performance metric, calculated as follows:

ret =
1
N

N

∑
i=1

kg
i

(‖p0·T
ix − gix‖+ ‖p0·T

iy − giy‖)/D
(13)

where (pix
0 T, piy

0 T) represents the initial position of the i-th robot, and (gi
x, gi

y) represents
the target position of the i-th robot.

Three cases were designed to compare our strategy with CBS. Figure 10 shows the
resulting trajectories, where a1, a2, and a3 in our policy had the same performance as the
centralized methods in case a.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 16

(a) (b) (c)

(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

Figure 10. (a–c) Schematic diagrams of the start and end positions of the three cases. The position
pointed to by the arrow is the end position of each robot. In cases (b,c), the robots gathered in the
center. (a1–c1), (a2–c2), and (a3–c3) are the robot trajectories, which used different methods to
guide the robot to complete the case, where hexagons mark the starts. The policies used in (a1–c1),
(a2–c2), and (a3–c3) are Policy_1, Policy_2, and CBS respectively.

These cases were designed using ⎯ret to evaluate the performance of different meth-
ods (Table 5). The performance of CBS was better than our policy, especially in robot-
intensive scenarios, because the learned policy focusing on local collision avoidance could
not replace a global path planner. However, our policy did not rely on the communication
between the robot and the central server, and was computationally feasible for large-scale
multi-robot systems. In the case of dense robots, Policy_2 could guide robots to complete
tasks better than Policy_1, such as in cases (b) and (c). As mentioned in the previous sec-
tion, the policy trained with more robots in the training scenario could better guide the
robots to avoid collisions.

Figure 10. (a–c) Schematic diagrams of the start and end positions of the three cases. The position pointed to by the arrow is
the end position of each robot. In cases (b,c), the robots gathered in the center. (a1–c1), (a2–c2), and (a3–c3) are the robot
trajectories, which used different methods to guide the robot to complete the case, where hexagons mark the starts. The
policies used in (a1–c1), (a2–c2), and (a3–c3) are Policy_1, Policy_2, and CBS respectively.

Sensors 2021, 21, 841 13 of 15

These cases were designed using ret to evaluate the performance of different methods
(Table 5). The performance of CBS was better than our policy, especially in robot-intensive
scenarios, because the learned policy focusing on local collision avoidance could not replace
a global path planner. However, our policy did not rely on the communication between the
robot and the central server, and was computationally feasible for large-scale multi-robot
systems. In the case of dense robots, Policy_2 could guide robots to complete tasks better
than Policy_1, such as in cases (b) and (c). As mentioned in the previous section, the
policy trained with more robots in the training scenario could better guide the robots to
avoid collisions.

Table 5. The performance metric in the different cases.

Cases CBS Policy_1 Policy_2

a 1.0 1.000 1.000
b 1.104 1.917 1.479
c 1.084 1.986 1.514

6. Conclusions

We developed a novel decentralized multi-robot collision avoidance method with
deep reinforcement learning, suitable for the large-scale grid map workspace multi-robot
system that directly processes Lidar signals instead of communicating between the robots.
The learned policy guided robots to complete tasks with a high success rate. Robots could
be guided by the learned policy to complete tasks in a large-scale grid map workspace.
Although the performance was lower than when using the centralized methods, the learned
policy did not rely on communication with the central server. The method we proposed
overcame the limitations of the distributed method (which cannot be used in the grid map
workspace) and of centralized methods (which depends on communication and cannot be
applied to the limitation of the large-scale grid map workspace). Future work will consider
how to improve the performance of the method.

Author Contributions: Writing, conceptualization, and methodology—original draft, L.C.; writing—
review and editing, Y.Z.; writing—review and editing, H.Z.; writing—review and editing, B.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by The Priority research and design program of Chongqing
technology innovation and application demonstration, grant No. cstc2017zdcy-zdyfX0036 and The
Natural Science Foundation Projects in Chongqing, grant No. cstc2019jcyj-msxmX0442.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DDQN Double Deep Q-Network
Adam Adaptive moment estimation
Conv1D convolutional neural network
FC fully connected neural network
EPEA* Enhanced Partial Expansion A*
ICTS Increasing Cost Tree Search
CBS Conflict-Based Search
CADRL collision avoidance with deep reinforcement learning
RVO reciprocal velocity obstacle

Sensors 2021, 21, 841 14 of 15

ORCA optimal reciprocal collision avoidance

GA3C-CADRL
GPU/CPU Asynchronous Advantage Actor-Critic for Collision Avoidance
with Deep reinforcement learning

SA-CADRL socially aware CADRL

References
1. Chen, Y.F.; Liu, M.; Everett, M.; How, J.P. Decentralized non-communicating multiagent collision avoidance with deep reinforce-

ment learning. In Proceedings of the International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017;
pp. 285–292.

2. Chen, Y.F.; Everett, M.; Liu, M.; How, J.P. Socially aware motion planning with deep reinforcement learning. arXiv 2017,
arXiv:1703.08862.

3. Semnani, S.H.; Liu, H.; Everett, M.; de Ruiter, A.; How, J.P. Multi-Agent Motion Planning for Dense and Dynamic Environments
via Deep Reinforcement Learning. IEEE Robot. Autom. Lett. 2020, 5, 3221–3226. [CrossRef]

4. Long, P.; Fan, T.; Liao, X.; Liu, W.; Zhang, H.; Pan, J. Towards Optimally Decentralized Multi-Robot Collision Avoidance via
Deep Reinforcement Learning. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA),
Brisbane, Australia, 21–25 May 2018; pp. 6252–6259.

5. Van den Berg, J.; Lin, M.; Manocha, D. Reciprocal velocity obstacles for real-time multi-agent navigation. In Proceedings of the
2008 IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA, USA, 19–23 May 2008; pp. 1928–1935.

6. Alonso-Mora, J.; Breitenmoser, A.; Rufli, M.; Beardsley, P.; Siegwart, R. Optimal reciprocal collision avoidance for multiple
non-holonomic robots. In Distributed Autonomous Robotic Systems; Springer: Berlin/Heidelberg, Germany, 2013; pp. 203–216.

7. Chen, G.; Yao, S.; Ma, J.; Pan, L.; Chen, Y.; Xu, P.; Ji, J.; Chen, X. Distributed Non-Communicating Multi-Robot Collision Avoidance
via Map-Based Deep Reinforcement Learning. Sensors 2020, 20, 4836. [CrossRef] [PubMed]

8. Everett, M.; Chen, Y.F.; How, J.P. Motion Planning Among Dynamic, Decision-Making Agents with Deep Reinforcement Learning.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018; pp. 3052–3059.

9. Yu, J.; LaValle, S.M. Optimal Multirobot Path Planning on Graphs: Complete Algorithms and Effective Heuristics. IEEE Trans.
Robot. 2016, 32, 1163–1177. [CrossRef]

10. Semnani, S.H.; de Ruiter, A.; Liu, H. Force-based algorithm for motion planning of large agent teams. arXiv 2019, arXiv:1909.05415.
11. Kiril, S.; Kleinbort, M. The Critical Radius in Sampling-Based Motion Planning. Int. J. Robot. Res. 2020, 39, 266–285. [CrossRef]
12. Luna, R.J.; Bekris, K.E. Push and swap: Fast cooperative path-finding with completeness guarantees. In Proceedings of the

Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011.
13. Solovey, K.; Halperin, D. On the hardness of unlabeled multi-robot motion planning. Int. J. Robot. Res. 2016, 35, 1750–1759.

[CrossRef]
14. Mellinger, D.; Kushleyev, A.; Kumar, V. Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor

teams. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA,
14–18 May 2012; pp. 477–483.

15. Hoy, M.; Matveev, A.S.; Savkin, A.V. Algorithms for collision-free navigation of mobile robots in complex cluttered environments:
A survey. Robotica 2015. [CrossRef]

16. Patle, B.; Babu, L.G.; Pandey, A.; Parhi, D.; Jagadeesh, A. A review: On path planning strategies for navigation of mobile robot.
Def. Technol. 2019, 15, 582–606. [CrossRef]

17. Tang, S.; Thomas, J.; Kumar, V. Hold or take optimal plan (hoop): A quadratic programming approach to multi-robot trajectory
generation. Int. J. Robot. Res. 2018, 37, 1062–1084. [CrossRef]

18. Augugliaro, F.; Schoellig, A.P.; D’Andrea, R. Generation of collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Vilamoura, Portugal, 7–12 October 2012; pp. 1917–1922. [CrossRef]

19. Preiss, J.A.; Hönig, W.; Ayanian, N.; Sukhatme, G.S. Downwash-aware trajectory planning for large quadrotor teams. In
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 250–257. [CrossRef]

20. Van den Berg, J.; Guy, S.J.; Lin, M.; Manocha, D. Reciprocal n-body collision avoidance. In Robotics Research; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 3–19.

21. Van den Berg, J.; Snape, J.; Guy, S.J.; Manocha, D. Reciprocal collision avoidance with acceleration-velocity obstacles. In Pro-
ceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 13 May 2011; pp. 3475–3482.
[CrossRef]

22. Rezaee, H.; Abdollahi, F. A Decentralized Cooperative Control Scheme with Obstacle Avoidance for a Team of Mobile Robots.
IEEE Trans. Ind. Electron. 2014, 61, 347–354. [CrossRef]

23. Zhou, D.; Wang, Z.; Bandyopadhyay, S.; Schwager, M. Fast, On-line Collision Avoidance for Dynamic Vehicles Using Buffered
Voronoi Cells. IEEE Robot. Autom. Lett. 2017, 2, 1047–1054. [CrossRef]

24. Standley, T. Finding Optimal Solutions to Cooperative Pathfinding Problems. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2010, Atlanta, GA, USA, 11–15 July 2010.

http://doi.org/10.1109/LRA.2020.2974695
http://doi.org/10.3390/s20174836
http://www.ncbi.nlm.nih.gov/pubmed/32867080
http://doi.org/10.1109/TRO.2016.2593448
http://doi.org/10.1177/0278364919859627
http://doi.org/10.1177/0278364916672311
http://doi.org/10.1017/S0263574714000289
http://doi.org/10.1016/j.dt.2019.04.011
http://doi.org/10.1177/0278364917741532
http://doi.org/10.1109/IROS.2012.6385823
http://doi.org/10.1109/IROS.2017.8202165
http://doi.org/10.1109/ICRA.2011.5980408
http://doi.org/10.1109/TIE.2013.2245612
http://doi.org/10.1109/LRA.2017.2656241

Sensors 2021, 21, 841 15 of 15

25. Goldenberg, M.; Felner, A.; Stern, R.; Sturtevant, N.; Holte, R.C.; Schaeffer, J. Enhanced Partial Expansion A*. J. Artif. Intell. Res.
2014, 50, 141–187. [CrossRef]

26. Sharon, G.; Stern, R.; Goldenberg, M.; Felner, A. The increasing cost tree search for optimal multi-agent pathfinding. Artif.
Intell. 2013, 195, 470–495. Available online: http://www.sciencedirect.com/science/article/pii/S0004370212001543 (accessed on
14 November 2012). [CrossRef]

27. Barer, M.; Sharon, G.; Stern, R.; Felner, A. Suboptimal variants of the conflict-based search algorithm for the multi-agent
pathfinding problem. In Proceedings of the ECAI 201—21st European Conference on Artificial Intelligence, Prague, Czech
Republic, 18–22 August 2014.

28. Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Betzalel, O.; Tolpin, D.; Shimony, E. ICBS: Improved Conflict-Based Search Algorithm
for Multi-Agent Pathfinding. In Proceedings of the Eighth Annual Symposium on Combinatorial Search, Ein Gedi, Israel, 11–13
June 2015.

29. Snape, J.; van den Berg, J.; Guy, S.J.; Manocha, D. Independent Navigation of Multiple Mobile Robots with Hybrid Reciprocal
Velocity Obstacles. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO,
USA, 11–15 October 2009; pp. 5917–5922.

30. Snape, J.; van den Berg, J.; Guy, S.J.; Manocha, D. The hybrid reciprocal velocity obstacle. IEEE Trans. Robot. 2011, 27, 696–706.
[CrossRef]

31. Van den Berg, J.; Overmars, M. Planning time-minimal safe paths amidst unpredictably moving obstacles. Int. J. Robot. Res. 2008,
27, 1274–1294. [CrossRef]

32. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the International Conference
on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 807–814.

33. Van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-learning. arXiv 2015, arXiv:1509.06461.
34. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of

the International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012.
35. Fan, T.; Long, P.; Liu, W.; Pan, J. Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in

complex scenarios. Int. J. Robot. Res. 2020. [CrossRef]

http://doi.org/10.1613/jair.4171
http://www.sciencedirect.com/science/article/pii/S0004370212001543
http://doi.org/10.1016/j.artint.2012.11.006
http://doi.org/10.1109/TRO.2011.2120810
http://doi.org/10.1177/0278364908097581
http://doi.org/10.1177/0278364920916531

	Introduction
	Related Work
	Problem Formulation
	Algorithm Framework and Training
	Reward Design
	Network Architecture and Training Procedure

	Experiment
	Training Scenarios
	Simulation Results
	Compared with Centralized Methods

	Conclusions
	References

