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Abstract: Delay-tolerant networking (DTN) enables communication in disruptive scenarios where
issues such as sparse and intermittent connectivity, long and variable delays, high latency, high error
rates, or no end-to-end connectivity exist. Internet of Vehicles (IoV) is a network of the future in
which integration between devices, vehicles, and users will be unlimited and universal, overcoming
the heterogeneity of systems, services, applications, and devices. Delay-tolerant internet of vehicles
(DT-IoV) is emerging and becoming a popular research topic due to the critical applications that
can be realized, such as software or map update dissemination. For an IoV to work efficiently, a
degree of cooperation between nodes is necessary to deliver messages to their destinations. However,
nodes might misbehave and silently drop messages, also known as a black-hole attack, degrading
network performance. Various solutions have been proposed to deal with black-hole nodes, but most
are centralized or require each node to meet every other node. This paper proposes a decentralized
reputation scheme called BiRep that identifies and punishes black-hole nodes in DT-IoV. BiRep
is tested on the Prophet routing protocol. Simulation results show excellent performance in all
scenarios, comparable or better to other reputation schemes, significantly increasing the delivery
ratio of messages.

Keywords: reputation; black-hole attack; delay-tolerant internet of vehicles

1. Introduction

Nobody can deny the importance of the internet nowadays. Especially in the times
that we are now living, the internet has proven itself fundamental to connect not only com-
munication devices but also us across the Earth. The internet works using a homogeneous
set of communication protocols. Network devices that compose the internet use these
protocols to communicate with each other, routing data and ensuring message exchanges’
reliability. The usability of the internet depends on various assumptions, but one of the
most important is that a continuous bidirectional end-to-end path must be established.
What if an end-to-end path is not available? What if the connection establishment time is
so long that it is hard to transfer data effectively?

First, introduced to deal with considerable delays and data loss in interplanetary
communications, delay-tolerant networks (DTNs) were designed to deal with these chal-
lenging scenarios and environments. However, the potential applications on Earth are
many. For example, in a natural disaster area, where no end-to-end connection can be
established, and internet access fails, the ability to communicate can save lives. In addition,
wildlife tracking/monitoring sensor networks, communication in remote and rural areas,
developing countries, and vehicular communications are scenarios that benefit from delay-
tolerant capabilities [1]. The last application is especially interesting for the real and fast
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implications it might have on our lives. The Internet of Vehicles (IoV) [2] is a network of
the future in which integration between devices, vehicles, and users will be unlimited and
universal, overcoming the heterogeneity of systems, services, applications, and devices.
Delay-Tolerant Internet of Vehicles (DT-IoV) is emerging and becoming a popular research
topic due to the critical applications that can be realized, such as optimizing traffic flow
and road capacity, software, and map update dissemination. Moreover, there are also
commercial applications such as tourist and leisure information, parking space availability,
but most importantly, assisting in communication between emergency services in areas
lacking conventional communication means [3].

In a DT-IoV network, there is no permanent connectivity with any centralized structure.
Nodes can move and communicate by exchanging messages through opportunistic wireless
ad hoc connections with other nodes. For a DT-IoV to work and be efficient, cooperation
between network nodes is necessary, but it cannot be expected, as nodes might not transmit
the messages they receive [4], either because a malicious user controls them, they lack
resources, or even because they are selfish and do not want to send messages from other
network nodes, only wanting to receive messages for themselves. This latter case is called
a black-hole attack. Expressly, the node refuses to transmit any message in which it is not
the source and deletes any messages it receives where it is not the destination. Black-hole
attacks are one of the most studied attacks in vehicular networks, and although there are
already some proposed solutions, none of them are fail-proof or tested for a vast number
of scenarios. Throughout the paper, the terms black-hole, malicious, or bad node are used
interchangeably to mean simply a black-hole node.

In this article, the following contributions are presented:

• BiRep is proposed as a new and completely distributed reputation scheme designed
to provide an effective and robust identification and punishment of black-hole nodes
in a DT-IoV network to diminish their impact on network performance. BiRep can
work with any underlying routing protocol.

• The BiRep design is thoroughly described, comprising the evaluation of mechanisms
for detecting black-hole nodes, based on message forwarding proofs stored in ex-
changed messages, the gains achieved by exchanging reputation information with
other nodes, and the effect of different punishment actions over black-hole nodes.

• BiRep performance is studied in different scenarios and compared with other re-
lated work.

The remainder of this article is as follows: Section 2 presents the background and
related work. Section 3 presents assumptions and performance metrics. Section 4 describes
the options taken in building BiRep, both for the detection phase, to improve the malicious
node detection speed without requiring too many node resources, and for the action phase,
to effectively punish malicious nodes without affecting good nodes. Section 5 presents
an extensive evaluation of BiRep in different scenarios, assesses the routing performance
gains for DT-IoV, and compares BiRep with the related work. Finally, Section 6 concludes
and provides ideas for future work.

2. Background and Related Work

In this section, a brief description of the theoretical background and related work is
given. First, an overview of DT-IoV fundamental concepts is presented. Then, black-hole
attacks are presented, and some already existing solutions are presented.

2.1. Delay-Tolerant Internet of Vehicles

DT-IoV is an IoV with delay-tolerant capabilities to support long disruptions in
network connectivity [2]. This concept was developed considering studies made with
Mobile Ad Hoc Networks (MANETs), Vehicular Ad Hoc Networks (VANETs), DTNs, and
the Internet of Things. MANETs bring the concept of establishing direct communication
between mobile nodes, which do not rely on a fixed infrastructure [5]. VANETs use vehicles
as nodes, but contrary to DT-IoV, they assume end-to-end connectivity exists through some
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path, which can be particularly challenging in high-mobility or very sparse scenarios such
as rural or mountainous areas [3]. This is where the DTNs capabilities are brought in as
in these environments, the traffic density is usually low, meaning fewer opportunities for
contact, and as the vehicles travel at a considerable speed, the contacts will be short.

VENIAM [6] is a company that is presently already implementing services using the
DT-IoV strategy, like mobile data offloading using delay-tolerance.

2.2. Attacks in DT-IoV

DT-IoV routing protocols require a degree of cooperation between nodes belonging to
it to deliver their destination messages. However, nodes might misbehave. Nodes’ misbe-
havior may significantly affect the network performance, as shown in [7,8], a significant
problem to be studied in the context of DT-IoV.

One of the most studied attacks is the black-hole attack. The impact on the network
that results from this type of attack can vary, affecting the normal functioning of routing
protocols in DT-IoV [9]. Not only the impact black-hole attacks can have in a network
but also the fact that it is commonly studied within the research community shows how
important it is to prevent this attack. This article will focus only on black-hole attacks
aiming to identify nodes that perform such attacks and decrease their network effect.

2.3. Black-Hole Solutions in DT-IoV

Various mechanisms have been introduced to address black-hole attacks in DT-IoV.
One of the first solutions proposed was ferry-based intrusion detection and mitigation
(FBIDM) [10].

In FBIDM, ferry nodes assist regular nodes in identifying nodes that might be ma-
licious. Ferry nodes circulate the networks, broadcasting messages that good nodes can
decrypt. These nodes will exchange with the ferry nodes information about past node
meetings and the delivery probability that is used to detect nodes that might be mali-
cious. If a node is declared suspicious a certain number of times, it will be included in
the blacklist that ferry nodes broadcast. Blacklisted nodes will be excluded from the net-
work. The FBIDM overall performance is good but is only suited for routing protocols
that use information to route, such as PRoPHET [11] or MaxProp [12], as it requires the
encounter and delivery information to make decisions. Furthermore, the dependency on
the ferry node is a big problem. If the ferry node fails or misbehaves itself, the network
becomes compromised.

A similar solution is presented with the mutual correlation detection scheme (MU-
TON) [13]. MUTON is similar to FBIDM but considers the transitive property when
calculating the delivery probability. Despite the improvements, the problems associated
with having ferry nodes persist.

In [14], the authors proposed a Misbehavior Detection System (MDS) that uses en-
counter records (ERs), which are similar to encounter tickets. When two nodes meet, an
ER is exchanged and used to assess a node’s trustworthiness. The ERs are created after
transmitting messages to another vehicular node. The ER includes both node identifiers, a
unique sequence number from both vehicles that increases by one after each contact, and a
set that identifies the transmitted messages. Every node maintains a Meeting List (ML) and
a Local Black List (LBL). The ML stores data from past meetings, like identifiers, meeting
time, and trust reputation (TR) from the nodes. ML information can be used to validate
the ER later. The LBL stores all malicious nodes locally detected by a node. Nodes will
not exchange messages with other nodes in their LBL for some time. To incentivize nodes
to cooperate, after the LBL time expires, nodes will be assigned a low TR and removed
from the LBL. The MDS system comprises the evaluation module and the decision module.
In the evaluation module, vehicular nodes assess the trustworthiness of other vehicular
nodes and the TR is updated. The decision module makes the decisions when TRs are
received. The MDS achieves high misbehavior node detection rates of over 90% and almost
null false-positive rates. Nevertheless, it is important to notice that as trustworthiness is
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calculated upon contact based on the exchanged ERs, nodes that never meet will not be able
to assert each other’s trustworthiness. This means that not all other nodes might detect a
malicious node in the network that has few contacts. This can be a problem as, upon a new
encounter, a node does not have information about the level of trust that the encountered
node has. By contrast, other nodes in the network might already have determined that
the node has malicious intent. Moreover, this scheme detects individual attackers well,
but it cannot handle the case where attackers collude. This is because a node is considered
malicious if it forwards few messages as compared with the messages it receives, which
can be measured using ERs. If attackers cooperate, creating valid ERs, malicious behavior
can be undetected.

In [15], the authors extend MDS with cluster analysis, allowing better discrimination
between good and malicious behavior, but the problems found in MDS [14] still occur.

In [16], the authors propose to keep packet delivery records instead of ERs to detect the
black-hole attack. A packet delivery record includes identifying the nodes that exchanged
packets, the number of received packets from the encountered node, the number of for-
warded packets to the encountered node, and the current time-stamp. Each node has two
specific tables in its memory, a receiving record table (RRT) and a self record table (SRT).
The RRT maintains the most recent packet records generated by its encountered nodes.
The SRT keeps the most recent packet records it generates for each node encounter. The
scheme begins when two nodes meet. Each node requests the other node’s RRT. With the
RRT, a node can calculate if the other node forwards few packets as compared with packets
it receives, similarly to the ER scheme of the MDS described above. A threshold is used to
mark nodes as suspicious. If the threshold condition is passed, the SRT is used to determine
whether the node met drops our packets. When a node is marked as suspicious more than
a certain number of times, it is classified as malicious. Otherwise, the nodes exchange
packets and generate packet records. This detecting black-holes method has a black-hole
detection ratio for different mobility schemes of over 85% and a false-positive ratio of less
than 1%. While it can detect packet drops, which [14,15] could not, it still suffers from the
same problems. Furthermore, in [16], no punishment mechanism is described to identify
malicious nodes or a reward to well-behaved nodes. Without punishment, malicious nodes
do not have an incentive to cooperate in the network.

Another scheme, called RCAR [17], does not detect black-hole attackers but limits
the effects of their presence. This scheme also presents some interesting ideas. Identically
to previously described schemes, nodes maintain a local notion of reputation. In RCAR,
messages carry a list, called nlist, with the identifiers of nodes that forwarded it. If the
message passes more than once in the same node, it is not added again. To avoid malicious
nodes adding or modifying identifiers, the message also carries a list, called slist, of digital
signatures to certify the information in nlist. When a node receives a message, it updates the
reputation of nodes that forward the message as specified in the lists. When the message
is successfully delivered to its destination, the destination sends an acknowledgment
(ACK) message to the sender. The ACK starts with the nlist and slist of the message it is
acknowledging. Otherwise, it works as a regular message so that it can follow a different
path from the one taken by the original message, and different nodes can contribute to
its forwarding, being added to the lists. When the ACK reaches the original sender, it
uses the lists’ information to update the reputation information of nodes that forward the
messages. Some problems are found in the scheme. Nodes cannot distinguish a message
dropped by a black-hole node from a message dropped, because a node has no buffer space.
Furthermore, there is no information about the specific node that dropped the message. To
manage this situation, an aging mechanism decreases all nodes’ reputation periodically.
However, the smaller a node reputation is, the less likely it is that the node is chosen to
forward messages. Other problems can be found in RCAR. Namely, not knowing or not
having an idea of which node misbehaved, messages from that node can still be received,
and the node has no incentive to cooperate.
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In [18], a cooperative watchdog system (CWS) is proposed. The CWS monitors
messages delivered, relayed, and dropped. The CWS of a node exchanges reputation
information with other nodes, which is a significant advantage as compared with previously
described schemes. However, while the impact on routing performance is assessed, the
misbehaving detection ratio is not assessed, and neither are the ratios of correct and
incorrect classifications.

Other methods exist to try to solve black-hole attacks in delay-tolerant networks. This
section only presented some of them and described only the most relevant parts of those
schemes. Table 1 summarizes the main characteristics of the described mechanisms. More
comprehensive surveys of solutions to black-hole or other attacks in similar situations
may be found in [19,20]. For VANETs, a survey is available in [21]. Most solutions for
VANETs assume a centralized authority or cloud server that is always available, generally
unconstrained in terms of communication, computation, and storage, which cannot be
compromised [22], and thus does not apply to a delay-tolerant scenario that requires a
completely distributed solution.

Table 1. Delay-tolerant networking (DTN) black-hole (BH) detection and mitigation schemes-related work.

Scheme Information Used Detection Action Limitations

FBIDM [10] past meetings, past
delivery probability

suspicious
multiple times exclude black-holes requires ferry nodes

MUTON [13]
past meetings, past
delivery probability,

transitivity

suspicious
multiple times exclude black-holes requires ferry nodes

MDS [14] encounter records forwards less
than a threshold exclude black-holes no exchange of

trust information

MDS extension [15] encounter records,
cluster analysis

forwards less
than a threshold exclude black-holes no exchange of

trust information

Packet Exchange
Recordings [16] delivery records

forwards less
than a threshold
multiple times

none described no exchange of
trust information

RCAR [17]
messages carry

forwarders,
ACK messages

aging decreases
reputation

prefer nodes with a
higher reputation

no exchange of trust
information, requires ACK

CWS [18] messages delivered,
relayed, dropped

exchange of
reputation, thresholds

few resources used
for nodes with
low reputation

does not assess
classification performance

BiRep messages
carry forwarders

exchange of reputation,
node has no

forwarding record

warmup, disconnect
from black-holes,
delete messages
from black-holes

The main motivation to try to solve the problem of black-hole nodes was the fact that
most effective protocols use a reputation value as a base for judgment, the dependency
of other nodes for information, and the fact that to classify a node in most reputation
schemes, there must be an encounter, not allowing for a good network awareness. A
wrong reputation value is problematic in the case you want to punish nodes for malicious
behavior. Nodes, good or bad, might be in a limbo of classification before reaching a certain
threshold. Furthermore, the possibility that good nodes might have to be continually
proving they are good may slow down message exchanges. The dependency on other
nodes’ information is a clear drawback when analyzing scenarios with black-holes, having
to meet a node before being able to classify it is a drawback. In that way, a node will
never be able to identify all the existing malicious nodes in a large scenario. Having these
primary three factors in mind, an attempt was made to try to create a reputation system
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that corrects these drawbacks and also achieves a high black-hole node detection ratio and
a 0% false-positive ratio.

3. Preliminaries
3.1. Assumptions

Several assumptions are made following some aspects of DT-IoV in general. Nodes
can move and communicate only by exchanging messages wirelessly with other nodes
within radio range. The wireless link can be broken, for instance, if the node in contact goes
beyond radio range, which results in an incomplete message transmission being dropped.

It is assumed that every node has a unique identifier that allows other nodes to distin-
guish them in the network. Besides, messages carry the list of the nodes’ identifications
they have passed by. Starting with the source, each node adds its signed identification
upon receiving a message that is not destined to itself, as in RCAR [17]. Moreover, it is
assumed that nodes, when receiving a message, can know its source.

The proposed detection schemes only focus on simple black-hole attacks. This means
that a black-hole node maintains its behavior during the whole simulation and does not
collude with other black-hole attackers.

3.2. Reputation System Performance Metrics

Before conducting a comparative analysis of the reputation systems, it is essential to
clarify the performance metrics used.

The metrics are divided into two groups. The first is for purposes of evaluating the
routing protocols’ performance. The second is to evaluate the node’s classification of each
other. In this article, additional metrics are used in both groups. These serve to measure
the same metrics but only concerning the good nodes in the network.

3.2.1. Routing Protocol Metrics

Routing protocol metrics aim to measure how well the routing protocols perform
when faced with various percentages of black-hole nodes.

The delivery ratio indicates the successfully delivered messages from all the messages
that were sent as in:

delivery ratio =
number of delivered messages
number of created messages

(1)

Notice that although in the ONE simulator [23], the same message can be delivered
more than once to the recipient, only the first time is accounted for in the equation.

Delivery Ratio for Good Nodes is essentially the same as the delivery ratio. However,
only the delivered and created messages from good nodes to good nodes are accounted for,
as in:

delivery ratio f or good nodes =
number of delivered messages from good nodes to good nodes
number of created messages from good nodes to good nodes

(2)

The latency of a message is the time delay between the creation and the delivery of
the message. In the Average Latency for Good Nodes metric, only messages from good
nodes to good nodes are accounted for as in:

latency =
∑

number of delivered messages
i=0 (delivery time i − creation timei

)
number of delivered messages

(3)
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The overhead ratio of a protocol indicates the excess of messages successfully transmit-
ted compared to the total number of messages delivered. In the Overhead Ratio for Good
Nodes metric, only messages from good nodes to good nodes are regarded, as shown in:

overhead ratio f or good nodes =
tfrom good nodes to good nodes−dfrom good nodes to good nodes

dfrom good nodes to good nodes
(4)

where t represents the number of transmitted messages and d the number of delivered
messages.

3.2.2. Node Classification Metrics

The objective of node classification metrics is to measure how well and how fast
nodes classify each other as good or malicious in the simulation when faced with various
percentages of black-hole nodes.

The detection ratio represents the percentage of malicious nodes detected by all nodes
in the simulation. This means that for a detection rate of 100%, both good and malicious
nodes must identify all black-hole nodes. Thus, if the simulation has B black-hole nodes,
each good node should identify B black-hole nodes, and each malicious node should
identify B-1 black-hole nodes, not counting itself. Considering BHs as an abbreviation of
black-hole nodes, N as the total of good nodes, B as the total of black-hole nodes, and T as
the total number of nodes in the simulation, the detection ratio is calculated using:

detection ratio [%] =
∑T

i=0(number of BHs classified as BHs i

)
N × B + B × (B − 1)

×100 (5)

The detection ratio for good nodes is the percentage of malicious nodes detected by
good nodes in the simulation. Here, contrary to the detection ratio, only the classification
of black-hole nodes by good nodes is relevant. The distinction is made between the two
detection ratios because it is in a reputation system. However, all nodes must identify the
threats, which is more valuable for the network if all good nodes identify all bad nodes.
The detection ratio for good nodes presents a clearer view of this point. Considering N as
the total of good nodes and B as the total of black-hole nodes, this metric is calculated as:

detection ratio f or good nodes [%] =
∑N

i=0(number of BHs classified as BHs i

)
N × B

×100 (6)

The false-negative ratio is the percentage of black-hole nodes mistakenly classified
as good. With a high false-negative ratio, good nodes exchange messages with malicious
nodes thinking they are good and cooperate in the message exchange. Considering T as
the total number of nodes in the simulation, the false-negative ratio is obtained using:

f alse − negative ratio [%] =
∑T

i=0(number of black − hole nodes classified as good)i
total number of classifications

×100 (7)

The false-negative ratio for good nodes is the percentage of black-hole nodes mistak-
enly classified as good by good nodes. Considering G as the total number of good nodes
in the simulation and BHs as the number of black-hole nodes, the false-negative ratio for
good nodes is obtained using:

f alse − negative ratio f or good nodes [%] =
∑G

i=0(BHs classified as good by good nodes)i
total number of classifications by good nodes

×100 (8)

The false-positive ratio is the percentage of good nodes mistakenly classified as
malicious. This is a crucial metric if it is decided to punish bad behavior. If the false-
positive ratio is high, good nodes may be prevented from contacting other nodes, unfairly
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impairing the exchange of messages. Considering T as the total number of nodes in the
simulation, the false-positive ratio is obtained using:

f alse − positive ratio [%] =
∑T

i=0(number of good nodes classified as black − hole nodes )i
total number of classifications

×100 (9)

The false-positive ratio is the percentage of good nodes mistakenly classified as mali-
cious by good nodes. Considering G as the total number of good nodes in the simulation
and BHs as an abbreviation of black-hole nodes, the false-positive ratio for good nodes is
obtained using:

f alse − positive ratio f or good nodes [%] =
∑G

i=0(good nodes classified as BHs by good nodes )i
total number of classifications by good nodes

×100 (10)

4. Building the Reputation System
4.1. Approach to Building the Reputation System

To create a reputation system, various variables must be considered. The testing
scenario has to be studied, the detection method chosen, and how to apply it is also vital.

To choose the scenario, the first step was to select the number of nodes. Other impor-
tant aspects of the scenario are the node movement model and the message generation rate.
Although the number of messages created is an important variable, especially to evaluate a
reputation system, it was decided that for the initial simulations, all nodes would create
messages at the same rate. There are more factors involved in the simulation scenario, but
these were the main factors chosen to be evaluated at a specific level.

With the simulation scenario set, the reputation system began to be created. The
system’s creation was divided into two parts: The detection phase and the action phase.
The detection phase, as the name suggests, addresses the detection of black-hole nodes
by nodes in the network. In turn, the action phase uses the detection made to punish the
bad nodes.

4.2. Simulation Scenario

The ONE simulator [23] gives a plethora of options when it comes to the simulation
scenario. The number of nodes in a network and its speed influence the number of contacts
between nodes positively, and consequently, the number of messages transmitted. In the
same size map, fewer nodes will lead to a sparser network, while more nodes will result in
a denser network. With a sparse network, there are fewer contacts; therefore, there are few
opportunities for exchanging messages.

Nevertheless, with fewer messages, node buffers are not as congested and can carry
messages longer without dropping them. For dense networks, the exact opposite happens.
With nodes moving faster, more contacts happen, but contacts are shorter, leading to fewer
messages transferred in each contact.

The overall simulation settings are presented in Table 2. The Helsinki downtown map
was used similarly to [9,24]. To represent better the diversity that a DT-IoV network might
have, three types of nodes were considered: Vehicles, cars, pedestrians, and trams.

The routing protocol chosen for the analysis was Prophet as it is one of the most
commonly used protocols. If a protocol uses none or very few intermediate nodes between
a source and a destination, like the Direct Delivery [25] or Spray-and-Wait [26] protocols,
identifying malicious nodes will be impossible or very slow. As a matter of fact, Direct
Delivery is unaffected by black-hole nodes [8], as a source node only delivers a message if
it meets the message destination node, thus not requiring any intermediate node, which
makes it impossible to detect black-hole nodes. Naturally, the disadvantage of Direct
Delivery is poor routing performance. Spray-and-Wait uses a very limited number of
intermediate nodes, which slows down the detection of black-hole nodes.
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Table 2. Simulation parameters.

Simulation Time 24 h

Map Helsinki downtown (4500 m × 3500 m)
Movement Model Shortest Path Map-Based Movement Model

Nodes’ speed Pedestrians 1.8–5.4 km/h; Cars 10–50 km/h; Trams 25–36 km/h
Number of nodes 206 (Pedestrians: 100; Cars: 100; Trams: 6)
Nodes’ buffer size 5 MB
Nodes’ wait time 0–120 s

Message size 500 kb–1 MB
Message generation interval 25–35 s
Message TTL (Time to Live) 5 h

Interfaces’ data rate 250 kBps = 2 Mbps
Interfaces’ transmission range 10 m

For all results presented, ten simulations were made for each scenario with different
seeds for generating different node movement and traffic generation patterns to guarantee
nondeterministic results in each run. The corresponding 95% confidence intervals are
presented with the results.

4.3. Detection Phase
4.3.1. Independent Detection Scheme: Scheme Description

The detection part of the reputation system in each node has the purpose of identifying
black-hole nodes in the scenario. For this reason, to classify the detection schemes, only
three metrics were used: The detection ratio, false-positive ratio, and false-negative ratio.

Various strategies can be used to identify malicious nodes, as seen in the Background
section. For this work, some considerations were deemed necessary. First, the detection
phase must be decentralized, allowing each node to have its reputation rating for other
nodes in the network. Second, the reputation rating should be achieved in the most
independent manner possible, and when necessary, exchanged information between nodes
should be done carefully. In addition, it is of higher importance to achieve the best metric
possible and a fast convergence rate in the false-positive ratio than in the false-negative and
the detection ratio. This decision was made because of the impact that the false-positive
and false-negative ratios have in the action phase of the scheme. In a worst-case scenario
where a reputation system has a detection ratio of 0%, the network’s impact would be
approximately the same as if no reputation system was applied. The same goes for the
false-negative ratio. If a system has a false-negative ratio of 100%, then all black-hole nodes
are considered good, and it is the same scenario as if no reputation were applied. However,
a high false-positive ratio classifies many good nodes as malicious. This is a bigger problem
as the goal of the whole reputation system is to improve the delivery ratio of good nodes.
Classifying good nodes as bad, considering that a punishment will be applied to these
nodes will probably decrease the good nodes’ delivery ratio, which is the opposite to what
is desired.

The first attempt at a detection scheme is straightforward. Each node has a black-hole
node list and a good node list. The black-hole node list saves the identification of nodes
that are classified as bad, and the good node list saves the identification of nodes that
are classified as good. When a node receives a message, all nodes that contributed to
forwarding the message, as listed in the path stored in the message, are classified as good,
put on the good node list, and removed from the black-hole node list, if they were listed
there. The message source is considered malicious and put on the black-hole list unless it is
already on the good node list. This scheme is called the Independent Detection Scheme. A
node is classified as bad if it is listed in the bad node list, and classified as good otherwise.

Figure 1 represents an example of the classification made in this detection scheme.
In the figure, C refers to car and P to pedestrian; the following number serves as the
identification of the node for scheme purposes. Figure 2 presents a flowchart of the
detection scheme that is executed by each node when a contact is established with another
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node to exchange messages, detailing how the information in the messages received is
used to update a node’s reputation tables.
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4.3.2. Independent Detection Scheme: Analysis and Discussion

As nodes’ behavior does not change during the simulation, every node that forwards
a message in which it is not the source is good and will never change its status from the
moment it is classified. Therefore, this detection scheme always leads to a 0% false-negative
rate because not a single malicious node will be classified as good. The false-positive rate
and detection rate have various results depending on the routing scheme used and the
number of malicious nodes in the simulation. The results simulated in the ONE, for the
settings presented in Table 2, are depicted in Figure 3 when using the Prophet routing
protocol with 20% of black-hole nodes. The 95% confidence intervals are also plotted,
showing great trust in the achieved results, particularly by the end of the simulation.

The simulation results show that the false-positive ratio decreases to zero. Initially,
nodes only have messages created by themselves. Thus, when nodes try to forward their
messages, they will be considered malicious and added to the black-node list. Having 20%
malicious nodes in the network results in about 20% being correctly classified as malicious
and about 80% incorrectly classified as malicious. This is why the false-positive rate starts
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at about 80%. As good nodes forward messages, their classification will change to good,
and the false-positive rate decreases, tending to zero after about 24 h.
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The simulation results also show that the detection ratio increases as time goes by.
In the beginning, black-node lists and good node lists are empty, so the detection ratio
accounts for zero black holes detected by every node. As nodes generate messages, they
will be classified as malicious unless they contribute to the forwarding process, so the
detection ratio gradually increases, reaching about 97% after 24 h.

If a modification is done such that a node is only classified as malicious after being
the source of a message n times without forwarding messages, the detection ratio is much
slower, and the false-positive ratio does not improve.

In the independent detection scheme, every node classifies other nodes independently.
Thus, the correct classification is not very fast. If nodes cooperate in the classification
process, the classification can be faster.

4.3.3. Exchange Good Nodes Tables Detection Scheme: Scheme Description

Making nodes exchange reputation information should improve the speed of the
classification mechanism. We propose the Exchange Good Nodes Tables Detection Scheme,
where nodes send their good node list when they send a message to another node. This
allows nodes to have information about other nodes they did not meet before without
requiring any centralized server. To prevent accepting wrong information from malicious
nodes, good node lists are used only if received from a node that has been classified as
good, being deleted otherwise.

This means that, as nodes can only classify other nodes as good if they have a message
forwarding proof and this proof is always accurate, the information will always come from a
good node, and its use will never be erroneous. The black-hole node list is not exchanged, as
nodes have no proof that other nodes are black-holes. A picture exemplifying the Exchange
Good Nodes Tables Detection Scheme is presented in Figure 4. Figure 5 presents a flowchart
of the detection scheme that is executed by each node when a contact is established with
another node to exchange messages and information in the reputation tables.
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4.3.4. Exchange Good Nodes Tables Detection Scheme: Analysis and Discussion

The results simulated in the ONE, for the settings presented in Table 2, for Prophet
with 20% of malicious nodes are presented in Figure 6, along with the results from the In-
dependent Detection Scheme for comparison. The 95% confidence intervals are again very
small, except for the simulation’s beginning, showing great trust in the achieved results.

If good node lists received from nodes not yet classified as good are stored, waiting
for the node to prove as good to be used requires significant additional memory and only
marginally improves the classification performance. This is why good node lists received
from nodes not classified as good are dropped.
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nodes classifications are exchanged. The false-positive ratio was 0% as early as the fourth hour of the simulation, while in
the Independent Detection Scheme, it had not reached 0% after 24 h of simulation.

4.4. Action Phase

The action part of the reputation system in each node has the purpose of punishing
black-hole nodes. The metrics used to check the reputation system’s performance were the
delivery ratio for good nodes, the false-positive ratio for good nodes, and the detection
ratio for good nodes.

For the action phase, the type of punishment selected and the time when nodes should
start to apply the punishment are relevant. Considering the detection scheme chosen, if
punishment is applied too soon, nodes might not have time to reach the false-positive ratio
of 0%. By this, good nodes will be incorrectly penalized. On the other hand, if punishment
is applied too late, it might not affect the nodes exchanges enough to change the delivery
ratio of good nodes significantly.

For punishment, three main and independent schemes were considered: An action
related to creating messages, an action regarding the connection between nodes, and an
action associated with deleting messages. Hereafter, they will be referred to as the Creation,
Disconnect, and Delete action, defined as:

• Creation Action: Nodes do not create messages for nodes that they have in the black-
hole node list.

• Disconnect Action: When a node is within range of another node that is in the black-
hole node list, no connection is established, and no messages are exchanged.

• Delete Action: All messages from nodes in the black-hole list are deleted from buffers.

These were the main actions taken to punish the black-hole nodes. As one should not
assume which scheme will perform better or even if all actions together provide a better
result, all possible combinations of actions were tested. To decide when to start applying
the punishments, the results from the detection scheme were observed. Prophet reaches
a false-positive ratio of 0% around the fourth hour of the simulation. For this reason and
evaluation purposes, it was decided to test the actions scheme starting at the beginning,
and at the second, fourth, and eighth hour of the simulation. The simulations use the
defined settings in Table 2. In the first instance, for selecting the best options for the action
scheme, only the metric of the delivery ratio for good nodes is evaluated. A case called
“No Action” is used, representing the delivery ratio for good nodes if no action was taken
to punish the black-hole nodes. From the results, the three action schemes with the best
performance were chosen to be analyzed in more depth, and the corresponding results are
presented in Figure 7 with 95% confidence intervals.

As the most important part of a detection scheme is to increase the number of messages
exchanged between good nodes, they should have a better delivery ratio for good nodes.
The action scheme that provides the highest delivery ratio for good nodes more times is
the 4H-Disconnect + Delete. However, this cannot be the only indicator to choose an action
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scheme, as it is still necessary to observe the action scheme’s impact on detecting nodes. It
is expected that changes for either metric will only start appearing once the action scheme
starts. If a false-positive ratio for good nodes of 0% is reached before the action phase starts,
the action scheme should not have an impact on the false-positive ratio for the good nodes
metric, whereas if it is not reached, the false-positive ratio will be higher than if no action
was taken. This is mostly because, in any of the three action schemes, the Disconnect action
prevents nodes from exchanging messages with nodes that they consider bad, making the
detection process more difficult. For protocols in which the false-positive ratio of 0% is not
reached, this metric will be higher the earlier the action scheme is applied. For the detection
ratio for good nodes, it is also expected that the performance will decrease once the action
takes place, as in any of the action schemes selected, there is a disconnect from the nodes
that are considered malicious. Thus, no exchange of messages with malicious nodes will
happen. The messages from nodes considered malicious no longer circulate on the network,
which prevents some nodes from being identified as malicious, also preventing some nodes
from proving themselves as good.
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The results for these metrics were simulated using the defined settings in Table 2.
The 95% confidence intervals are very small, showing great trust in the achieved results
presented in Figure 8.
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The results concur with those expected. The false-positive ratio for good nodes reaches
zero before 4 h of the simulation, so it is not affected by the actions taken. However, when
messages from black-hole nodes start being dropped, fewer messages circulate in the
network, reducing the opportunities for good nodes to prove themselves as good, so the
detection ratio for good nodes grows slower when traffic in the network reduces as a result
of the action schemes. Furthermore, it does not appear to be a difference between the action
schemes in which the action scheme starts at 8H. This can be because creating messages
only for nodes that are considered good does not guarantee that those messages will be
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exchanged. Furthermore, it limits the messages created to only some good nodes, ending
up excluding all nodes that are good but have not yet been identified as such.

After analyzing the scenarios, the best combination of an action scheme is 8H-Disconnect
+ Delete. It is the second action scheme with the best delivery ratio for good nodes, not
being outperformed by the 4H-Disconnect + Delete action scheme by a large value, but
outperforming the 4H-Disconnect + Delete action scheme by a lot in terms of detection and
false-positive ratios.

Due to how the nodes are classified, in a binary way, always being good or bad and
not having any “status” in-between, the reputation scheme was named Binary Reputation
System, or for short, BiRep. Naturally, nodes that are not yet in the good node list or
black-hole node list are not yet classified, assumed as being good by default.

5. Robustness Results and Analysis

In the previous sections, the results were studied to aid the development of the BiRep
algorithm. This section has as the objective to test the reputation system against several
different scenarios in order to determine BiRep’s robustness. To evaluate the results, only
metrics for good nodes will be judged once they are most relevant to evaluate the whole
scheme’s usefulness.

As the most important factor for the success of a reputation system is the number
of messages relayed between nodes, the first group of scenarios uses different message
creation intervals and transmission rates to see how these differences influence the results.
The second group of scenarios that are tested has a major focus on node density.

5.1. Varying the Message Generation Rate

Most of the parameters for the scenarios are equal to the ones described in Table 2 of
Section 4.2. Note that the “Base” scenario corresponds to the exact settings of Table 2 and
serves as a comparison for the other scenarios. In the “Less messages” scenario, a node
creates a message every 35–70 s. In the “More messages” scenario, each node generates
messages in an interval from 9 to 18 s. The “Bigger transmission rate” scenario maintains
the message generation rate from the base scenario, but the transmission rate from the
nodes’ interfaces increases to double. This is summarized in Table 3.

Table 3. Settings assigned to different simulation scenarios to assess message generation impact.

Scenario Name Base Less Messages More Messages Bigger Transmission Rate

Message generation interval 25–35 s 35–70 s 9–18 s 25–35 s
Interfaces’ data rate 2 Mbps 2 Mbps 2 Mbps 4 Mbps

First, looking at the node classification metrics, it would be expected that, for the
“Less messages” scenario, fewer black-hole nodes would be identified, and for the “More
messages” and “Bigger transmission rate” scenarios, more. For the “Less messages”
scenario, fewer messages would be created. Therefore, fewer messages circulate in the
network, and fewer opportunities exist for nodes to prove themselves as good. The
exact opposite happens with the “More messages” scenario. In the “Bigger transmission
rate” scenario, the message transmission rate is double, allowing nodes to exchange more
messages and having more and faster information to classify nodes as good or as bad.
The results for the Prophet are presented in Figure 9 for 20% of malicious nodes. The 95%
confidence intervals are very small, showing great trust in the results.

Analyzing the results, the expected is confirmed. The detection ratio for good nodes
increases in all scenarios, ranging from 70% to 90%, depending on the scenario. After 8 h,
when the action phase starts and messages from black-hole nodes are dropped, traffic in
the network is reduced, so the detection rate increases more slowly. The false-positive ratio
decreases to zero for most of the simulation before 4 h. For the routing protocol metrics,
it was decided to test the reputation system with various percentages of malicious nodes
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to test how BiRep would respond. The results for the same sets of simulations used for
Figure 9 are presented in Figure 10. Again, the 95% confidence intervals are small, showing
good confidence in the results.
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Without a reputation scheme, the delivery ratio, average latency, and overhead ratio
for good nodes performance decrease as the percentage of black-hole nodes increases.
Having more black-hole nodes in the network makes it harder for good nodes to deliver
messages, resulting in a lower delivery ratio. When they deliver the messages, it takes
longer, so more latency and, in general, more hops. The overhead ratio is also bigger
because, with the increase in malicious nodes in the network, the same number of messages
are relayed, but fewer are delivered using more hops. It is desired that all scenarios have a
better performance than if no reputation scheme was used.

Prophet, for all scenarios, shows better results for the delivery ratio for good nodes
than if no reputation scheme was used. This proves the usefulness of the reputation scheme.
Furthermore, the overall performance of the other metrics also improves.
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5.2. Varying the Node Density

The second group of scenarios is related to the type and quantity of nodes. The
“50 nodes” and “106 nodes” scenario uses the simulation parameters presented in Table 2,
except for the reduced number of nodes. The “All cars” scenario also uses the parameters
of Table 2, except that there are 200 cars and 0 pedestrians.

When the node density is modified, it is not easy to predict the results. While it is
plausible to assume that 50 nodes will have fewer contacts than 106 or 206 nodes and thus
fewer opportunities to exchange messages, the initial location and further movement of
the nodes are random. Therefore, it is possible to end up with nodes moving very close to
each other in the simulation, increasing the contact opportunities. Furthermore, with fewer
nodes, fewer messages need to be exchanged before all malicious nodes are identified.
Results depend immensely on nodes’ behavior and on the simulation scenario in general.
For the scenario with all cars, it is not easy to predict results as well. Having more cars,
and therefore more vehicles moving at a higher speed, increases the encounter possibility
and can decrease the time available for message exchange.

The results for the Prophet are presented in Figure 11 for 20% of malicious nodes.
Again, the 95% confidence intervals are small, showing good confidence in the results. The
detection and false-positive ratios behave as expected, reaching high detection levels and a
0% false-positive ratio. In addition, overall, a better detection ratio and faster convergence
of the false-positive ratio to zero are related to a larger number of nodes, resulting in more
contacts and, therefore, more message exchanges, thus having more and faster information.
For the detection ratio, not a big difference is noted. This means that BiRep does not seem
to be greatly affected by the profile or number of nodes.

Evaluating the routing protocol metrics, the results are shown in Figure 12. The results
show a big increase in the delivery ratio and overhead ratio for all scenarios. The latency
does not change in such a significant matter, but it does not get worse either.
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and profiles.

Overall, BiRep performs very well in all scenarios. The delivery ratio can be, in some
cases, even ten times larger than if no reputation is used. The latency is not significantly
affected by the node density, speed, or message generation rate when reputation is used.
The overhead ratio also presents significant gains as it can be reduced ten times by using
the reputation mechanism.

5.3. Comparing BiRep with the State-of-the-Art

Finally, we compare BiRep with other reputation schemes described in Section 2. For
FBIDM [10], the overall conclusion was that for the Prophet routing protocol, the false-
positive ratio was kept between 2% and 5%. The percentage of malicious nodes detected
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was around 80% at best. Although a straight comparison cannot be made, as neither the
simulator nor the simulation parameters are the same, the scenario with 50 cars is similar
enough to try and make a fair comparison. Figure 11 shows that for the Prophet protocol,
the detection ratio is set around 70–80% and 0% for the false-positive ratio. The results are
not much different, but BiRep has the benefit of not having a single point of failure, as it is
not a centralized system, and nodes can make decisions by themselves.

For MUTON [13], the simulation results are better: 1–2% false-positive ratio and 95%
detection ratio. This scheme has 10–30% of malicious nodes in the simulation. For that
scenario, again comparing with the 50 nodes scenario for 20% of malicious nodes, BiRep
has a 0% false-positive ratio and at least 80% detection ratio. MUTON has a better detection
ratio but problems associated with having a centralized detection scheme.

Compared with the MDS in [14], for Prophet, the MDS scheme has a detection ratio
higher than 90%, reaching 97%, and 0% false-positives. To make a fair comparison, as the
simulator used in [14] is the same in this work, and the authors provided the simulation
settings, a test was made. The detection scheme of BiRep was applied but using the
simulation settings of [14]. Actions started being applied at 10,000 s, as in [14], and using
the Disconnect Action scheme. The results are presented in Figure 13.
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As the simulation results prove, at least the detection scheme part of BiRep works
very well, outperforming the results of MDS [14] for black-hole nodes, and for the most
part, reaching a perfect result in terms of detection.

For [16], again, only the Prophet protocol is analyzed. A fair comparison cannot be
made, as the simulator and movement models are not the same. The detection rate for
different mobility schemes is 85–100% and the false-positive rate is around 2%, in the best
case. The results, in general, are worse than those for BiRep. When comparing, BiRep
does stand out as a good option. However, to make a completely fair comparison, further
simulations should be made. That would require access to the other works’ source code, so
it is left for further work.

Our solution also assumes that nodes do not change behavior, so there are no grey-hole
nodes and nodes do not collude. Even when looking only at a scenario where black-hole
nodes do not change behavior and do not collude, there are still flaws. If direct delivery
were to be used, all nodes would be considered malicious as they are always the source of
the messages they carried. Nevertheless, this can also be considered a nonproblem as Direct
Delivery performance is not affected by black-hole nodes. Table 4 presents a comparison
between BiRep and state-of-the-art schemes regarding false positive and detection ratios.
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Table 4. Comparison of BiRep with the state-of-the-art regarding false positive and detection ratios.

Reputation Schemes False Positive Ratio Detection Ratio

FBIDM 5% 80%
MUTON 2% 95%

BiRep 0% 80%

6. Conclusions

This article’s main objective was to develop an effective decentralized reputation
scheme for DT-IoV, adaptable to various network scenarios to diminish black-hole nodes’
effects in the network. In the detection phase, the Exchange Good Nodes Tables detection
scheme was selected as the best choice as it is decentralized, requires little memory in the
nodes, and can classify nodes without encountering them. For the Action Phase, selecting
the best action was to disconnect from the identified black-hole node and drop messages
from black-hole nodes after eight hours, which is long enough to have a 0% false-positive in
most scenarios, and avoid excluding good nodes from the network. However, for routing
protocols where messages have a very small number of hops, like Spray-and-Wait, it may
take much longer to identify malicious nodes correctly.

BiRep offers a solution to deal with black-hole nodes that significantly improve routing
protocol metrics. The simulation results for different scenarios prove BiRep’s versatility,
achieving in all scenarios an up-to-10 times improvement in delivery ratio and overhead
ratio, helping to increase the performance of the overall network.

Some ideas are left for future work: Studying the case of collusion attacks; using social
information to improve the classification of nodes; using adaptive mechanisms in the action
phase to deal with protocols with a reduced number of hops like Spray-and-Wait, and to
deal with node redemption; investigate the use of the Blockchain technology to maintain
reputation information as in [27].
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