
Supplementary Materials 

Section S1. WDCU Design 

The core of the PL design is the convolution layer, which significantly impacts the computation 
rate of entire system. Due to the depthwise convolutional layer's grouped convolution structure, the 
data between each input channel cannot be reused. The winograd algorithm for depthwise 
convolution was introduced [1], the structure of the WDCU was displayed in Figure S1. In order to 
speed up the computation rate, 10 entities of WDCU were instantiated, which they are running 
simultaneously and in parallel on one convolution process. Weight conversion of the Winograd 
algorithm is conducted after the model is trained, and the conversion results are saved in a DRAM 
block. The process of the Winograd conversion is described as follows. 

As for the first depthwise convolutional layer, the conversion of the 1 × 3 convolution kernel is: 

⎩⎪⎨
⎪⎧ 𝑤଴ = 𝑔଴𝑤ଵ = 𝑟𝑜𝑢𝑛𝑑 ൬𝑔଴ + 𝑔ଵ + 𝑔ଶ2 ൰𝑤ଶ = 𝑟𝑜𝑢𝑛𝑑 ൬𝑔଴ − 𝑔ଵ + 𝑔ଶ2 ൰𝑤ଷ = 𝑔ଶ

(𝑆1) 

As for the second depthwise convolutional layer, the conversion of the 1 × 2 convolution kernel 
is: 

⎩⎪⎨
⎪⎧ 𝑤଴ = 𝑔଴𝑤ଵ = 𝑟𝑜𝑢𝑛𝑑 ൬𝑔଴ + 𝑔ଵ2 ൰𝑤ଶ = 𝑟𝑜𝑢𝑛𝑑 ቀ𝑔଴ − 𝑔ଵ2 ቁ𝑤ଷ = 𝑔ଵ

(𝑆2) 

where 𝑔 is the original parameter, and 𝑤 is the transformed parameter. 
Line buffer units were used to buffer for input transformation. The input transformation is shown 

in equation S3. The transformed input data will be transmitted to the Multiplier array unit that 
implements the input's multiplication and the corresponding weights from the WDCU weight buffer 
unit. 

൞𝑥଴ = 𝑑଴ − 𝑑ଶ𝑥ଵ = 𝑑ଵ + 𝑑ଶ𝑥ଶ = 𝑑ଶ − 𝑑ଵ𝑥ଷ = 𝑑ଷ − 𝑑ଵ
(𝑆3) 

where 𝑑 is the input data, and 𝑥 is the output value of the input transformation unit. 



 
Figure S1. Design of WDCU. The converted weights are stored in DRAM where in 
WDCU Weight Buffer. The input of the first depthwise convolutional layer is received 
from an input buffer connected to the DMA block. The input of the second depthwise 
convolutional layer is received from the first pointwise convolutional layer.

In the OI-DSCNN model, since the size of the convolution kernel of different depthwise 
convolutional layers is different, a configurable output inverse transformation unit is designed in 
the WDCU, which supports winograd algorithm 𝐹(2, 3) and 𝐹(3, 2) for fast convolution. As for 
the 1 ×  3 convolution kernel, the configurable output inverse transform unit is illustrated as 
follows: ቄ𝑜𝑢𝑡଴ = 𝑠଴ + 𝑠ଵ + 𝑠ଶ𝑜𝑢𝑡ଵ = 𝑠ଵ − 𝑠ଶ + 𝑠ଷ (𝑆4) 

As for the 1 × 2 convolution kernel, the configurable output inverse transformation unit is as 
follows: 

൝𝑜𝑢𝑡0 = 𝑠0 + 𝑠1 + 𝑠2𝑜𝑢𝑡1 = 𝑠1 − 𝑠2𝑜𝑢𝑡2 = 𝑠1 + 𝑠2 + 𝑠3 (𝑆5) 

where 𝑜𝑢𝑡 is the configurable output inverse transform unit's output value, 𝑠 is the multiplier 
array unit's output value. The final output of WDCU are quantized to 8-bit signed fixed points in 
relu-activation & quantization unit as Equation 11 in article. 

Section S2. PCU Design 

The PCU comprises line buffer, multiplier array unit, adder tree unit, relu unit, and maxpooling 
unit. As shown in Figure S2, the result of WDCU is connected to the line buffer of the first PCU, 
then passed to the line buffer of the next PCU, and so on. Each multiplier array unit multiplies data 
from its line buffer with its corresponding weights stored in the PCU weight buffer unit, and then 
each adder tree unit adds its multiplication results. After that, a relu-activation & quantization unit 
and a max-pooling unit are used in each PCU. Then the final output is sent to the PCU output buffers. 



 
Figure S2. Design of PCU 

Section S3. FCU Design 

In the fully connected layer, since the weight sharing and data are not reused, a compromise 
solution used in [2,3] were adopted in our design. As shown in Figure S3, the FC layer contains 
input with 290 dimensions, the output with 7 dimensions, and a weight matrix with a 290 × 7 size. 
We used a structural design similar to PCU to optimize the FC layer for parallel operating. Since 
there are 10 PCU output buffers, the input matrix is set to 29 × 10, and the parallel input is divided 
into small scale vectors with 5 dimensions as shown in Figure S3. The FCU comprises line buffer, 
multiplier array unit, adder tree unit, accumulators unit, and quantization unit, as shown in Figure 
S4. Each 1 × 5 small scale vector is sent to the multiplier array unit through the line buffer for 
multiplication and is simultaneously passed to the next FCU line buffer unit. The output of the adder 
tree unit will be accumulated in the accumulator unit. The quantization unit quantizes the output, 
and finally, the max unit conducts the comparison of the 7-dimension output that the comparison 
result will be sent to the PS block. 

 
Figure S3. The weight windows in the weight matrix shifts parallel and vertically 



 
Figure S4. Design of FCU 
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