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Abstract: The gravity gradient is the second derivative of gravity potential. A gravity gradiometer
can measure the small change of gravity at two points, which contains more abundant navigation
and positioning information than gravity. In order to solve the problem of passive autonomous, long-
voyage, and high-precision navigation and positioning of submarines, an aided navigation method
based on strapdown gravity gradiometer is proposed. The unscented Kalman filter framework is
used to realize the fusion of inertial navigation and gravity gradient information. The performance
of aided navigation is analyzed and evaluated from six aspects: long voyage, measurement update
period, measurement noise, database noise, initial error, and inertial navigation system device
level. When the parameters are set according to the benchmark parameters and after about 10 h of
simulation, the results show that the attitude error, velocity error, and position error of the gravity
gradiometer aided navigation system are less than 1 arcmin, 0.1 m/s, and 33 m, respectively.

Keywords: strapdown gravity gradiometer; strapdown inertial navigation system; quaternion;
unscented Kalman filter; gravity gradient aided navigation

1. Introduction

In view of the cost of gravity gradiometers and the existence of outdoor global satellite
navigation systems, more attention is paid to the special application scenarios of gravity
matching under the condition of satellite rejection, especially in the military application
field. Submarines adopt an integrated navigation scheme based on inertial navigation
and assisted by other navigation means. When global navigation satellite systems, Loran-
C, and celestial navigation are used to correct an inertial navigation system (INS), the
submarine needs to be in periscope navigation state, and the concealment of the submarine
cannot be guaranteed. With the aid of sonar and Doppler velocity log, the velocity and
altitude information of the INS can be corrected, but the acoustic signal is broadcasted,
so it is easy to expose the submarine’s position to the enemy. Through building a base
station, submarine positioning in a certain sea area can be realized, but the process of base
station construction and maintenance is complicated, and it does not have the ability of
positioning in the whole sea area. An underwater emergency positioning buoy is also a
kind of submarine aided navigation means, but this method has high economic cost and
is usually only used in emergency situations. So, it has been a difficult problem in the
field of navigation on how to realize submarine passive autonomous, long-voyage and
high-precision navigation and positioning [1–4].

The aided navigation method based on the geophysical field provides a new idea and
means to solve this problem [5–7]. The marine gravity field and geomagnetic field are
two kinds of geophysical fields that we are mainly concerned about. As the geomagnetic
field belongs to weak field signals, it is easy to be interfered with by other factors, espe-
cially by the submarine shell. The geomagnetic measurement is usually carried out by a
dragging mode, which provides a poor positioning accuracy of several kilometers [8–10]
of the submarine navigation system based on geomagnetic field signals. In addition, the
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geomagnetic real-time measurement is more troublesome. Compared with the geomag-
netic field, the gravity field signal has stronger anti-interference and stability, and is more
suitable for underwater, providing aided navigation information for inertial navigation
systems [11–14]. The gravity gradient is the second derivative of the gravity potential.
Relative to gravity, a gravity gradiometer can measure subtle changes of gravity signals in
different geographical locations [15,16]. Therefore, gravity gradient signals contain more
abundant navigation information.

The gravity gradient database, gravity gradiometer, and gravity gradient matching
algorithm are the three key parts affecting the gravity information aided navigation system,
and most of the research work is based on the above three factors. Over the past few
decades, gravity models of terrestrial planets, especially the Earth, have been improved
dramatically. Derived from the combination of satellite geodetic data with high-resolution
gravitational information collected from surface gravimetry, the Earth Gravitational Model
2008 (EGM2008) is complete to degree 2190 and order 2159, which is a representative of the
high-resolution models. The high order gravity field model based on EGM2008 is an effec-
tive method to establish the global gravity information database. In the future, the gravity
gradiometer with atomic interference technology can theoretically realize higher preci-
sion gravity gradient measurement [17]. In previous studies, the extended Kalman filter
framework was used to realize gravity gradient aided navigation (GGAN) [18–20]. In this
framework, the mathematical model needs to be linearized. Some particle filter algorithms
have also been considered in the field of gravity gradient matching algorithm [21,22]. In
addition, most of the previous literatures studied the mathematical model and performance
analysis based on the platform gravity gradiometer, and some factors affecting perfor-
mance were considered [23,24]. However, it is necessary to investigate the performance of
applying the strapdown gravity gradiometer and systematically evaluate the performance
of GGAN under the influence of various factors, and there is still a need to verify the effects
of some other factors, such as long voyage and inertial navigation system device level.

In this study, we focus on an unscented quaternion estimator, which has a better
estimation accuracy, confirmed by previous studies [25], and establish a framework of
unscented Kalman filter (UKF) based on strapdown gravity gradiometer to realize GGAN.
Simulation experiments were conducted for systematically evaluating the performance
of GGAN under the influence of various factors, such as long voyage, measurement
update period, measurement noise, database noise, initial errors (attitude, velocity, and
position), and inertial navigation system device level. As a result, we drew some numerical
conclusions, which can provide some suggestions for obtaining navigation results with
some target accuracies in GGAN on the basis of the simulation results.

The organization of this paper is as follows. In the review of existing theories, the
basic strapdown inertial navigation system (SINS) equations and the principle of gravity
gradiometer are introduced. In the gravity gradient matching algorithm section, UKF
is studied in detail. Finally, simulation testing is conducted and is summarized in the
experimental section. The results are provided and the performance of the six factors are
evaluated. A few meaningful conclusions are outlined in the summary.

2. Basic Equations of Strapdown Inertial Navigation System

The basic equations of strapdown inertial navigation system (SINS) include attitude
differential equation, velocity differential equation, position differential equation, gyro-
scope error differential equation, and accelerometer error differential equation. Compared
with the platform inertial navigation system, SINS uses the “mathematical platform” simu-
lation navigation coordinate system. In the basic equation of SINS, “mathematical platform”
is determined by the attitude transfer matrix Cn

b and the attitude differential equation. Dif-
ferent attitude expression methods correspond to different attitude differential equations.
Since quaternion attitude expression is continuous and has no singularity problem, this
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paper adopts quaternion representation, and its differential equation is generally expressed
as follows:

.
q =

1
2

Ξ(q)ωb
nb =

1
2

Ω(ωb
nb)q, (1)

where q = [q0; ρ] is the quaternion, where ρ = [q1; q2; q3] is the vector part, and q0 is the
scalar part, and

Ω(ωb
nb) =

[
−[ωb

nb×] ωb
nb

−(ωb
nb)

T
0

]
(2)

Other parts of the basic SINS equations are

.
L =

vN
RM + h

, (3)

.
λ =

vE
(RN + h) cos L

, (4)

.
h = vU , (5)

.
vE =

[
vE

(RN + h) cos λ
+ 2ωe

ie

]
vN sin λ− vEvU

RN + h
− 2ωe

ievU cos λ + fE, (6)

.
vN = −

[
vE

(RN + h) cos λ
+ 2ωe

ie

]
vE sin λ− vEvU

RM + h
+ fN , (7)

.
vU =

v2
E

RN + h
+

v2
N

RM + h
+ 2ωe

ievE cos λ− g− fU (8)

Equations (3)–(5) are the position differential equation. p = [L; λ; h] is the position
information, where L is the latitude, λ is the longitude, and h is the height; Equations (6)–(8)
are the velocity differential equations. v =

[
vE; vN ; vU

]
represents velocity information,

where vE represents eastward velocity, vN represents northward velocity, and vU represents
vertical velocity; g is the acceleration of gravity; f = [ fE; fN ; fU ] is the specific force in the
navigation coordinate system. The output of the gyroscope is ωb

ib; RM and RN represent
the meridian and prime vertical radius of the Earth, as shown in the following formula:

RM = Re(1− e2)/(1− e2 sin2 λ)
1.5

, (9)

RN = Re/(1− e2 sin2 λ)
0.5

, (10)

where Re = 6378137m, e = 0.0818.
The differential equation of gyro constant drift is as follows:

ω̃b
ib = ωb

ib + ε + ηgv, (11)

.
ε = ηgu, (12)

where ω̃b
ib is the actual gyro output with gyro drift ε; ηgv and ηgu are zero mean Gaussian

white noise with covariance σ2
gv and σ2

gu, respectively.
The output equation of the accelerometer reads as follows:

f̃ b = f b +∇+ ηav, (13)

.
∇ = ηau, (14)

where f̃ b is the actual accelerometer output with accelerometer bias∇, ηav and ηau are zero
mean Gaussian white noise with covariance σ2

av and σ2
au, respectively.

Equations (3)–(14) together constitute the basic equation of SINS. By analyzing the
characteristics of the equation, we can find that the basic equation of SINS is a nonlinear
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equation, if the filtering framework is used for information fusion, the integrated navigation
needs to adopt nonlinear filtering processing.

3. Measurement Principle of Gravity Gradiometer

The gravity gradiometer is basically a differential accelerometer. The measurement
principle is described in detail below.

Suppose that there exists an arbitrary coordinate system a, which rotates around the
inertial coordinate system with angular velocity ωa

ia. If the position vector of a certain point
is ra and the position vector of the point in the inertial coordinate system is ri; ri can be
calculated from

ri = Ci
ara, (15)

where Ci
a is the transformation matrix between coordinate system a and inertial coordinate

system i. It can be obtained by time derivation of Equation (15)

.
ri
= Ci

aΩa
iara + Ci

a
.
ra, (16)

if ωa
ia = [ ω1 ω2 ω3 ]

T, the antisymmetric matrix Ωa
ia can be expressed as

Ωa
ia =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 (17)

The time derivative of Equation (16) leads to

..
ri
= Ci

a
..
ra
+ 2Ci

aΩa
ia

.
ra
+ Ci

a(Ω
a
iaΩa

ia +
.

Ω
a
ia)r

a (18)

In inertial space the following relation holds

..
ri
= ai + gi, (19)

where ai is the specific force output of the accelerometer and gi is the gravity of the Earth.
Combining Equations (18) and (19) yields

aa =
..
ra
+ 2Ωa

ia
.
ra
+ (Ωa

iaΩa
ia +

.
Ω

a
ia)r

a − ga (20)

The two accelerometers are fixed at point A and point B in the coordinate system a,
respectively, and the baseline of the two accelerometers is set as ρa = ra

2 − ra
1. According to

Equation (20), we can get

aa
2 − aa

1 =
..
ρ

a
+ 2Ωa

ia
.
ρ

a
+ (Ωa

iaΩa
ia +

.
Ω

a
ia)ρ

a − (ga
2 − ga

1) (21)

Since the accelerometer is attached to coordinate system a, then
.
ρ

a
=

..
ρ

a
= 0. Both

quantities can be eliminated from Equation (21)

aa
2 − aa

1 = (Ωa
iaΩa

ia +
.

Ω
a
ia)ρ

a − (ga
2 − ga

1) (22)

The longer the baseline is, the more obvious the change of gravity signal is. Limited
to the size of the gravity gradiometer, the length of baseline usually does not exceed 1 m.
Therefore, it can be considered that the gravity between the two accelerometers varies
linearly. The following relation can be obtained

ga
2 − ga

1 = Va(ra
2 − ra

1) = Vaρa, (23)
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where Va is the total tensor matrix of the gravity gradient in coordinate system a. By
substituting Equation (23) into Equation (22), we obtain

aa
2 − aa

1 = (−Va + Ωa
iaΩa

ia +
.

Ω
a
ia)ρ

a

= La ′ρa (24)

and
La ′ = (aa

2 − aa
1)/ρa = (aa

2 − aa
1)/(r

a
2 − ra

1) (25)

Equation (25) is the basic equation of gravity gradient based on the measurement
principle of differential accelerometer. It can be seen from Equations (24) and (25) that
the gravity gradient tensor cannot be directly measured, and the gradients are coupled

with angular velocity Ωa
ia and angular acceleration

.
Ω

a
ia. In order to get the current gravity

gradient, the angular velocity and angular acceleration should be eliminated. The an-
gular acceleration component can be eliminated by summation of Equation (25) and its
transposition

1
2
(La ′ + (La ′)

T
) = −Va + Ωa

iaΩa
ia (26)

Let
La = −Va + Ωa

iaΩa
ia (27)

By substituting each component into Equation (24), we end up with

La =

 −(Vxx + ω2
y + ω2

z) −(Vxy −ωxωy) −(Vxz −ωxωz)

−(Vxy −ωxωy) −(Vyy + ω2
x + ω2

z) −(Vyz −ωyωz)
−(Vxz −ωxωz) −(Vyz −ωyωz) −(Vzz + ω2

x + ω2
y)

 (28)

The six independent components in expression (28) are as follows:

La =



La
11

La
22

La
33

La
12

La
13

La
23

 =



−(Vxx + ω2
y + ω2

z)

−(Vyy + ω2
x + ω2

z)
−(Vzz + ω2

x + ω2
y)

−(Vxy −ωxωy)
−(Vxz −ωxωz)
−(Vyz −ωyωz)


(29)

Compared with Equation (25), Equation (27) does not need to estimate
.

Ω
a
ia, which is

conducive to the extraction of gravity gradient tensor. So, Equation (27) is taken as the
main measurement result of gravity gradiometer.

When the gradiometer is fixed to the carrier (strapdown mounting), the body co-
ordinate system and acceleration coordinate system are the same coordinate system, so
Equation (27) can be rewritten into

Lb = Cb
nVn(Cb

n)
T −Ωb

ibΩb
ib, (30)

where Cb
n is the transformation matrix between the navigation coordinate system and the

body coordinate system, it can be obtained by attitude calculation, and Ωb
ib can be retrieved

from the gyro measurements. In this paper, Equation (30) is used as the measurement
equation for simulation, and the calculation formula of Vn is shown in the appendix.

4. Gravity Gradiometer Aided Navigation Method (GGAN Method)

The UKF algorithm abandons the linearization process of EKF algorithm, and adopts
unscented transform (UT) to avoid the error caused by linearization, reduce the complexity
of the algorithm, and overcome the defects of low accuracy and poor stability of the EKF
algorithm. So, it is widely used in integrated navigation [20]. In this paper, the strapdown
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gravity gradiometer is used to measure the total tensor gravity gradient data. Therefore,
the measurement vector is

Zk =
[

Lb
11 Lb

22 Lb
33 Lb

12 Lb
13 Lb

23
]T

, (31)

where the superscript b represents the projection of the gravity gradient in the body
coordinate system.

The state variables are the attitude ϕ, velocity v, and position p of the target and the
drift vector b of the 6D gyroscope and accelerometer. Therefore, the state vector is

Xk =
[

ϕ v p b
]T (32)

At the kth moment, the system noise is Gaussian white noise wk ∼ N(0Qk), and the
measurement noise is Gaussian white noise vk ∼ N(0Rk). The nonlinear system of gravity
gradient aided positioning can be expressed by the following formula:{

Xk = F(Xk−1) + wk−1
Zk = H(Xk) + vk

(33)

Firstly, the root mean square S+
k−1 of the error covariance matrix needs to be solved in

the UKF propagation process. This step can be conducted via the Cholesky decomposition

P+
k−1 = S+

k−1S+
k−1

T (34)

Calculate the sigma point from the following formula:

X+(i)
k−1 =

{
X̂+

k−1 +
√

nS+
k−1:,i, i ≤ n

X̂+
k−1 −

√
nS+

k−1:,(i−n), i > n , (35)

where the subscript “:, i” denotes the column i of the matrix. Each sigma point can be
propagated through the system model:

X−(i)k = F(k, X+(i)
k−1 ) (36)

After propagation, the state estimation and its error covariance are as follows:

X̂−k =
1

2n

2n

∑
i=1

X−(i)k , (37)

P−k =
1

2n

2n

∑
i=1

(X−(i)k − X̂−k )(X−(i)k − X̂−k )
T
+ Qk−1 (38)

The observation update process of UKF generates new sigma points by the following
formula:

X−(i)k =


P−k = S−k S−k

T

X̂−k +
√

nS−k,:,i, i ≤ n
X̂−k −

√
nS−k,:,(i−n), i > n

(39)

The sigma point and mean observed innovation can be solved by the following
formula: 

δZ−(i)k = Zk − H(k, X̂−(i)k )

δZ−k = 1
2n

2n
∑

i=1
δZ−(i)k

, (40)
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and the covariance of the observed innovation is

C−δZ,k =
1

2n

2n

∑
i=1

(δZ−(i)k − δZ−k )(δZ−(i)k − δZ−k )
T
+ Rk (41)

Finally, the UKF Kalman gain, state vector update, and error covariance update can
be calculated as follows:

Kk = [
1

2n

2n

∑
i=1

(X−(i)k − X̂−k )(δZ−(i)k − δZ−k )
T
](C−δZ,k)

−1, (42)

X̂+
k = X̂−k + KkδZ−k , (43)

P+
k = P−k − KkC−δZ,kKT

k (44)

When the system noise and measurement noise are Gaussian white noise, GGAN can
be realized by the standard UKF localization algorithm mentioned above.

5. Performance Analysis

Since the 21st century, with the continuous maturity and development of satellite altimetry,
airborne gravimetry, and other gravity measurement technologies, the resolution and accuracy
of the spherical harmonic function model of the Earth’s gravity field have been continuously
improved. The most representative one is the EGM2008 ultra-high order spherical gravity
field spherical harmonic model, issued by the National Geospatial-Intelligence Agency [26].
EGM2008 is a fusion of the ITG-GRACE03S model and global 5′ × 5′ gravity anomaly grid
data (including land gravity survey, ocean satellite altimetry, and airborne gravity survey). In
this paper, the EGM2008 model is used to simulate the gravity gradient, and the 360 order
is intercepted to calculate the gravity gradient. The specific calculation formula is shown
in Appendix A.

In order to evaluate the performance of gravity gradiometer aided navigation, this
paper comprehensively considers the influence of long voyage, measurement update
period, measurement noise, database noise, initial error, inertial device level, and other
factors, in which the inertial device level mainly refers to gyro bias. In this paper, the
database was calculated by the spherical harmonic model, and the calculated results were
taken as the true value. To mimic a real situation, we introduced noise on the basis of the
calculated values of the spherical harmonic model to simulate the actual database. The
benchmark parameter settings are shown in Table 1 below.

Table 1. Benchmark parameter settings.

Benchmark
Parameter

Measurement
Update Period

Measurement
Noise

Database
Noise

Initial Error Gyro Bias
Attitude Velocity Position

Value 60 s 0.01 E 0.001 E 0.5◦ 1 m/s 10 m 0.01◦/h

5.1. Performance Analysis under Long Voyage Condition

In order to intuitively reflect the long voyage characteristics of inertial/gravity gradi-
ent integrated navigation, the simulation experiment designs acceleration, uniform speed,
deceleration, steering, and other motion forms, and the navigation area is arbitrarily se-
lected. The simulation step size is 0.01 s, and the total simulation time is about 6.5 h. Other
parameters are set according to the benchmark parameters in Table 1. It should be noted
that in the pure inertial calculation process, the altitude information is always set to zero,
and the experimental results are shown in Figures 1–3 and Table 2 below.
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Figure 1. (a) Gravity gradient aided navigation (GGAN) attitude error; (b) pure inertial calculation attitude error.
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Figure 2. (a) GGAN speed error; (b) pure inertial calculation speed error.
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Figure 3. (a) GGAN position error; (b) pure inertial calculation position error.



Sensors 2021, 21, 829 9 of 19

Table 2. Comparison of long voyage performance.

Mode
Attitude Errors (arcmin) Velocity Error (m/s) Position Error (m)

Pitch Roll Yaw East North Up Latitude Longitude Height

Pure inertial calculation 0.81 0.71 3.03 1.69 1.76 / 2640 2258 /
GGAN 0.28 0.18 0.72 0.06 0.09 0.03 33 29 17

It can be seen from Figures 1–3 that the error of inertial navigation system is effectively
suppressed by GGAN. Both attitude and speed and position accuracy have been greatly
improved, and the positioning error presents zero mean distribution. According to Table 2,
after about 10 h of pure inertial calculation, the position errors in latitude and longitude
directions are up to 2640 m and 2258 m, respectively. However, the position performance
of GGAN method is two orders of magnitude better than that of pure inertial calculation
method, and the attitude error, velocity error, and position error in all directions of GGAN
system are less than 1 arcmin, 0.1 m/s, and 33 m, respectively.

5.2. Performance Analysis of Measurement Update Period

In order to evaluate the influence of different measurement update periods of gravity
gradiometer on integrated navigation performance, four different measurement update periods
(30, 60, 90, and 180 s) were selected for simulation experiments. Other parameters were set
according to the benchmark parameters in Table 1. The simulation results are shown in the
following Figure 4 and Table 3. According to Table 3, with the increase of measurement
update period, the positioning error of the system gradually increases. The reason is that
the observation information collected over the same time span gets less when using a larger
measurement update period. When the measurement update period is less than 180 s, the
position error in other directions is within 100 m, except for the longitude direction of 127 m.
The 3D velocity errors for these four cases were 0.03 m/s, 0.05 m/s, 0.07 m/s, and 0.12 m/s,
respectively, and the 3D position errors were 43 m, 52 m, 62 m, and 147 m.
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Table 3. Simulation results under different measurement update periods.

Measurement
Update Periods (s)

Attitude Errors (arcmin) Velocity Error (m/s) Position Error (m)

Pitch Roll Yaw East North Up 3D Latitude Longitude Height 3D

30 0.24 0.12 0.89 0.02 0.03 0.01 0.03 34 18 18 43
60 0.24 0.12 0.89 0.03 0.04 0.02 0.05 40 29 15 52
90 0.35 0.18 1.61 0.04 0.05 0.03 0.07 34 49 15 62
180 0.55 0.27 2.26 0.09 0.07 0.05 0.12 65 127 36 147

5.3. Performance Analysis of Measurement Noise

To investigate the effects of gradiometer noise on GGAN accuracy, different levels of
gradiometer noise 1 mE, 0.01 E, 0.1 E, and 1 E were simulated. The 1 E and 0.1 E noise levels
represent the precision of most current generation gradiometers, such as the ARKeX’s
Exploration Gravity Gradiometer and the Gedex’s High-Definition Airborne Gravity Gra-
diometer. The 0.01 E noise level represents the precision of the latest gradiometers, such
as the GOCE’s EGG. The 0.001 E noise level represents the precision of future grade gra-
diometers. Other parameters were set according to the benchmark parameters in Table 1.
The simulation results are shown in the following Figure 5 and Table 4. According to
Table 4, with the increase of measurement noise, the positioning performance of the system
decreases rapidly. When the measurement noise is 1 E, the position error in longitude
direction has exceeded 1000 m. The 3D velocity errors for these four cases were 0.05 m/s,
0.05 m/s, 0.21 m/s, and 1.90 m/s, respectively, and the 3D position errors were 40 m, 45 m,
227 m, and 1533 m.
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Figure 5. (a) Attitude error curve; (b) velocity error curve; (c) position error curve.

Table 4. Simulation results under different measurement noise.

Measurement
Noise (E)

Attitude Errors (arcmin) Velocity Error (m/s) Position Error (m)

Pitch Roll Yaw East North Up 3D Latitude Longitude Height 3D

0.001 0.08 0.05 0.35 0.03 0.03 0.02 0.05 22 29 13 40
0.01 0.09 0.05 0.37 0.03 0.04 0.02 0.05 25 34 14 45
0.1 0.31 0.14 1.07 0.12 0.10 0.14 0.21 126 177 66 227
1 0.55 0.30 1.34 0.89 0.48 1.61 1.90 718 1087 807 1533

5.4. Performance Analysis of Database Noise

The accuracy of the established gravity gradient database is usually higher than that
of the strapdown gradiometer. In order to reflect the impact of different database noise on
the integrated navigation performance, two different database noises (0.001 and 0.01 E) were
selected for our simulation experiment. Other parameters were set according to the benchmark
parameters in Table 1. The simulation results are shown in the following Figure 6 and Table 5.
According to Table 5, it can be seen that the gravity gradient database noise has a great impact
on the performance of the GGAN system. When assuming a gradient noise of 0.001 E, the
positioning performance is mostly better by one order of magnitude, compared to a noise level
of 0.01 E. The 3D velocity errors for these two cases were 0.05 m/s and 1.86 m/s, respectively,
and the 3D position errors were 60 m and 1509 m.
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Figure 6. (a) Attitude error curve; (b) velocity error curve; (c) position error curve.

Table 5. Simulation results under different database noise.

Database Noise (E)
Attitude Errors (arcmin) Velocity Error (m/s) Position Error (m)

Pitch Roll Yaw East North Up 3D Latitude Longitude Height 3D

0.001 0.24 0.12 0.89 0.03 0.04 0.03 0.05 47 26 27 60
0.01 1.63 0.83 6.25 0.89 1.58 0.43 1.86 1379 559 249 1509

5.5. Performance Analysis of Initial Errors

In order to reflect the influence of different initial SINS errors on the GGAN performance,
the error parameters were divided into attitude error, velocity error, and position error. The
initial attitude error was selected as 0.1, 0.2, 0.5, and 1 degree. Other parameters were set
according to the benchmark parameters in Table 1. The simulation results are shown in the
following Figure 7 and Table 6. It can be seen that the simulation converges in about an
hour. After about 3 h of simulation, the 3D velocity errors for these four cases were 0.06 m/s,
0.06 m/s, 0.06 m/s, and 0.6 m/s, respectively, and the 3D position errors were 51 m, 51 m,
61 m, and 577 m. Therefore, when the initial attitude error is less than 0.5 deg, the influence of
attitude error is not obvious.
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Figure 7. (a) Attitude error curve; (b) velocity error curve; (c) position error curve.

Table 6. Simulation results of different initial attitude errors.

Initial Attitude Errors
(deg)

Attitude Errors (arcmin) Velocity Error (m/s) Position Error (m)

Pitch Roll Yaw East North Up 3D Latitude Longitude Height 3D

0.1 0.24 0.12 0.93 0.03 0.05 0.02 0.06 39 24 20 51
0.2 0.30 0.14 1.12 0.04 0.04 0.02 0.06 44 19 18 51
0.5 0.12 0.06 0.42 0.02 0.05 0.02 0.06 32 36 12 51
1 2.38 1.17 9.29 0.31 0.39 0.18 0.6 314 450 178 577

The initial velocity error was selected as 1, 2, 3, and 5 m/s. Other parameters were set
according to the benchmark parameters in Table 1. The simulation results are shown in the
following Figure 8 and Table 7. The 3D velocity errors for these four cases were 0.05 m/s,
0.05 m/s, 0.06 m/s, and 0.05 m/s, respectively, and the 3D position errors were 54 m, 45 m,
52 m, and 49 m. Therefore, under the given four cases of speed errors, the influence of
speed error on the system is not obvious.
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Figure 8. (a) Attitude error curve; (b) velocity error curve; (c) position error curve.

Table 7. Simulation results under different initial velocity errors.

Initial Velocity Errors
(m/s)

Attitude Errors (arcmin) Velocity Error (m/s) Position Error (m)

Pitch Roll Yaw East North Up 3D Latitude Longitude Height 3D

1 0.22 0.11 0.80 0.03 0.04 0.02 0.05 45 22 20 54
2 0.19 0.09 0.71 0.03 0.04 0.02 0.05 35 23 16 45
3 0.23 0.11 0.83 0.03 0.05 0.02 0.06 39 27 19 52
5 0.24 0.12 0.89 0.03 0.03 0.02 0.05 38 24 18 49

The initial position error was selected as 5, 10, 100, and 300 m. Other parameters were
set according to the benchmark parameters in Table 1. The simulation results are shown
in the following Figure 9 and Table 8. The 3D velocity errors for these four cases were
0.05 m/s, 0.05 m/s, 0.10 m/s, and 0.22 m/s, respectively, and the 3D position errors were
53 m, 44 m, 103 m, and 238 m.
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Figure 9. (a) Attitude error curve; (b) velocity error curve; (c) position error curve.

Table 8. Simulation results under different initial position errors.

Initial Position Errors
(m)

Attitude Errors (arcmin) Velocity Error (m/s) Position Error (m)

Pitch Roll Yaw East North Up 3D Latitude Longitude Height 3D

5 0.20 0.10 0.73 0.03 0.04 0.02 0.05 43 23 19 53
10 0.17 0.08 0.62 0.03 0.04 0.02 0.05 33 23 15 44

100 0.54 0.27 2.08 0.06 0.07 0.04 0.10 70 60 44 103
300 1.25 0.63 4.89 0.14 0.11 0.13 0.22 151 150 106 238

According to Tables 6–8, we realize that the GGAN system is sensitive to the initial
attitude error and initial position error of the inertial navigation system. On the other hand,
the initial velocity error has little effect on the positioning performance of the system.

5.6. Performance Analysis of Inertial Navigation Level

In order to reflect the influence of different inertial navigation levels on the integrated
navigation performance, the gyro bias parameters were set at 1, 0.1, 0.01, and 0.001 degree
per hour, respectively. Other parameters were set according to the benchmark parameters
in Table 1. The simulation results are shown in the following Figure 10 and Table 9. It can
be seen from Table 9, even if an inertial navigation system with a gyro bias of 0.1 degree per
hour is adopted, the position error of the GGAN system is still controlled within 100 m. The
3D velocity errors for these three cases were 0.04 m/s, 0.05 m/s, and 0.17 m/s, respectively,
and the 3D position errors were 28 m, 34 m, and 89 m. Therefore, the GGAN system can
effectively reduce the requirements of inertial navigation device level under the condition
of satisfying certain accuracy.
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Table 9. Simulation results of different inertial navigation levels.

Gyro Bias
(◦/h)

Attitude Errors (arcmin) Velocity Error (m/s) Position Error (m)

Pitch Roll Yaw East North Up 3D Latitude Longitude Height 3D

0.001 0.08 0.05 0.27 0.03 0.02 0.02 0.04 19 15 13 28
0.01 0.09 0.05 0.33 0.03 0.04 0.02 0.05 23 20 14 34
0.1 0.25 0.14 0.97 0.10 0.14 0.03 0.17 69 54 16 89

6. Conclusions

With the development of antisubmarine and submarine detection technology, in view
of the role of submarines in the future information warfare, working out how to realize
the submarine’s passive, autonomous, long-voyage, and high-precision navigation and
positioning has become an urgent problem. The GGAN system makes it possible to realize
high-precision positioning of a submarine over a long voyage time. The integrated naviga-
tion method of inertial/strapdown gravity gradiometer based on quaternion unscented
Kalman filter is proposed in this paper, which can effectively restrain the divergence of
inertial navigation error. The experimental results show that if the GGAN system is set
according to the benchmark parameters, and after about 10 h of simulation the attitude
error is less than 1 arcmin and the velocity error is less than 0.1 m/s, the position error is
controlled within 33 m. With the increase of the measurement update period, the position-
ing error of the system gradually increases. When the measurement update period is less
than 180 s, the position error in other directions is within 100 m, except for the longitude
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direction of 127.42 m. When the measurement noise is 1 E, the position error of longitude
direction is more than 1000 m. The database noise has a great impact on the performance of
the GGAN system. The noise of 0.001 E database is better than that of 0.01 E database, and
the positioning performance of the system is mostly better than one order of magnitude.
The GGAN system is sensitive to the initial attitude error and initial position error of the
inertial navigation system, but the initial velocity error has little effect on the positioning
performance of the system. Using GGAN, the system can reduce the requirements for the
quality of the used inertial sensor. Therefore, the integrated navigation system based on
gravity gradient can provide reliable and high-precision initial navigation parameters for
other weapon systems, and provide a strong guarantee for the effectiveness of the entire
combat platform.
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Appendix A

The normalized gravitational potential function V(r, θ, λ) can be expressed in the form
of higher-order spherical harmonic function as follows:

V(r, θ, λ) =
GM

a

N

∑
n=0

n

∑
m=0

(
a
r
)

n+1
Pn,m(cos θ)[Cn,m cos(mλ) + Sn,m sin(mλ)] (A1)

Here, GM is the gravitational constant multiplied by the Earth’s mass, where θ = π
2 − ψ,

and r, ψ, λ represent the geocentric distance, the latitude, and longitude, and a is the radius of
the Earth. N is the maximum value of the degree n and order m. Pm

n (cos θ) is the normalized
Legendre associated function of the degree n and order m. Cn,m and Sn,m are the harmonic
geopotential coefficients with degree n and order m.

According to [27], the calculation formula of gravity gradients reads as follows:

Vxixj = GM
∂2 1

r
∂xixj

+
GM
a2

N+1

∑
n=2

n

∑
m=0

(
a
r
)

n+1
Pn,m(cos θ)[C

xixj
n,m cos(mλ) + S

xixj
n,m sin(mλ)] (A2)

where Cxixi
n,m and Sxixi

n,m can be obtained from [28]. The specific calculation formula of
∂2 1

r /∂xixj is as follows:

∂2 1
r

∂xixj
=

{
3xi

2−r2

r5 if i = j
3xixj

r5 if i 6= j
(A3)

The transformation of the gravity gradient tensor matrix between the body coordinate
system and the navigation coordinate system is as follows:

Vb = Cb
nVn(Cb

n)
T
= Cb

nVnCn
b (A4)
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