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Abstract: Cracks and exposed steel bars are the main factors that affect the service life of bridges.
It is necessary to detect the surface damage during regular bridge inspections. Due to the complex
structure of bridges, automatically detecting bridge damage is a challenging task. In the field of crack
classification and segmentation, convolutional neural networks have offer advantages, but ordinary
networks cannot completely solve the environmental impact problems in reality. To further overcome
these problems, in this paper a new algorithm to detect surface damage called EMA-DenseNet is
proposed. The main contribution of this article is to redesign the structure of the densely connected
convolutional networks (DenseNet) and add the expected maximum attention (EMA) module after
the last pooling layer. The EMA module is obviously helpful to the bridge damage feature extraction.
Besides, we use a new loss function which considers the connectivity of pixels, it has been proved to
be effective in reducing the break point of fracture prediction and improving the accuracy. To train
and test the model, we captured many images from multiple bridges located in Zhejiang (China), and
then built a dataset of bridge damage images. First, experiments were carried out on an open concrete
crack dataset. The mean pixel accuracy (MPA), mean intersection over union (MIoU), precision and
frames per second (FPS) of the EMA-DenseNet are 87.42%, 92.59%, 81.97% and 25.4, respectively.
Then we also conducted experiments on a more challenging bridge damage dataset, the MIoU, where
MPA, precision and FPS were 79.87%, 86.35%, 74.70% and 14.6, respectively. Compared with the
current state-of-the-art algorithms, the proposed algorithm is more accurate and robust in bridge
damage detection.

Keywords: deep convolutional networks; bridge damage detection; expected maximum attention;
densely connected networks

1. Introduction

Bridges play an irreplaceable role in transportation, so their reliability must be guar-
anteed. Compared with the huge amount of bridge construction costs, bridge repair and
maintenance should be periodically estimated. China has the world’s best bridge-building
technology, accounting for six of the world’s top 10 sea-crossing bridges, and more than
800,000 highway bridges and 200,000 railway bridges are in use according to the statistics.
The safety threat of aging bridges has been regarded as a national public concern, and one
of the biggest challenges today is the design of algorithms that can automatically detect
bridge damage [1]. In order to prevent large accidents caused by bridge collapses, the
bridge structural health monitoring (SHM) [2–4] technology has been proposed to evaluate
the health of bridges. SHM is built on the bridge big data and the use of various sensors
that can monitor the bridge temperature, humidity, wind, deformation, tension and so
on [5].
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In order to solve the problem of local damage detection of the bridge, the nonde-
structive detection technology is adopted for key bridge components in practical engineer-
ing [6,7]. Several SHMs are capable of large-scale structural detection, but they require
a large number of instruments and sensors. To solve this problem, damage detection
methods based on computer vision have been developed. Damage detection algorithms
based on image processing such as percolation-based image processing [8,9], threshold
methods [10,11] and edge detection methods [12,13] are very popular detection methods
in the early stages. Chen et al. proposed a method to identify the spatial and temporal
distribution of vehicle loads on long-span bridges by using computer vision technology
combined with the monitoring information from a dynamic weighing system [14]. Ho
et al. introduced an efficient image-based damage detection system that can automatically
identify damage to bridge cable surfaces through image processing techniques and pattern
recognition [15]. The development of automatic damage detection algorithms is helpful to
reduce the maintenance costs and improve the maintenance efficiency of bridges, which
has important research value.

The main factors affecting the service life of the bridge are cracks at the bottom of the
bridge deck and corrosion of steel components, especially for those that have been used
for more than 50 years. The existence of cracks will shorten the service life of bridges and
increase the probability of accidents. Therefore, it is of great value to study bridge damage
detection. Because of the large amount of traffic on the bridge, it is very dangerous to
detect the damage directly in the field [16,17], and it is time-consuming and laborious for a
person to search for cracks from thousands of pictures. As a result, many researchers have
tried to develop automatic bridge damage detection technology [18,19]. Image-based crack
detection algorithms have made great progress in recent years, but the reason why they
can’t be applied effectively in practice is that the detection accuracy of these algorithms is
very low in the face of complex and changeable environment.

Different from cracks in ordinary pavement, the cracks at the bottom of a bridge
are smaller and the influence of other features is larger, as shown in Figure 1. These
features mainly consist of holes, exposed and rusted steel bars, drain-pipes and traces of
uneven cement. Some of these noises are similar in shape to cracks and are easily detected
as cracks by mistake. In addition, pen marks are used to indicate the cracks when the
images are collected, which also have a high degree of similarity with cracks. Due to
the complexity of the various features, most crack detection algorithms are not accurate
and effective enough. As a result, the automatic detection of the length and width of
cracks on bridge pavements is a challenging task. Deep learning algorithms are used to
detect bridge cracks mainly because of their robustness and learnability. Robustness means
that the deep learning algorithm has a stable ability to extract features of cracks from the
images, and then identify and locate cracks according to these features. This study aims to
accurately detect cracks and exposed steel bars in complex environments using deep neural
networks. Deep learning has two apparent advantages in damage detection: robustness
and automation [20]. Robustness refers to the ability to stably extract features from images,
and then to identify and locate damaged areas based on these features. Automation means
that the feature extraction process is automatic or semi-automatic. With these two features,
deep learning can distinguish different types of damage from the background in images.
Therefore, it is appropriate to identify bridge cracks and steel bars using deep learning
methods.
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Figure 1. Some images taken under a bridge (including cracks, exposed steel bars and other features).

In recent years, the development of deep learning in the field of object detection
has broken through the concept of traditional image processing technology and achieved
excellent results [21–23]. The same is true for damage detection, where deep neural
networks have brought unprecedented improvements, which makes it possible to realize
crack detection in complex environments. Dorafshan et al. compared the performance
of common edge detectors and deep convolutional neural networks (DCNNs) for image-
based crack detection in concrete structures [24], and the result was that a CNN-based crack
detector has much better performance than a traditional edge detector. Research on crack
detection and recognition has grown rapidly because of the development of CNN. As long
as a large number of multi-type data are used to train the neural network, the features of
cracks can be learned and the cracks can be detected more accurately. Wang et al. proposed
a CNN-based crack detection network called CrackNet [25] and its improved version
CrackNet II [26], both of which can detect cracks in 3D road images with good results and
fewer network parameters. Cha et al. trained a CNN to divide images of concrete buildings
into cracked and non-cracked areas using a sliding window scheme [27]. CNN has great
research significance because it has great variability, and networks with different depths
are suitable for different situations. Hui et al. added bypass channels into the ordinary
CNN, fused the features of all channels, and achieved better accuracy in crack detection of
bridge steel box girders than with the original CNN [28]. The proposals of ResNet [29] and
DenseNet [30] have injected new vitality into the field of deep learning, as both of them
change the structure of the traditional CNN that transmits information only from one layer
to the next layer. DenseNet requires less than half the parameters compared to ResNet,
but achieves the same accuracy. For industry applications, DenseNet can significantly
save bandwidth and reduce storage overhead. In fact, DenseNet is more efficient than
other networks. The key to DenseNet is the reduction of the required computation per
layer of the network and the reuse of features. Each layer of DenseNet only needs to
learn a few features, resulting in a significant reduction in the number of parameters
and computations. DenseNet has a very good anti-overfitting performance. Compared
with the classifier of the general neural network which directly depends on the features
of the last layer of the network, DenseNet can make comprehensive use of the features



Sensors 2021, 21, 824 4 of 17

of the low complexity of the shallow layer, so it is easier to obtain a smooth decision
function with better generalization performance. In the field of semantic segmentation,
the fully convolutional networks (FCNs) [31] and U-net [32] have made waves again,
because they use deconvolution instead of a full connection layer to achieve end-to-end
pixel level segmentation. The encoder-decoder network (SegNet) [33] concept changed the
way of up-sampling on the basis of FCN, and it has better performance in processing time
and memory occupancy. These methods were soon applied to crack detection and have
achieved remarkable results [34–36].

Deep learning does not function alone in the field of crack detection, it can also be
combined with other image processing technologies to achieve better results [37]. Chen
et al. combined a convolutional neural network with naive Bayes to detect cracks in nuclear
inspection videos [38], where the false positives are subtly removed by the use of the naive
Bayes method. Song et al. introduced a new multiscale extended convolution module,
which can learn plentiful deep features and make the acquired features more recognizable in
complex backgrounds [39]. It is worth highlighting that with the development of computer
vision techniques, especially deep learning, automatic object detection technology has been
greatly improved. What we need to do is to further study on the basis of deep learning and
design a scheme that can be applied to actual bridge damage detection work. Attention is
widely used for various tasks, such as machine translation and video classification [40,41].
EMANet [42] re-thought the attention mechanism from the perspective of EM algorithm
and calculated the attention map by iteration. It transformed the attention mechanism
into an expectation-maximization manner and iteratively estimated a more compact base
upon which to compute attention maps; this module is robust and takes up less memory.
The approach in this paper is motivated by the above works, and we introduce the EMA
module into DenseNet to make the detection algorithm pay more attention to the damaged
parts of the bridge. The main contributions of this paper may be listed as follows:

(1) A novel bridge damage detection method based on densely connected convolutional
networks with expectation maximum attention module (EMA-DenseNet) is proposed,
which can detect cracks and exposed steel bars efficiently in the complex environment
at the bottom of the bridge.

(2) The structure of the advanced DenseNet was redesigned and the EMA module was
added in the last pooling layer of the DenseNet, which is obviously helpful for the
damage feature extraction.

(3) Experiments were carried out on a public crack dataset and a bridge damage dataset
respectively and the results were compared with the most advanced algorithms,
showing the superiority of the proposed method.

2. Data Collection

As mentioned in Section 1, the damage at the bottom of the bridge mainly includes
cracks and exposed steel bars. At present, there are some crack datasets but no public
bridge damage dataset. Therefore, we use both a crack data set and a bridge damage
dataset made by us into account.

2.1. Public Crack Dataset

Yang et al. [34] collected more than 800 crack images of concrete pavement, and here
we use this crack dataset to verify the effectiveness of the proposed method. The original
images were formatted as JPG, while the resolution ranged from 72 to 300 dpi. Figure 2
shows some samples of this dataset, where the morphology of the cracks is varied, but
the noise in this data set is relatively low. In the ground truth images, the white area with
the pixel value of 0 represents the background, and the black area with the pixel value of
255 represents a crack.
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Figure 2. The public concrete crack dataset collected by Yang et al.

2.2. The Established Bridge Damage Dataset

The bridge crack dataset described above is relatively simple, and there are few
interference factors in the images, which may be inconsistent with the actual detection
environment. Therefore, we collected many bridge images including cracks and exposed
reinforcement from several different bridges in Xuzhou (Zhejiang Province, China). As
shown in Figure 3a, the bridge images can be obtained using a standard bridge inspection
vehicle. The image shooting position can be kept at a constant distance from the bridge,
which will greatly facilitate the detection of damage. A total of 400 images, with resolution
of 4464× 2976 pixels, were captured using a 5D Mark IV digital single lens reflex camera
(Canon, Zhuhai, China). Since the deep network needs labeled images for supervised
learning, we carefully marked the collected images at the pixel level. Figure 3b,c show
part of the original images and the manually annotated images, where red represents
rebar pixels and green represents cracks. The proposed network can handle any image
size however, training large images may lead to excessive use of GPU memory, leading
to training failure. To avoid this situation, the original images were cropped to a size of
480× 480. There’s another advantage to doing this, in that the proportion of cracks in the
image is increased, which is more conducive to improving the detection accuracy. Since
most of the sub-images after cropping are images without any damage, we only selected
images with bridge damage, including 1800 crack images and 2500 rebar images. Data
enhancement is necessary to enhance the training effect, so all images were rotated 90,
180, and 270 degrees, respectively. It is worth noting that in the data collection stage, we
only annotated, clipped and augmented the collected images. During the data annotation
process, the areas containing bridge damage was marked as cracks or exposed bars, and
the other area (containing various noises) was marked as the background. In this way, the
deep learning network model can learn the different characteristics of the bridge damage
and the background during training, so as to eliminate the noise.
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Figure 3. The establishment of bridge damage dataset consists of the following parts: (a) bridge
image acquisition, (b) the captured bridge images, (c) manually marking the damage pixel area and
(d) image clipping.

3. Methodology

The convolutional neural network has a very good performance in extracting features,
while the use of deconvolution enables the features to map to the input size, so as to achieve
a pixel-level prediction. In this section, the network structure of the EMA-DenseNet will
be introduced, and the architecture of the network is shown in Figure 4. The advanced
DenseNet is used as the backbone to extract the features of the input images, then the
expectation-maximization attention (EMA) module is adopted to obtain more detailed
features. As can be seen from Figure 4, after the adoption of EMA module, the fracture
characteristics are clearer in the feature map. We enlarge the feature map to the same
size as the input by up-sampling layer, and finally we adopt Sofmax layer for pixel-level
classification. Below, we will detail the structure of the proposed framework.

Figure 4. Overall architecture of the proposed EMA-DenseNet.
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3.1. The DenseNet Backbone

Unlike a traditional convolutional neural network which simply passes information
on to the next layer, DenseNet [30] has designed a more densely connected block, which
is called dense block. Figure 5 shows the configuration principle of the dense block, each
convolutional layer in each block accepts the output of all previous layers in the Bblock.
Here, we use x0 to represent the input layer, xl for the output of the other layers, where L
is the number of layers. Then the output of each layer can be defined as:

xl = Hl([x0, x1, . . . , xl−1]) (1)

where [x0, x1, . . . , xl−1] represents the channel-wise concatenation of the feature-maps
produced in layers 0, . . . , l − 1, and Hl refers to the operation of the sequence BN-
ReLU-Conv. The DenseNet enhances gradient back propagation due to dense connections,
making the network easier to train.

Figure 5. The basic schematic of a 4-layers dense block.

Figure 5 just shows the basic structure of a dense block and depending on the number
of convolutional layers in the dense blocks, there are four DenseNets with different network
depths. In this paper, the EMA-DenseNet employs three dense blocks, one less than
DenseNet-121. Two dense blocks are placed on the downsampling path and one on the
upsampling path. We did not use the Softmax layer at the last layer of DenseNet for
classification because the cracks and steel bars need to be segmented and extracted. The
conventional solution is to directly use deconvolution layer to obtain the feature map of
the same size as the input for prediction. However, this paper realizes the deficiency of
CNN and uses an expectation-maximization attention (EMA) module to further improve
the quality of feature maps.

3.2. Expectation-Maximization Attention Module

The normal Non-Local module selects all data points as the bases, but the EMA
module aims to obtain a compact base set through an EM algorithm [42]. The overall
structure of the EMA module is shown in Figure 6. For simplicity, we assume that the
single image after passing through DenseNet produces a C×H×W feature map X. Firstly,
a convolution operation is carried out without ReLU activation function, and the input
value range is transformed from (0,+∞) to (−∞,+∞). The last 1 × 1 convolution is

inserted to convert the re-estimated
~
X into the residual space of X.
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Figure 6. Structure of the expectation-maximization attention unit (EMAU).

The operation of the EMA module consists of the following three steps:
Step 1: Responsibility estimation. We reshape X into N×C, where N = H×W, given

the input X ∈ RN×C and the initial bases µ ∈ RK×C. This step computes the expected value
of znk, which corresponds to the responsibility of the k-th basis µ to xn, where 1 < k < K
and 1 < n < N. Then use λ as a hyper-parameter to control the distribution of Z, the
operation of the k-th iteration can be formulated as:

Z(t) = so f tmax
(

λX
(
µt−1

)ᵀ)
(2)

Step 2: Likelihood maximization. This step updates µ by maximizing the complete
data likelihood with the estimated Z. In order to keep the bases in the same embedding
space as the input X, the bases µ is updated using the weighted sum of X. So in the t-th
iteration, µk is calculated by:

µ
(t)
k =

z(t)nk xn

∑N
m=1 z(t)mk

(3)

The EM algorithm executes Step 1 and Step 2 alternately until the convergence criterion
is satisfied.

Step 3: Data re-estimation. When the iteration of EM algorithm is finished, the final

µ(t) and Z(t) are used to re-estimate the X, namely
~
X.

~
X is very compact in the feature space,

and the characteristic variance inside the object is smaller than the input characteristic

variance.
~
X is formulated as:

X̃ = Z(T)µ(T) (4)

3.3. Loss Function

The design of loss function will have a great impact on the performance of the network.
A good loss function can make the training get twice the results with half the effort. Most of
the previous [43,44] methods use the cross-entropy loss function to calculate the accuracy
of each pixel prediction, as shown in Equation (5). Here, c = {0, 1, 2} represents the
category of each pixel, while y is the true value and ŷ is the predicted result. This loss
function focuses on determining the category of each pixel, but does not focus on the
relationship between pixels:

Loss = −∑ ∑n
c=0 yclogŷc (5)

In order to better solve the problem of bridge damage detection, Mei et al. [45] treated
the pixel-level crack detection as a connectivity problem. First, the binary mask annotation
was transformed into a connectivity map, eight connectivity maps can be generated based
on the binary mask information. The loss function is designed to optimize the neural
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network parameters so that all eight connectivity maps are closer to the real value. This
loss function is the sum of the cross-entropy functions of all eight connectivity maps, as
shown in Equation (6).

Loss = ∑8
k=1 (6)

where yAk (i, j) is the true label of a pixel at location i and j in the connectivity map Ak,
and ŷAk (i, j) is the predicted result. However, this loss function is only for crack detection,
we extend it to multiple damage detection. The new loss function will be formulated by
Equation (7):

Loss = −∑i,j∈image ∑n
i=1 ∑8

k=1 yAk
(i, j)logŷAk

(i, j) (7)

4. Results and Analysis
4.1. Model Training

The training process was carried out on the high-performance computing platform of
Chang’an university, which has four Tesla V100-SXM2 GPUs. We implement our EMA-
DenseNet using Pytorch, which is an open-source platform for deep learning. Due to the
large image size, training the EMA-DenseNet requires a large amount of memory, which
will lead to a heavy burden for the training process. In addition, the crack area takes up a
small proportion in the whole image, and many background areas are meaningless to the
training process. Therefore, the original bridge crack images are divided into several small
patches with a size of 480× 480. Since the image size of the open crack data set is different
from that of the bridge damage data set in this paper, the batch size for training on these
two data sets is different. Through a lot of experiments, we finally set the batch size as 16
and 12, respectively, in the training process of crack dataset and bridge damage dataset.

To optimize loss functions, we chose the powerful Adam optimizer [46], which has
faster convergence than Momentum, RMSprop, etc., and the initial learning rate is set
to 0.0001. The momentum and weight decay are set to 0.9997 and 0.0005, respectively.
In the beginning, we initialize µ(0) using Kaiming’s initialization method [47]. All the
normalization operations in the experiments adopt the synchronous batch normalization
method. According to [42], we set the default parameter K = 64, λ = 1, the number of
iterations T = 3. The µ(T) can be generated after iterating over an image, we average it
over a mini-batch to get the µ(T). The µ(0) will be updated using the moving average as
follows:

µ(0) ← α+ (1− α)µ(T) (8)

where the momentum α ∈ [0, 1]. In order to ensure the stable update of µ(t), we apply
Euclidean normalization upon it.

4.2. Evaluation Metrics

To demonstrate the feasibility of the proposed scheme, we compared our EMA-
DenseNet with FCN [34], SegNet [33], DeepLab v3+ [48] and SDDNet [49]. During the
training, the metrics between the predicted results and the ground truth is calculated at the
end of each iteration. Assuming there are k + 1 classes, pij represents the number of pixels
that belong to class i but are predicted to be class j, then we can calculate these metrics:
pixel accuracy (PA), mean pixel accuracy (MPA), mean intersection over union (MIoU) and
precision by Equations (9)–(12).

PA represents the proportion of the predicted number of pixels in the total number of
pixels, which is defined as:

PA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
(9)
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MPA is a simple upgrade of PA. We calculate the proportion of pixels in each class
that are correctly classified, and then take the average of all classes. It is formulated as:

MPA =
1

k + 1 ∑k
i=0

pii

∑k
j=0 pij

(10)

MIoU is a standard measure of semantic segmentation techniques, which takes the
average value after calculating the cross over ratio on each class. It is defined as:

MIoU =
1

k + 1 ∑k
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(11)

Precision is defined as the percentage of correctly identified damage pixels with
relative to all detected pixels, which is calculated as:

Precision =
1

k + 1 ∑k
i=0

pii

∑k
j=0 pji

(12)

4.3. Results on the Public Crack Dataset

The PA, MIoU, and MPA will be calculated during the training, and Figure 7 shows
the process of the training. In the first 2000 iterations, these three indexes increased
exponentially, this indicates that our model converges very quickly. The right figure of
Figure 8 is a larger version of the last 2000 iterations, where the MIoU grew slowly and
finally reached a stable value of 87.42%. The training process proves that the proposed
algorithm is reliable. We compared the final stability model with the FCN, SegNet, DeepLab
v3+ and SDDNet, Table 1 presents the MIoU, PA, MPA, and precision for these methods.
For the proposed method they are 87.42%, 97.58%, 92.59% and 81.97%, respectively. PA is
very high because the percentage of damaged areas in the picture is particularly low. MPA
is the mean pixel accuracy of various categories, and it is usually more convincing than PA.
Obviously, four of the five evaluation indicators of our proposed algorithm are the highest,
with only PA slightly lower than FCN. This result shows that the EMA-DenseNet has better
performance than other methods in concrete crack detection. Finally, the processing speed
of each method is presented. The processing speed is related to the number of parameters
in the network, DeepLab v3+ has the slowest processing speed and can predict 12.8 images
in one second. Due to fewer parameters, the SDDNet has the fastest prediction speed, with
a FPS of 33.2. The proposed EMA-DenseNet also has some advantages in processing speed,
only a little lower than SDDNet, ranking the second.

Figure 7. The MIoU, PA and MPA of the proposed EMA-DenseNet on the public crack dataset during each iteration, the
figure on the right is a magnification of the interval on the left.
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Figure 8. Predicted results compared with ground truth, the images (a–e) are randomly selected from the test set.

Table 1. Comparison of Performance for Different Methods on Public Concrete Crack Dataset.

Method MIoU (%) PA (%) MPA (%) Precision (%) FPS (f/s)

FCN 85.77 97.96 90.12 81.73 15.6
SegNet 85.35 96.58 88.30 78.55 18.5

DeepLab v3+ 86.50 97.29 91.57 81.08 12.8
SDDNet 85.27 96.91 91.01 81.50 33.2

Ours 87.42 97.58 92.59 81.97 25.4

Several images were randomly selected from the test set for detailed comparison,
Figure 8 presents the visual comparisons of the crack detection results using these five
methods. All the images in the first row are the original images to be detected, the second
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line are the manually annotated images and the following are the prediction results of
different methods. A total of five different crack images were selected, and the fracture
morphology in each image was relatively complex. It can be seen from Figure 8 that the
EMA-DenseNet is a more powerful network, which makes it better for noise processing.
The experimental results show that these methods can detect cracks well, but the predicted
crack pixels of SegNet and FCN are discontinuous. On the other hand, the prediction results
of SDDNet and DeepLab v3+ algorithm contain many noise points, while the proposed
EMA-DenseNet is closer to the ground truth.

It is not convincing to subjectively judge whether the predicted results are good or
bad. For the prediction results of these four pictures, we calculated the MIoU of each
method respectively, as shown in Table 2. By comparison, it can be seen that the MIoU of
the proposed EMA-DenseNet prediction results are slightly higher than other methods.
This comparison proves the effectiveness of the method presented in this paper, but the
reason why there is not much difference is that the contrast ratio of cracks in this dataset
is relatively high and easy to distinguish. Therefore, we do the same comparison on the
bridge damage dataset in the next section.

Table 2. Mean intersection over union (MIoU).

Image FCN SegNet DeepLab v3+ SDDNet Ours

(a) 87.0% 83.1% 87.3% 85.8% 87.3%
(b) 84.2% 85.2% 85.2% 84.3% 85.9%
(c) 82.2% 86.5% 85.9% 85.1% 86.8%
(d) 84.7% 83.1% 87.0% 84.5% 87.8%
(e) 83.6% 83.0% 87.3% 86.0% 88.1%

4.4. Results on the Bridge Damage Dataset

To further verify the proposed method, a more challenging bridge damage dataset
collected by our team is employed. The surface of the bridge is damaged due to the
deformation of the steel bars, which is generally relatively wide and has some cracks
around it. Due to the influence of rain, the exposed steel bars are basically in a state of
rusting, which also belongs to a kind of bridge damage. To demonstrate the effectiveness of
the EMA module, two types of training were carried out here, one with the EMA module
and the other without the EMA module. Figure 9 shows the performance curve when the
training finished, the solid and dotted lines represent the adoption and non-adoption of
EMA modules, respectively. Similarly, these three indicators also reach a high level very
quickly, indicating that the convergence process of the algorithm is very short. At the end
of the training, the MIoU, PA and MPA of the proposed EMA-DENSENET reached 79.87%,
97.31% and 86.35%, respectively, while those of the network without EMA module were
73.65%, 96.31%, and 79.91%, respectively. Table 3 lists the MIoU, PA, MPA, and Precision
for different methods on the bridge damage dataset. SDDNet and DeepLab v3+ perform
better than FCN and SegNet, but are still not comparable to the proposed approach. The
biggest difference is MPA, the EMA-DenseNet is 2.63% higher than FCN and 4.20% higher
than SegNet. In terms of the speed of recognition, the image size of the bridge damage
dataset is larger, so the FPS of all methods decrease greatly. Even so, the processing speed
of these five methods is relatively fast. SDDNet has the highest FPS, followed by the
proposed algorithm. However, the accuracy of SDDNet is rather lower than ours. This
suggests that our algorithm is more suitable and more robust for detecting damage in
complex environments.
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Figure 9. The MIoU, PA and MPA of the proposed EMA-DenseNet on our bridge damage dataset during each iteration,
the solid lines indicate the proposed networks with EMA module, and the dotted lines represent networks without EMA
modules.

Table 3. Comparison of Performance for Different Methods on Bridge Damage Dataset.

Method MIoU (%) PA (%) MPA (%) Precision (%) FPS (f/s)

FCN 74.75 94.05 81.72 71.54 8.1
SegNet 75.03 93.28 82.15 71.67 9.0

DeepLab v3+ 78.86 95.78 85.33 74.71 7.4
SDDNet 77.10 94.08 83.92 73.78 18.5

Ours 79.87 97.31 86.35 74.70 14.6

Some sample images in the test set are used to further analyze and compare, the
original images and predictions of different methods are shown in Figure 10. As can be
seen from the original image, the bridge images are particularly fraught with interference
factors. Most of the noise in these images is spots, which are easily mistaken for cracks
by traditional methods. This dataset can reflect the advantages and disadvantages of
each method. Figure 10a–c are the crack images, and the Figure 10d–f are the steel bar
images. It can be clearly seen that many algorithms are not effective in detecting the
bridge damage. For example, when the FCN and Segnet detected cracks in Figure 10a,
some spots that are not cracks are detected as cracks. There are some lines and words
beside the cracks in Figure 10c, which are very similar to the crack. The FCN, SegNet and
SDDNet mistakenly recognize some lines or words as cracks, while the DeepLab v3+ and
the proposed EMA-DenseNet accurately detected the cracks. Among the six images, the
easiest to detect is Figure 10d. Although there are some noise points around the exposed
steel bar, the damage area is more obvious and easy to detect, so all the methods have good
detection. The rebar in Figure 10e is also not easy to detect, FCN and SegNet detected
some cement traces as rebar. The prediction results of DenseNet without EMA module
are also given here. The performance of DenseNet were also good, but there were a lot
of noise. The damage region predicted by EMA-DenseNet is more complete and has less
noise. By comparing the two cases, it can be found that the application of EMA module
greatly improves the performance. The prediction results show that the proposed method
has better noise processing ability and robustness in the case of simultaneous identification
of multiple damages. It should be acknowledged that some damage segments are still
not correctly identified in our method, the effective solution is to increase the number of
images in the training.
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1 
 

Figure 10. Prediction results for some bridge damage images, the images (a–f) are randomly selected from the test set.

Similarly, we also analyzed the MIoU of these six images separately, as shown in
Table 4. FCN failed to detect cracks in image (b) so that it has the lowest average MIoU. For
the predicted results, the average MIoU of the proposed algorithm is 80.4%, which is higher
than the other four methods. DeepLab V3+ ranked second with an average MIOU of 79.0%.
The MIoU of DeepLab V3 + is significantly higher than the other three algorithms, but 1.4%
lower than our EMA-DenseNet. Through the comparison, it is shown that the proposed
algorithm has better performance in the prediction of these six images, which indicates
that this study has certain significance. Based on the above analysis, it can be seen that
the bridge damage have complex characteristics, and the method in this paper has great
advantages in the detection of cracks and the exposed steel bars due to the use of dense
block and expected maximization attention module. Although the proposed method has
achieved the most advanced performance, the current method still has some limitations.
For example, the algorithm needs to perform cutting operations when detecting images
with high resolution, otherwise the effect is very poor.
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Table 4. Mean intersection over union (MIoU).

Image FCN SegNet DeepLab
v3+ SDDNet Ours

(a) 75.7% 75.9% 78.8% 77.0% 80.5%
(b) 61.6% 75.2% 79.8% 77.1% 81.9%
(c) 73.2% 74.9% 79.5% 74.4% 80.3%
(d) 78.7% 80.1% 80.5% 80.6% 81.8%
(e) 74.6% 72.9% 77.0% 77.2% 78.3%
(f) 78.7% 79.3% 78.4% 78.1% 79.3%

mean 73.8% 76.4% 79.0% 77.4% 80.4%

5. Conclusions

This paper presents a novel algorithm called EMA-DenseNet for the detection of
multiple damage on the bottom of bridges. The proposed framework can automatically
detect cracks and exposed steel bars against the complex background of the bridge. We
adjusted the structure of the DenseNet by adding an upsampling layer so that it can
achieve pixel-level prediction. In addition, behind the last pooling layer of the network, we
adopted an EMA module to iterate the features acquired by the subsampling path, making
it more sensitive to cracks and reinforcement pixels. Moreover, the validity of the EMA
module is verified by the comparison of feature map, the obtained feature map has strong
robustness and has great suppression to noises. More importantly, a new loss function
is adopted to train the proposed network, which pays more attention to the connectivity
of the damage area. One of the datasets we used is the concrete surface crack dataset,
the other is the bridge damage dataset we collected using a camera. Both datasets were
manually annotated by professionals, with 80% used for training and 20% for validation.

On the public crack dataset, the performance of the proposed algorithm is slightly
higher than FCN, SegNet, DeepLab v3+ and SDDNet. While on the bridge damage dataset,
the MIoU and MPA of EMA-Densenet are much higher than with these four algorithms.
Specifically, this algorithm can quickly detect cracks and steel corrosion on the bottom of
bridges, while the accuracy and processing speed of other algorithms are relatively low. In
conclusion, the model has strong stability and robustness, which can solve the interference
of the complex environment at the bottom of the bridge to damage detection. The good
performance of the proposed network provides a possibility for large area automatic
damage detection, it can be applied to bridge damage detection.
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