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Abstract: Cracks and exposed steel bars are the main factors that affect the service life of bridges. It 

is necessary to detect the surface damage during regular bridge inspections. Due to the complex 

structure of bridges, automatically detecting bridge damage is a challenging task. In the field of 

crack classification and segmentation, convolutional neural networks have offer advantages, but 

ordinary networks cannot completely solve the environmental impact problems in reality. To fur-

ther overcome these problems, in this paper a new algorithm to detect surface damage called EMA-

DenseNet is proposed. The main contribution of this article is to redesign the structure of the 

densely connected convolutional networks (DenseNet) and add the expected maximum attention 

(EMA) module after the last pooling layer. The EMA module is obviously helpful to the bridge 

damage feature extraction. Besides, we use a new loss function which considers the connectivity of 

pixels, it has been proved to be effective in reducing the break point of fracture prediction and im-

proving the accuracy. To train and test the model, we captured many images from multiple bridges 

located in Zhejiang (China), and then built a dataset of bridge damage images. First, experiments 

were carried out on an open concrete crack dataset. The mean pixel accuracy (MPA), mean intersec-

tion over union (MIoU), precision and frames per second (FPS) of the EMA-DenseNet are 87.42%, 

92.59%, 81.97% and 25.4, respectively. Then we also conducted experiments on a more challenging 

bridge damage dataset, the MIoU, where MPA, precision and FPS were 79.87%, 86.35%, 74.70% and 

14.6, respectively. Compared with the current state-of-the-art algorithms, the proposed algorithm 

is more accurate and robust in bridge damage detection. 

Keywords: deep convolutional networks; bridge damage detection; expected maximum attention; 

densely connected networks 

 

1. Introduction 

Bridges play an irreplaceable role in transportation, so their reliability must be guar-

anteed. Compared with the huge amount of bridge construction costs, bridge repair and 

maintenance should be periodically estimated. China has the world’s best bridge-building 

technology, accounting for six of the world’s top 10 sea-crossing bridges, and more than 

800,000 highway bridges and 200,000 railway bridges are in use according to the statistics. 

The safety threat of aging bridges has been regarded as a national public concern, and one 

of the biggest challenges today is the design of algorithms that can automatically detect 

bridge damage [1]. In order to prevent large accidents caused by bridge collapses, the 

bridge structural health monitoring (SHM) [2–4] technology has been proposed to evalu-

ate the health of bridges. SHM is built on the bridge big data and the use of various sensors 
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that can monitor the bridge temperature, humidity, wind, deformation, tension and so on 

[5]. 

In order to solve the problem of local damage detection of the bridge, the nondestruc-

tive detection technology is adopted for key bridge components in practical engineering 

[6,7]. Several SHMs are capable of large-scale structural detection, but they require a large 

number of instruments and sensors. To solve this problem, damage detection methods 

based on computer vision have been developed. Damage detection algorithms based on 

image processing such as percolation-based image processing [8,9], threshold methods 

[10,11] and edge detection methods [12,13] are very popular detection methods in the 

early stages. Chen et al. proposed a method to identify the spatial and temporal distribu-

tion of vehicle loads on long-span bridges by using computer vision technology combined 

with the monitoring information from a dynamic weighing system [14]. Ho et al. intro-

duced an efficient image-based damage detection system that can automatically identify 

damage to bridge cable surfaces through image processing techniques and pattern recog-

nition [15]. The development of automatic damage detection algorithms is helpful to re-

duce the maintenance costs and improve the maintenance efficiency of bridges, which has 

important research value. 

The main factors affecting the service life of the bridge are cracks at the bottom of the 

bridge deck and corrosion of steel components, especially for those that have been used 

for more than 50 years. The existence of cracks will shorten the service life of bridges and 

increase the probability of accidents. Therefore, it is of great value to study bridge damage 

detection. Because of the large amount of traffic on the bridge, it is very dangerous to 

detect the damage directly in the field [16,17], and it is time-consuming and laborious for 

a person to search for cracks from thousands of pictures. As a result, many researchers 

have tried to develop automatic bridge damage detection technology [18,19]. Image-based 

crack detection algorithms have made great progress in recent years, but the reason why 

they can’t be applied effectively in practice is that the detection accuracy of these algo-

rithms is very low in the face of complex and changeable environment. 

Different from cracks in ordinary pavement, the cracks at the bottom of a bridge are 

smaller and the influence of other features is larger, as shown in Figure 1. These features 

mainly consist of holes, exposed and rusted steel bars, drain-pipes and traces of uneven 

cement. Some of these noises are similar in shape to cracks and are easily detected as 

cracks by mistake. In addition, pen marks are used to indicate the cracks when the images 

are collected, which also have a high degree of similarity with cracks. Due to the complex-

ity of the various features, most crack detection algorithms are not accurate and effective 

enough. As a result, the automatic detection of the length and width of cracks on bridge 

pavements is a challenging task. Deep learning algorithms are used to detect bridge cracks 

mainly because of their robustness and learnability. Robustness means that the deep 

learning algorithm has a stable ability to extract features of cracks from the images, and 

then identify and locate cracks according to these features. This study aims to accurately 

detect cracks and exposed steel bars in complex environments using deep neural net-

works. Deep learning has two apparent advantages in damage detection: robustness and 

automation [20]. Robustness refers to the ability to stably extract features from images, 

and then to identify and locate damaged areas based on these features. Automation means 

that the feature extraction process is automatic or semi-automatic. With these two fea-

tures, deep learning can distinguish different types of damage from the background in 

images. Therefore, it is appropriate to identify bridge cracks and steel bars using deep 

learning methods. 
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Figure 1. Some images taken under a bridge (including cracks, exposed steel bars and other features). 

In recent years, the development of deep learning in the field of object detection has 

broken through the concept of traditional image processing technology and achieved ex-

cellent results [21–23]. The same is true for damage detection, where deep neural networks 

have brought unprecedented improvements, which makes it possible to realize crack de-

tection in complex environments. Dorafshan et al. compared the performance of common 

edge detectors and deep convolutional neural networks (DCNNs) for image-based crack 

detection in concrete structures [24], and the result was that a CNN-based crack detector 

has much better performance than a traditional edge detector. Research on crack detection 

and recognition has grown rapidly because of the development of CNN. As long as a large 

number of multi-type data are used to train the neural network, the features of cracks can 

be learned and the cracks can be detected more accurately. Wang et al. proposed a CNN-

based crack detection network called CrackNet [25] and its improved version CrackNet II 

[26], both of which can detect cracks in 3D road images with good results and fewer net-

work parameters. Cha et al. trained a CNN to divide images of concrete buildings into 

cracked and non-cracked areas using a sliding window scheme [27]. CNN has great re-

search significance because it has great variability, and networks with different depths are 

suitable for different situations. Hui et al. added bypass channels into the ordinary CNN, 

fused the features of all channels, and achieved better accuracy in crack detection of bridge 

steel box girders than with the original CNN [28]. The proposals of ResNet [29] and Dense-

Net [30] have injected new vitality into the field of deep learning, as both of them change 

the structure of the traditional CNN that transmits information only from one layer to the 

next layer. DenseNet requires less than half the parameters compared to ResNet, but 

achieves the same accuracy. For industry applications, DenseNet can significantly save 

bandwidth and reduce storage overhead. In fact, DenseNet is more efficient than other 

networks. The key to DenseNet is the reduction of the required computation per layer of 

the network and the reuse of features. Each layer of DenseNet only needs to learn a few 

features, resulting in a significant reduction in the number of parameters and computa-

tions. DenseNet has a very good anti-overfitting performance. Compared with the classi-

fier of the general neural network which directly depends on the features of the last layer 
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of the network, DenseNet can make comprehensive use of the features of the low com-

plexity of the shallow layer, so it is easier to obtain a smooth decision function with better 

generalization performance. In the field of semantic segmentation, the fully convolutional 

networks (FCNs) [31] and U-net [32] have made waves again, because they use deconvo-

lution instead of a full connection layer to achieve end-to-end pixel level segmentation. 

The encoder-decoder network (SegNet) [33] concept changed the way of up-sampling on 

the basis of FCN, and it has better performance in processing time and memory occu-

pancy. These methods were soon applied to crack detection and have achieved remarka-

ble results [34–36]. 

Deep learning does not function alone in the field of crack detection, it can also be 

combined with other image processing technologies to achieve better results [37]. Chen et 

al. combined a convolutional neural network with naive Bayes to detect cracks in nuclear 

inspection videos [38], where the false positives are subtly removed by the use of the naive 

Bayes method. Song et al. introduced a new multiscale extended convolution module, 

which can learn plentiful deep features and make the acquired features more recognizable 

in complex backgrounds [39]. It is worth highlighting that with the development of com-

puter vision techniques, especially deep learning, automatic object detection technology 

has been greatly improved. What we need to do is to further study on the basis of deep 

learning and design a scheme that can be applied to actual bridge damage detection work. 

Attention is widely used for various tasks, such as machine translation and video classifi-

cation [40,41]. EMANet [42] re-thought the attention mechanism from the perspective of 

EM algorithm and calculated the attention map by iteration. It transformed the attention 

mechanism into an expectation-maximization manner and iteratively estimated a more 

compact base upon which to compute attention maps; this module is robust and takes up 

less memory. The approach in this paper is motivated by the above works, and we intro-

duce the EMA module into DenseNet to make the detection algorithm pay more attention 

to the damaged parts of the bridge. The main contributions of this paper may be listed as 

follows: 

(1) A novel bridge damage detection method based on densely connected convolutional 

networks with expectation maximum attention module (EMA-DenseNet) is pro-

posed, which can detect cracks and exposed steel bars efficiently in the complex en-

vironment at the bottom of the bridge. 

(2) The structure of the advanced DenseNet was redesigned and the EMA module was 

added in the last pooling layer of the DenseNet, which is obviously helpful for the 

damage feature extraction. 

(3) Experiments were carried out on a public crack dataset and a bridge damage dataset 

respectively and the results were compared with the most advanced algorithms, 

showing the superiority of the proposed method. 

2. Data Collection 

As mentioned in Section 1, the damage at the bottom of the bridge mainly includes 

cracks and exposed steel bars. At present, there are some crack datasets but no public 

bridge damage dataset. Therefore, we use both a crack data set and a bridge damage da-

taset made by us into account. 

2.1. Public Crack Dataset 

Yang et al. [34] collected more than 800 crack images of concrete pavement, and here 

we use this crack dataset to verify the effectiveness of the proposed method. The original 

images were formatted as JPG, while the resolution ranged from 72 to 300 dpi. Figure 2 

shows some samples of this dataset, where the morphology of the cracks is varied, but the 

noise in this data set is relatively low. In the ground truth images, the white area with the 
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pixel value of 0 represents the background, and the black area with the pixel value of 255 

represents a crack. 

 

Figure 2. The public concrete crack dataset collected by Yang et al. 

2.2. The Established Bridge Damage Dataset 

The bridge crack dataset described above is relatively simple, and there are few in-

terference factors in the images, which may be inconsistent with the actual detection en-

vironment. Therefore, we collected many bridge images including cracks and exposed 

reinforcement from several different bridges in Xuzhou (Zhejiang Province, China). As 

shown in Figure 3a, the bridge images can be obtained using a standard bridge inspection 

vehicle. The image shooting position can be kept at a constant distance from the bridge, 

which will greatly facilitate the detection of damage. A total of 400 images, with resolution 

of 4464 × 2976 pixels, were captured using a 5D Mark IV digital single lens reflex camera 

(Canon, Zhuhai, China). Since the deep network needs labeled images for supervised 

learning, we carefully marked the collected images at the pixel level. Figure 3b,c show 

part of the original images and the manually annotated images, where red represents re-

bar pixels and green represents cracks. The proposed network can handle any image size 

however, training large images may lead to excessive use of GPU memory, leading to 

training failure. To avoid this situation, the original images were cropped to a size of 

480 × 480. There’s another advantage to doing this, in that the proportion of cracks in the 

image is increased, which is more conducive to improving the detection accuracy. Since 

most of the sub-images after cropping are images without any damage, we only selected 

images with bridge damage, including 1800 crack images and 2500 rebar images. Data 

enhancement is necessary to enhance the training effect, so all images were rotated 90, 

180, and 270 degrees, respectively. It is worth noting that in the data collection stage, we 

only annotated, clipped and augmented the collected images. During the data annotation 

process, the areas containing bridge damage was marked as cracks or exposed bars, and 

the other area (containing various noises) was marked as the background. In this way, the 

deep learning network model can learn the different characteristics of the bridge damage 

and the background during training, so as to eliminate the noise. 
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Figure 3. The establishment of bridge damage dataset consists of the following parts: (a) bridge 

image acquisition, (b) the captured bridge images, (c) manually marking the damage pixel area 

and (d) image clipping. 

3. Methodology 

The convolutional neural network has a very good performance in extracting fea-

tures, while the use of deconvolution enables the features to map to the input size, so as 

to achieve a pixel-level prediction. In this section, the network structure of the EMA-

DenseNet will be introduced, and the architecture of the network is shown in Figure 4. 

The advanced DenseNet is used as the backbone to extract the features of the input im-

ages, then the expectation-maximization attention (EMA) module is adopted to obtain 

more detailed features. As can be seen from Figure 4, after the adoption of EMA module, 

the fracture characteristics are clearer in the feature map. We enlarge the feature map to 

the same size as the input by up-sampling layer, and finally we adopt Sofmax layer for 

pixel-level classification. Below, we will detail the structure of the proposed framework. 

 

Figure 4. Overall architecture of the proposed EMA-DenseNet. 
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3.1. The DenseNet Backbone 

Unlike a traditional convolutional neural network which simply passes information 

on to the next layer, DenseNet [30] has designed a more densely connected block, which 

is called dense block. Figure 5 shows the configuration principle of the dense block, each 

convolutional layer in each block accepts the output of all previous layers in the Bblock. 

Here, we use �� to represent the input layer, ��  for the output of the other layers, where 

L is the number of layers. Then the output of each layer can be defined as: 

�� =  ��([��, ��, … , ����]) (1)

where [��, ��, … , ����]  represents the channel-wise concatenation of the feature-maps 

produced in layers 0, . . . , � − 1, and ��  refers to the operation of the sequence BN-ReLU-

Conv. The DenseNet enhances gradient back propagation due to dense connections, mak-

ing the network easier to train. 

 

Figure 5. The basic schematic of a 4-layers dense block. 

Figure 5 just shows the basic structure of a dense block and depending on the number 

of convolutional layers in the dense blocks, there are four DenseNets with different net-

work depths. In this paper, the EMA-DenseNet employs three dense blocks, one less than 

DenseNet-121. Two dense blocks are placed on the downsampling path and one on the 

upsampling path. We did not use the Softmax layer at the last layer of DenseNet for clas-

sification because the cracks and steel bars need to be segmented and extracted. The con-

ventional solution is to directly use deconvolution layer to obtain the feature map of the 

same size as the input for prediction. However, this paper realizes the deficiency of CNN 

and uses an expectation-maximization attention (EMA) module to further improve the 

quality of feature maps. 

3.2. Expectation-Maximization Attention Module 

The normal Non-Local module selects all data points as the bases, but the EMA mod-

ule aims to obtain a compact base set through an EM algorithm [42]. The overall structure 

of the EMA module is shown in Figure 6. For simplicity, we assume that the single image 

after passing through DenseNet produces a C × H × W feature map X. Firstly, a convolu-

tion operation is carried out without ReLU activation function, and the input value range 

is transformed from (0, +∞) to (−∞, +∞). The last 1 ×  1 convolution is inserted to con-

vert the re-estimated �� into the residual space of X. 
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Figure 6. Structure of the expectation-maximization attention unit (EMAU). 

The operation of the EMA module consists of the following three steps: 

Step 1: Responsibility estimation. We reshape X into N ×  C, where N =  H ×  W, 

given the input X ∈ ℝ�×� and the initial bases � ∈ ℝ�×�. This step computes the expected 

value of ��� , which corresponds to the responsibility of the �-th basis � to x�, where 

1 < � < K and 1 < � < N. Then use λ as a hyper-parameter to control the distribution of 

Z, the operation of the �-th iteration can be formulated as: 

�(�) = �������(��(����)⊺) (2)

Step 2: Likelihood maximization. This step updates � by maximizing the complete 

data likelihood with the estimated Z. In order to keep the bases in the same embedding 

space as the input X, the bases µ is updated using the weighted sum of X. So in the �-th 

iteration, �� is calculated by: 

��
(�)

=  
���

(�)
��

∑ ���
(�)�

���

 (3)

The EM algorithm executes Step 1 and Step 2 alternately until the convergence crite-

rion is satisfied.  

Step 3: Data re-estimation. When the iteration of EM algorithm is finished, the final 

�(�) and �(�) are used to re-estimate the X, namely ��. �� is very compact in the feature 

space, and the characteristic variance inside the object is smaller than the input character-

istic variance. �� is formulated as: 

 �� =  �(�)�(�) (4)

3.3. Loss Function 

The design of loss function will have a great impact on the performance of the net-

work. A good loss function can make the training get twice the results with half the effort. 

Most of the previous [43,44] methods use the cross-entropy loss function to calculate the 

accuracy of each pixel prediction, as shown in Equation (5). Here, � = {0, 1, 2} represents 

the category of each pixel, while � is the true value and �� is the predicted result. This 

loss function focuses on determining the category of each pixel, but does not focus on the 

relationship between pixels: 

���� = − ∑ ∑ ��������
�
���   (5)

In order to better solve the problem of bridge damage detection, Mei et al. [45] treated 

the pixel-level crack detection as a connectivity problem. First, the binary mask annotation 

was transformed into a connectivity map, eight connectivity maps can be generated based 

on the binary mask information. The loss function is designed to optimize the neural net-

work parameters so that all eight connectivity maps are closer to the real value. This loss 
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function is the sum of the cross-entropy functions of all eight connectivity maps, as shown 

in Equation (6). 

���� =  ∑�
���   (6)

where ���
(�, �) is the true label of a pixel at location � and � in the connectivity map ��, 

and ����
(�, �) is the predicted result. However, this loss function is only for crack detec-

tion, we extend it to multiple damage detection. The new loss function will be formulated 

by Equation (7): 

���� =  − ∑ ∑ ∑ ���
(�, �)�������

(�, �)�
���

�
����,�∈�����   (7)

4. Results and Analysis 

4.1. Model Training 

The training process was carried out on the high-performance computing platform 

of Chang’an university, which has four Tesla V100-SXM2 GPUs. We implement our EMA-

DenseNet using Pytorch, which is an open-source platform for deep learning. Due to the 

large image size, training the EMA-DenseNet requires a large amount of memory, which 

will lead to a heavy burden for the training process. In addition, the crack area takes up a 

small proportion in the whole image, and many background areas are meaningless to the 

training process. Therefore, the original bridge crack images are divided into several small 

patches with a size of 480 × 480. Since the image size of the open crack data set is differ-

ent from that of the bridge damage data set in this paper, the batch size for training on 

these two data sets is different. Through a lot of experiments, we finally set the batch size 

as 16 and 12, respectively, in the training process of crack dataset and bridge damage da-

taset. 

To optimize loss functions, we chose the powerful Adam optimizer [46], which has 

faster convergence than Momentum, RMSprop, etc., and the initial learning rate is set to 

0.0001. The momentum and weight decay are set to 0.9997 and 0.0005, respectively. In the 

beginning, we initialize �(�) using Kaiming’s initialization method [47]. All the normali-

zation operations in the experiments adopt the synchronous batch normalization method. 

According to [42], we set the default parameter � =  64, λ =  1, the number of iterations 

� =  3. The �(�) can be generated after iterating over an image, we average it over a mini-

batch to get the �̅(�). The �(�) will be updated using the moving average as follows: 

�(�) ← α + (1 − α)�̅(�) (8)

where the momentum � ∈ [0,1]. In order to ensure the stable update of �(�), we apply 

Euclidean normalization upon it.  

4.2. Evaluation Metrics 

To demonstrate the feasibility of the proposed scheme, we compared our EMA-

DenseNet with FCN [34], SegNet [33], DeepLab v3+ [48] and SDDNet [49]. During the 

training, the metrics between the predicted results and the ground truth is calculated at 

the end of each iteration. Assuming there are k + 1 classes, ���  represents the number of 

pixels that belong to class i but are predicted to be class j, then we can calculate these 

metrics: pixel accuracy (PA), mean pixel accuracy (MPA), mean intersection over union 

(MIoU) and precision by Equations (9)–(12). 

PA represents the proportion of the predicted number of pixels in the total number 

of pixels, which is defined as: 

�� =  
∑ ���

�
���

∑ ∑ ���
�
���

�
���

  (9)

MPA is a simple upgrade of PA. We calculate the proportion of pixels in each class 

that are correctly classified, and then take the average of all classes. It is formulated as: 
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��� =
�

���
 ∑

���

∑ ���
�
���

�
���   (10)

MIoU is a standard measure of semantic segmentation techniques, which takes the 

average value after calculating the cross over ratio on each class. It is defined as: 

���� =
�

���
 ∑

���

∑ ���
�
��� �∑ �������

�
���

�
���   (11)

Precision is defined as the percentage of correctly identified damage pixels with rel-

ative to all detected pixels, which is calculated as: 

��������� =  
�

���
 ∑

���

∑ ���
�
���

�
���   (12)

4.3. Results on the Public Crack Dataset 

The PA, MIoU, and MPA will be calculated during the training, and Figure 7 shows 

the process of the training. In the first 2000 iterations, these three indexes increased expo-

nentially, this indicates that our model converges very quickly. The right figure of Figure 

8 is a larger version of the last 2000 iterations, where the MIoU grew slowly and finally 

reached a stable value of 87.42%. The training process proves that the proposed algorithm 

is reliable. We compared the final stability model with the FCN, SegNet, DeepLab v3+ and 

SDDNet, Table 1 presents the MIoU, PA, MPA, and precision for these methods. For the 

proposed method they are 87.42%, 97.58%, 92.59% and 81.97%, respectively. PA is very 

high because the percentage of damaged areas in the picture is particularly low. MPA is 

the mean pixel accuracy of various categories, and it is usually more convincing than PA. 

Obviously, four of the five evaluation indicators of our proposed algorithm are the high-

est, with only PA slightly lower than FCN. This result shows that the EMA-DenseNet has 

better performance than other methods in concrete crack detection. Finally, the processing 

speed of each method is presented. The processing speed is related to the number of pa-

rameters in the network, DeepLab v3+ has the slowest processing speed and can predict 

12.8 images in one second. Due to fewer parameters, the SDDNet has the fastest prediction 

speed, with a FPS of 33.2. The proposed EMA-DenseNet also has some advantages in pro-

cessing speed, only a little lower than SDDNet, ranking the second. 

 

Figure 7. The MIoU, PA and MPA of the proposed EMA-DenseNet on the public crack dataset during each iteration, the 

figure on the right is a magnification of the interval on the left. 
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Table 1. Comparison of Performance for Different Methods on Public Concrete Crack Dataset. 

Method MIoU (%) PA (%) MPA (%) Precision (%) FPS (f/s) 

FCN 85.77 97.96 90.12 81.73 15.6 

SegNet 85.35 96.58 88.30 78.55 18.5 

DeepLab v3+ 86.50 97.29 91.57 81.08 12.8 

SDDNet 85.27 96.91 91.01 81.50 33.2 

Ours 87.42 97.58 92.59 81.97 25.4 

Several images were randomly selected from the test set for detailed comparison, 

Figure 8 presents the visual comparisons of the crack detection results using these five 

methods. All the images in the first row are the original images to be detected, the second 

line are the manually annotated images and the following are the prediction results of 

different methods. A total of five different crack images were selected, and the fracture 

morphology in each image was relatively complex. It can be seen from Figure 8 that the 

EMA-DenseNet is a more powerful network, which makes it better for noise processing. 

The experimental results show that these methods can detect cracks well, but the pre-

dicted crack pixels of SegNet and FCN are discontinuous. On the other hand, the predic-

tion results of SDDNet and DeepLab v3+ algorithm contain many noise points, while the 

proposed EMA-DenseNet is closer to the ground truth. 
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Figure 8. Predicted results compared with ground truth, the images (a–e) are randomly selected from the test set. 

It is not convincing to subjectively judge whether the predicted results are good or 

bad. For the prediction results of these four pictures, we calculated the MIoU of each 

method respectively, as shown in Table 2. By comparison, it can be seen that the MIoU of 

the proposed EMA-DenseNet prediction results are slightly higher than other methods. 

This comparison proves the effectiveness of the method presented in this paper, but the 

reason why there is not much difference is that the contrast ratio of cracks in this dataset 

is relatively high and easy to distinguish. Therefore, we do the same comparison on the 

bridge damage dataset in the next section. 
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Table 2. Mean intersection over union (MIoU). 

Image FCN SegNet DeepLab v3+ SDDNet Ours 

(a) 87.0% 83.1% 87.3% 85.8% 87.3% 

(b) 84.2% 85.2% 85.2% 84.3% 85.9% 

(c) 82.2% 86.5% 85.9% 85.1% 86.8% 

(d) 84.7% 83.1% 87.0% 84.5% 87.8% 

(e) 83.6% 83.0% 87.3% 86.0% 88.1% 

4.4. Results on the Bridge Damage Dataset 

To further verify the proposed method, a more challenging bridge damage dataset 

collected by our team is employed. The surface of the bridge is damaged due to the defor-

mation of the steel bars, which is generally relatively wide and has some cracks around it. 

Due to the influence of rain, the exposed steel bars are basically in a state of rusting, which 

also belongs to a kind of bridge damage. To demonstrate the effectiveness of the EMA 

module, two types of training were carried out here, one with the EMA module and the 

other without the EMA module. Figure 9 shows the performance curve when the training 

finished, the solid and dotted lines represent the adoption and non-adoption of EMA 

modules, respectively. Similarly, these three indicators also reach a high level very 

quickly, indicating that the convergence process of the algorithm is very short. At the end 

of the training, the MIoU, PA and MPA of the proposed EMA-DENSENET reached 

79.87%, 97.31% and 86.35%, respectively, while those of the network without EMA mod-

ule were 73.65%, 96.31%, and 79.91%, respectively. Table 3 lists the MIoU, PA, MPA, and 

Precision for different methods on the bridge damage dataset. SDDNet and DeepLab v3+ 

perform better than FCN and SegNet, but are still not comparable to the proposed ap-

proach. The biggest difference is MPA, the EMA-DenseNet is 2.63% higher than FCN and 

4.20% higher than SegNet. In terms of the speed of recognition, the image size of the 

bridge damage dataset is larger, so the FPS of all methods decrease greatly. Even so, the 

processing speed of these five methods is relatively fast. SDDNet has the highest FPS, 

followed by the proposed algorithm. However, the accuracy of SDDNet is rather lower 

than ours. This suggests that our algorithm is more suitable and more robust for detecting 

damage in complex environments. 

 

Figure 9. The MIoU, PA and MPA of the proposed EMA-DenseNet on our bridge damage dataset during each iteration, 

the solid lines indicate the proposed networks with EMA module, and the dotted lines represent networks without EMA 

modules. 

Some sample images in the test set are used to further analyze and compare, the orig-

inal images and predictions of different methods are shown in Figure 10. As can be seen 
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from the original image, the bridge images are particularly fraught with interference fac-

tors. Most of the noise in these images is spots, which are easily mistaken for cracks by 

traditional methods. This dataset can reflect the advantages and disadvantages of each 

method. Figure 10a–c are the crack images, and the Figure 10d–f are the steel bar images. 

It can be clearly seen that many algorithms are not effective in detecting the bridge dam-

age. For example, when the FCN and Segnet detected cracks in Figure 10a, some spots 

that are not cracks are detected as cracks. There are some lines and words beside the cracks 

in Figure 10c, which are very similar to the crack. The FCN, SegNet and SDDNet mistak-

enly recognize some lines or words as cracks, while the DeepLab v3+ and the proposed 

EMA-DenseNet accurately detected the cracks. Among the six images, the easiest to detect 

is Figure 10d. Although there are some noise points around the exposed steel bar, the 

damage area is more obvious and easy to detect, so all the methods have good detection. 

The rebar in Figure 10e is also not easy to detect, FCN and SegNet detected some cement 

traces as rebar. The prediction results of DenseNet without EMA module are also given 

here. The performance of DenseNet were also good, but there were a lot of noise. The 

damage region predicted by EMA-DenseNet is more complete and has less noise. By com-

paring the two cases, it can be found that the application of EMA module greatly improves 

the performance. The prediction results show that the proposed method has better noise 

processing ability and robustness in the case of simultaneous identification of multiple 

damages. It should be acknowledged that some damage segments are still not correctly 

identified in our method, the effective solution is to increase the number of images in the 

training. 

 

Figure 10. Prediction results for some bridge damage images, the images (a–f) are randomly selected from the test set. 
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Table 3. Comparison of Performance for Different Methods on Bridge Damage Dataset. 

Method MIoU (%) PA (%) MPA (%) Precision (%) FPS (f/s) 

FCN 74.75 94.05 81.72 71.54 8.1 

SegNet 75.03 93.28 82.15 71.67 9.0 

DeepLab v3+ 78.86 95.78 85.33 74.71 7.4 

SDDNet 77.10 94.08 83.92 73.78 18.5 

Ours 79.87 97.31 86.35 74.70 14.6 

Similarly, we also analyzed the MIoU of these six images separately, as shown in 

Table 4. FCN failed to detect cracks in image (b) so that it has the lowest average MIoU. 

For the predicted results, the average MIoU of the proposed algorithm is 80.4%, which is 

higher than the other four methods. DeepLab V3+ ranked second with an average MIOU 

of 79.0%. The MIoU of DeepLab V3 + is significantly higher than the other three algo-

rithms, but 1.4% lower than our EMA-DenseNet. Through the comparison, it is shown 

that the proposed algorithm has better performance in the prediction of these six images, 

which indicates that this study has certain significance. Based on the above analysis, it can 

be seen that the bridge damage have complex characteristics, and the method in this paper 

has great advantages in the detection of cracks and the exposed steel bars due to the use 

of dense block and expected maximization attention module. Although the proposed 

method has achieved the most advanced performance, the current method still has some 

limitations. For example, the algorithm needs to perform cutting operations when detect-

ing images with high resolution, otherwise the effect is very poor. 

Table 4. Mean intersection over union (MIoU). 

Image FCN SegNet DeepLab v3+ SDDNet Ours 

(a) 75.7% 75.9% 78.8% 77.0% 80.5% 

(b) 61.6% 75.2% 79.8% 77.1% 81.9% 

(c) 73.2% 74.9% 79.5% 74.4% 80.3% 

(d) 78.7% 80.1% 80.5% 80.6% 81.8% 

(e) 74.6% 72.9% 77.0% 77.2% 78.3% 

(f) 78.7% 79.3% 78.4% 78.1% 79.3% 

mean 73.8% 76.4% 79.0% 77.4% 80.4% 

5. Conclusions 

This paper presents a novel algorithm called EMA-DenseNet for the detection of 

multiple damage on the bottom of bridges. The proposed framework can automatically 

detect cracks and exposed steel bars against the complex background of the bridge. We 

adjusted the structure of the DenseNet by adding an upsampling layer so that it can 

achieve pixel-level prediction. In addition, behind the last pooling layer of the network, 

we adopted an EMA module to iterate the features acquired by the subsampling path, 

making it more sensitive to cracks and reinforcement pixels. Moreover, the validity of the 

EMA module is verified by the comparison of feature map, the obtained feature map has 

strong robustness and has great suppression to noises. More importantly, a new loss func-

tion is adopted to train the proposed network, which pays more attention to the connec-

tivity of the damage area. One of the datasets we used is the concrete surface crack dataset, 

the other is the bridge damage dataset we collected using a camera. Both datasets were 

manually annotated by professionals, with 80% used for training and 20% for validation. 

On the public crack dataset, the performance of the proposed algorithm is slightly 

higher than FCN, SegNet, DeepLab v3+ and SDDNet. While on the bridge damage da-

taset, the MIoU and MPA of EMA-Densenet are much higher than with these four algo-

rithms. Specifically, this algorithm can quickly detect cracks and steel corrosion on the 
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bottom of bridges, while the accuracy and processing speed of other algorithms are rela-

tively low. In conclusion, the model has strong stability and robustness, which can solve 

the interference of the complex environment at the bottom of the bridge to damage detec-

tion. The good performance of the proposed network provides a possibility for large area 

automatic damage detection, it can be applied to bridge damage detection. 
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