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Abstract: This paper presents a graphene-Au coated photonic crystal fiber (PCF) sensor in the
visible regime. Designing a side-polish D-shaped plane over the PCF’s defect of the periodic air
holes can effectively enhance the evanescent field. Graphene on gold can enhance the sensor’s
sensitivity because it can stably adsorb biomolecules and increase the propagation constant of the
surface plasmon polariton (SPP). Using the finite element method (FEM), we demonstrated that the
sensing performance is greatly improved by optimizing the PCF’s geometric structural parameter.
The proposed PCF sensor exhibited high performance with a maximum wavelength sensitivity of
4200 nm/RIU, maximum amplitude sensitivity of 450 RIU−1, and refractive index resolution of
2.3 × 10−5 RIU in the sensing range 1.32–1.41. This research provides a potential application for the
design a new generation of highly sensitive biosensors.

Keywords: photonic crystal fiber; surface plasmon resonance; optical fiber sensor; graphene

1. Introduction

Surface plasmon resonance (SPR) fiber sensors have become a hot research topic in
recent years due to their high sensitivity in detecting various biological and chemical
components, and they have great applications in biomedical and life security fields. SPR
is a phenomenon caused by free electron oscillation on metal-dielectric interfaces arising
from incident electro-magnetic waves [1]. With the development of nanotechnology, SPR
in biochemical sensing has drawn much interest from domestic and foreign scholars due to
its real-time monitoring of unlabeled biological samples and high sensitivity [2–5].

Since the photonic crystal fiber (PCF) was first proposed by Yablonovitch et al. [6]
and John et al. [7], several academic groups around the world have studied the theory and
application of PCF. Compared to optical fiber, PCF has a distribution of air holes in the
cladding region, extending infinitely along the fiber axis, and it has a flexible structure and
many excellent properties, including endless single mode, high nonlinearity, high birefrin-
gence, large mode field size, an ease of filling material, low transmission loss, controllable
dispersion, and so on [8–10]. It is proven that PCF is capable of replacing prisms, with a
smaller footprint, simpler system integration, and higher cost-effectiveness [11,12].

With the PCF acting as a prism, the SPR can be excited and controlled, which is
known as PCF-SPR sensing technology and is a high-performance sensor. In recent years,
many PCF-SPR sensors based on microstructures have been reported. Plasmonic materials
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are, however, coated on the inner wall of air holes in these sensors and liquid samples
are selectively impregnated into these air holes, which is very difficult. The D-type PCF-
SPR sensors [13–15], which are polished along one side of the optical fiber and placed
directly above the defective air holes, have been proposed to address these difficulties. The
plasmonic material and sensing layer are placed on the top of the polished surface, and
air holes of different sizes are placed at different positions of the PCF structure to control
the propagation of light in a specific direction. In 2015, Rifat et al. [1] proposed a PCF
biosensor coated with copper metal and externally with graphene. The structure has a
maximum sensitivity of 2000 nm/RIU within the refractive index range of 1.33–1.37, and a
sensing measurement accuracy of 5 × 10−5 RIU. In 2015, Luan et al. [16] proposed a SPR
sensor with a maximum sensitivity of 3700 nm/RIU and a sensing measurement accuracy
of 2.7 × 10−5 RIU within the refractive index range of 1.33–1.37. In 2017, Hasan et.al. [17],
proposed an SPR-based PCF biosensor outside the PCF structure with a gold layer and the
authors realized a maximum of 2200 nm/RIU for a sample range of 1.33–1.36. PCF-SPR
technology plays an important role in real-time detection and analysis, environmental
monitoring, chemical detection, food safety, gas detection, glucose monitoring, and other
fields [18,19].

Two-dimensional materials composed of single-layer atoms have attracted a lot of
interest since the first discovery of graphene in 2004 by Novoselov et al. [20] from the
University of Manchester. Their unique electrical, optical, and mechanical properties make
them promising materials for laser, photovoltaic, sensor, and medical applications [21–25].
For example, graphene’s high electrical conductivity, flexibility, strength, and lack of
dangling bonds, make it easy to integrate into fiber optics. Secondly, graphene has no mass,
a unique Dirac cone structure leading to zero bandgaps, and it has an ultra-fast migration
speed (up to 200,000 cm2/V s) at room temperature and high specific surface area, all
these contribute to the absorption of biomolecules, leading to highly sensitive biomolecule
sensing. Therefore, in recent years, many scholars have studied graphene biosensors for
their apparent advantages, high sensitivity, and label-free, real-time detection of biological
molecules (protein, DNA, etc.) [26–28].

In this paper, an SPR sensor with graphene-Au coated on D-type PCF is proposed.
The proposed PCF sensor consists of two layers of holes, and the second layer is missing
two air holes, forming an asymmetric structure in the orthogonal direction of the fiber core
and generating a birefringence effect. This design can not only obtain high sensitivity, but
also realizes low loss transmission. This makes the method of detection easier and simpler
since the sample can be detected by simply flowing or dripping onto the graphene-coated
gold layer’s outer surface. Manufacturing, which is a better candidate for refractive index
sensor applications, is much simpler.

2. Theoretical Analysis and Sensor Design
2.1. Sensing Principle

The principle of SPR is shown in Figure 1c. At the interface between the metal and
medium, the evanescent wave generated by total reflection enters the metal layer and
interacts with the free electrons to excite the surface plasmon wave (SPW), propagating
on the surface of the metal layer. SPR is a kind of optical physical phenomenon. When
the incident wavelength meets a certain value (resonance), most of the incident light
is converted into the energy of SPW, resulting in the reflected light energy decreasing
dramatically and the presence of a resonance peak in the reflection spectrum. At this time,
the incident wavelength is called the resonance wavelength of SPR. By measuring the shift
of the resonance wavelength, the sample’s refractive index (RI) on the surface of the metal
layer can be obtained.
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Figure 1. Surface plasmon resonance (SPR) sensing mechanism of D-type photonic crystal fiber (PCF) sensor. (a)The 
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Figure 1. Surface plasmon resonance (SPR) sensing mechanism of D-type photonic crystal fiber (PCF) sensor. (a) The
Brillouin zone of the graphene lattice. (b) Linear dispersion diagram of the band structure of single-layer graphene. (c)
Schematic diagram of Graphene-Au sensing mechanism.

2.2. Kubo Model of Graphene

To optimize the sensitivity of the graphene-Au SPR sensor based on D-type PCF, it is
necessary to know the optical property of graphene. As can be seen in Figure 1a, graphene is
a single layer of carbon atoms in sp2 hybrid orbitals tightly packed into a two-dimensional
honeycomb lattice structure material. kx and ky are the components of the wave vector
k. Because k and k’ are symmetric and the conduction band and valence band of the two
points in the Brillouin region are degenerate, the linear dispersion relation of the energy
band of graphene is the result. Therefore, electrons can be regarded as massless relativistic
particles, i.e., Dirac fermions, and the dispersion relation of two-dimensional electron
energy is isotropic, which is called a Dirac cone [29]. Figure 1b shows the band structure
of graphene, and the Dirac point region is enlarged in the inset. It is can be seen that the
graphene is a kind of semimetallic material with zero band gap. The conduction band
(C-band) and the valence band (V-band) are symmetrically conical and intersect at a point.
This energy band structure satisfies the Dirac equation, instead of the Schrodinger equation
satisfied by traditional metals or semiconductors, whose intersection point is called the
Dirac point. The unique zero band gap, excellent mechanical properties, high thermal
conductivity, great specific surface area, super broadband optical response spectrum, and
strong nonlinear optical properties have significant advantages in the new type of optical
and photoelectric sensing technology. Graphene can be transformed from semimetallic
to metallic behavior by chemical doping or electrical gating, which largely depends on
µ (the chemical potential) [24,30–32]. The random phase approximation of the dynamic
optical response of graphene can be obtained from the complex Kubo equation, including
inter-band and intra-band contributions [33,34]

σ = σintra + σ′inter + iσ′′ inter (1)

σintra = σ0
4µ

π

1
}τ1 − i}ω

(2)
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where σ0 = πe2

(2h) , τ1 is the intra-band transitions relaxation rate, } is the constant of the
reduced Planck’s, µ > 0 is the chemical potential, and ω is the radian frequency. The
inter-band contribution is

σ′inter = σ0

(
1 +

1
π

arctan
}ω− 2µ

}τ2
− 1

π
arctan

}ω + 2µ

}τ2

)
(3)

and

σ′′ inter= −σ0
1

2π
ln

(2µ + }ω)2 + }2τ2
2

(2µ− }ω)2 + }2τ2
2

(4)

where τ2 is the inter-band transitions rate of relaxation.
According to the above equation, the intra-band and inter-band photoconductivities

of graphene are related to µ and ω. The µ of the doped graphene is controlled by the
concentration of carrier n0 = (µ/}υ)2/π, which can be controlled by chemical doping or
applied voltage. The µ = 0 of the pristine graphene has no intra-band contribution. Due to
the appearance of the zero band gap, it can be seen from the theoretical expression and the
experimental results of optical absorption that the intra-band optical conductivity σintra in
terahertz and far-infrared bands is dominant, while the total conductivity in near-infrared
and visible bands mainly depends on the inter-band transition process [35]. Importantly,
the intra-band contribution is related to the propagation of surface plasmon in graphene.

In the simulation, the relation between the graphene dielectric constant in the direction
of the plane and the complex surface conductivity is as follows [36]:

ε = 1 +
iσ

ε0∆ω
(5)

The refractive index of graphene is as follows [37]:

ng =

√
1 + i

σ

ε0∆ω
(6)

where ε0 is the vacuum permittivity and ∆ = 0.34 nm is the thickness of graphene.
For multilayer graphene, thickness is calculated by t = 0.34 nm × LG (LG = 1, 2, 3 . . . ),

where LG is the number of layers. It has been proven that in the framework of the Fresnel
coefficient calculation, as long as the consistency of graphene and experimental spectrum
are added together, the distribution of graphene in the visible range can be simply estimated.
The complex refractive index equation of graphene can be calculated [38,39]:

ng = 3 +
iC1λ

3
(7)

where λ (µm) is the wavelength and C1 ≈ 5.446 µm−1 is implied by the opacity measure-
ment by Nair et al. [38].

2.3. Drude–Lorentz Model

The Drude–Lorentz model leads to very small errors in a wide spectral range
(λ ≥ 630 nm), which is better than that of the Drude model [40]. We used the graphene-
gold material coating on the PCF sensor in this paper, so the Drude–Lorenz model is more
accurate. Here, we choose the gold layer thickness tg = 40 nm and the gold dispersion
model Drude–Lorenz is:

εDL(Au)(ω) = ε∝ −
ω2

D
ω(ω + jγD)

−
∆ε ·Ω2

L(
ω2 −Ω2

L
)
+ jΓLω

(8)

where ΩL is the oscillator strength, ΓL is the spectral width of the Lorentz oscillators, and ∆ε
can be interpreted as a weighting factor [40]. Table 1 lists the detailed dielectric constants.
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Table 1. Parameter values of the Drude–Lorentz model.

ε∞ ωD/2π γD/2π ΩL/2π ΓL/2π ∆ε Φ

(THz) (THz) (THz) (THz)

Drude-Lorentz 5.9673 2113.6 15.92 650.07 104.86 1.09 14.521

2.4. Sellmeier Equation

As shown in Figure 2b, the designed PCF could be manufactured by adding capillary
and solid rods using a standard stack-and-draw system [41]. The background material of
the sensor is fused silica, for which the Sellmeier equation below can obtain dispersion
characteristics [42]:

n(λ) =

√
1 +

M1λ2

λ2 − N1
+

M2λ2

λ2 − N2
+

M3λ2

λ2 − N3
(9)

where M1 = 0.69616300, M2 = 0.407942600, M3 = 0.897479400, N1 = 0.00467914826,
N2 = 0.0135120631, and N3 = 97.9340025.

2.5. Structural Design and Analysis

The PCF sensor is designed as seen in Figure 2. The cross-section of the D-type PCF
sensor is shown in Figure 2a. The outer layer is the perfect matching layer (PML), and
the second layer is the liquid layer (analyte). The material is fused silica, the yellow is
the gold layer, and the black pattern is the graphene layer. The PCF structure consists
of two air-hole rings. The first ring has two missing air holes and forms an asymmetric
structure in the orthogonal direction of the fiber core and produces a birefringence effect.
The air holes of the second ring are arranged in D shape with rotation angle of 30◦ between
adjacent air holes. Designing a side-polish D-shaped plane over the PCF’s defect of the
periodic air holes can effectively enhance the evanescent field. The smaller central air
hole is designed in the sensor to make the evanescent wave penetrate the medium area
and reach the metal–medium interface to excite more free electrons. On the other hand,
it facilitates the phase matching coupling between the core-guide mode and the surface
plasmon polariton (SPP) mode. In Figure 2a, the length of the sensing area is L = 1 mm,
two adjacent air holes with diameter d = 0.4 Λ are placed with pitch size Λ = 1.8 µm, and
the diameter of the scaled down air hole in the center is d1 = 0.2 Λ.

The sensor is surrounded by the sample to be tested, and the waveguide property and
sensing performance are studied by COMSOL, the commercial software based on finite
element. In this study, the circular anisotropic PML boundary condition was imposed, and
by optimizing the mesh size and density, the convergence test was carried out, and the
calculated results were accurate.
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3. Results and Discussion
3.1. Dispersion Relation and Mode Field Distribution

Figure 3a–c describes the mode field distribution, which mainly helps us intuitively
observe the coupling strength. The color bar represents the intensity distribution of the
normalized mode field, and its value ranges from 0 (weak) to 1 (strong) and its color
variance from blue to red. Figure 3d shows the dispersion curves of the SPP mode and core
mode when RI is 1.38, tg = 40 nm and LG = 0. The X-axis is the wavelength, the right Y-axis
is the real part of the effective refractive index, representing the light dispersion ability of
the sensor. The left Y-axis is the attenuation constant per centimeter, which has the same
change trend as the imaginary part curve of the effective refractive index and does not
affect the wavelength sensitivity (Sλ) evaluation. It represents the light absorption (loss)
ability of the sensor.
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Figure 3d shows that the solid and dashed lines in different colors represent different
meanings. The solid black line represents the real part of the effective refractive index
Re(neff) of (a) x-pol SPP mode, the solid red line and the dotted red line represent the
Re(neff) and the confinement loss of 3b x-pol core mode, respectively, and the solid blue
line and the dotted blue line are Re(neff) and the confinement loss of Figure 3c y-pol core
mode, respectively, which are at the wavelength of 690 nm. Figure 3a shows that in the
x-pol SPP mode, there is almost no energy in the core and cladding, and all the energy
is mainly concentrated near the gold layer, which cannot exist for a long time. Figure 3b
shows the x-pol core mode. It can be seen that a large amount of energy from the core
excitation to the cladding is coupled into the vicinity of the gold layer. At this time, SPR is
the strongest. Figure 3c is the y-pol core mode. It can be seen that a large amount of energy
is excited by the core to the cladding, but not coupled into the gold layer. That is because
the y-pol core mode cannot produce the SPP mode, the mode field is only distributed in the
PCF fiber. The reason is that when the electromagnetic wave propagates as a longitudinal
wave in the metal at group velocity, it satisfies the phase matching, that is, the plasma
frequency is equal to the evanescent wave frequency, and the corresponding excitation
is the collective longitudinal vibration of the electron. At this time, the incident light is
converted into SPW energy, resulting in a sharp decrease of reflected light energy and a
confinement loss peak. Therefore, the x-pol SPP mode can excite SPR, indicating that the
red dotted line corresponding to the intersection of the red solid line and the black solid line
in Figure 3d has a peak value, while the y-pol SPP mode hardly excites SPR, indicating that
the blue dotted line corresponding to the intersection of the blue solid line and the black
solid line has no peak value. Therefore, the x-pol core mode is considered in the following
discussion. COMSOL software can solve the effective refractive index of mode fields in
a complex domain. The effective refractive index(neff) of the mode can be expressed as
neff = Re(neff) + iIm(neff). The confinement loss can be obtained by Equation (8) [43]:

αloss =
40π

λIn10
Im
(

ne f f

)
(dB/m) (10)

where Im
(

ne f f

)
is the imaginary part of the effective refractive index.

3.2. Discussion on the Varying of Λ, and d1

The PCF-SPR sensor’s sensing capacity also depends on PCF structural parameters,
such as pitch, Λ, and holes diameter, d1, which are shown in Figure 4. The impact of
pitch Λ on the spectrum of loss are displayed in Figure 4a. As the sample RI varies from
1.35 to 1.36, the loss peak moves to the longer wavelength and simultaneously raises the
loss depth. When the sample RI is unchanged, the loss of the resonant peak position
remains unchanged, with na = 1.35 at 635 nm and na = 1.36 at 655 nm. It is obvious that
the loss depth is decreasing, meaning that in the fiber core, light is more constrained.
The maximum loss peaks for naval values of 1.35 and 1.36 were observed at 635 nm and
655 nm at 90 and 118.9 dB/cm, respectively, with parameters of Λ = 1.8 µm and LG = 0.
When Λ = 1.8 µm, the loss peak reaches the maximum and the SPR phenomenon is the
most obvious. Therefore, the value of holes pitch Λ = 1.8 µm was selected as the optimal
parameter of this design. Figure 4b,c analyzes the impact of the diameter of the smaller
central air hole. For the increment in diameter d1, a related phenomenon is observed to
appear as the Λ variance. It is clear that at d1 = 0.3 Λ, the maximum loss peaks are reached.
The diameter d1 could not, however, be too high, leading to a reduction of the effective
RI of the center of the fiber. The light would therefore leak from the core to the cladding
area, which affects the efficiency of sensing. Therefore, d1 = 0.2 Λ was shown to be the
optimized parameter and Figure 4d shows the optical field distribution for d1 = 0.2 Λ.
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3.3. Discussion on the Varying Thicknesses of the Gold Layer

Figure 5 illustrates the effect of the confinement loss and the sensitivity of amplitude
on the efficiency of sensing with a difference in the thickness of the gold layer without
graphene. In Figure 5a, the loss peaks decreased from 79.9 to 52.3 dB/cm for na of 1.35 and
from 105.48 to 65.9 dB/cm for na of 1.36 with the increase in gold layer thickness from 35
to 50 nm. It can be seen that with a change in gold layer thickness from 35 to 50 nm, the
loss peaks progressively downward; the thicker the gold layer, the greater is the loss of
damping. Increasing the gold layer thickness would cause the peak loss to change towards
a longer wavelength (red shift). The definition of the red or blue shift (movement to a
shorter wavelength) can be determined by the equation [44] dp = 1/kβ = λ/2πβ, where
dp is the evanescent wave’s penetration depth, and β and k are the decay constant and
wave number, respectively. The equation neff = β/k0, k0 = 2π/λ, where k0 = 2π/λ is
the wave number in the free space. This is because the incoming photon frequency is
proportional to the depth of penetration [45]. Therefore, the longer the wavelength, the
greater is the dp, the lower is the dp, and the shorter is the wavelength. Table 2 shows the
corresponding sensitivity of the wavelength and the quality factor with the variation of
gold layer thickness.
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Table 2. Quality factors corresponding to different gold layer thicknesses.

Gold Film Thickness (nm) FWHM (nm) S (nm/RIU) FOM (RIU−1)

35 61 1500 24.6
40 59 2000 33.9
45 65 2000 30.8
50 64 2000 31.3

The equation for calculating wavelength sensitivity, Sλ, and amplitude sensitivity, SA,
is as follows [46,47]:

Sλ(nm/RIU) =
∆λpeak

∆na
(11)

and

SA

(
RIU−1

)
= − 1

α(λ, na)

∂α(λ, na)

∂na
(12)

where ∆λpeak is the difference between the corresponding peak wavelength shifts, ∆na
is the variation of the sample’s RI, α(λ,na) is the total loss of propagation at na’s RI, ∂na
is the alteration of the medium’s RI to be calculated, and ∂α(λ,na) is the difference of
loss between two loss spectra. When the thickness of the gold layer is 35, 40, 45, and
50 nm, Equation (11) calculates the sensitivity of the wavelength as 1500, 2000, 2000, and
2000 nm/RIU, respectively. The higher the sensitivity and measurement precision of the
SPR sensor, the better will be the performance of the sensor. However, the measurement
accuracy would be decreased too much by the full width at the half limit (FWMH) of
the resonance loss peak. Therefore, a consistency factor (FOM) evaluation parameter is
introduced [48], and FOM = S(λ)/FWMH. In accordance with the equation, FOM is 24.6,
33.9, 30.8, and 31.3 while the thickness of the gold layer is 35, 40, 45, and 50 nm, respectively.
Figure 5b also shows that the amplitude sensitivity ranges from 35 to 50 nm with the
gold layer thickness. It is clearly apparent that the designed sensor structure displays
96.2, 102.4, 98.3, and 91.1 RIU−1 amplitude sensitivities, respectively, determined by the
Equation (12). The maximum amplitude sensitivity and FOM can be obtained when the
gold layer thickness is set to tg = 40 nm. Therefore, tg = 40 nm was used in the whole
process to ensure better sensing performance.

3.4. Discussion on the Varying Layers of Graphene

Figure 6 demonstrates the influence of loss value and amplitude sensitivity on the
proposed PCF-SPR sensor with varying layers of graphene. From Figure 6a, it is evi-
dent that the resonance wavelength of the abscissa is redshifted with the increase of the
sample RI and graphene thickness, and the value of the confinement loss peak in ordi-
nate decreases gradually. At na = 1.38, as graphene layers are expanded from zero layers
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(t = 0.34 nm × 0) to three layers (t = 0.34 nm × 3), the sensor loss value decreases gradually
from 188.35 dB/cm to 170.78 dB/cm. Figure 6b also explains that with the graphene layers
from 0 to 3, the amplitude sensitivity also decreases from 247.8 to 184.3 RIU−1. According to
the sensitivity Equation (11), in the RI range of 1.38–1.39, as the number of graphene layers
LG increases from 0 to 3, the sensitivity is 3000 nm/RIU, 3300 nm/RIU, 3300 nm/RIU, and
3600 nm/RIU, respectively. The sensitivity of the gold layer coated with three layers of
graphene is 20% higher than that without graphene. Although the sensitivity of the sensor
increases with the increase of graphene layers, the value of the confinement loss peak and
amplitude sensitivity decrease with the increase of graphene thickness due to the damping
effect of graphene. Generally, because of the mechanical strength and chemical inertia of
graphene, one layer or a double layer of graphene will avoid oxidation. The simulation
in this paper was therefore carried out in terms of cost and sensing efficiency under the
condition of three layers of graphene.
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3.5. Discussion on the Varying of Sample RI (na)

The RI of the sensing medium has a great influence on the SPP mode, thus, the
function of the PCF-SPR sensor would be influenced if the sample RI varied slightly. By a
slight change in RI, a simple spectral shift is induced. As shown in Figure 7, the sensing
characteristics accounting for the impact of the loss value and amplitude sensitivity on the
RI sample were analyzed here. Figure 7a shows the loss spectrum curves for different RI
values (1.32–1.41). From the figure, it is observed that when the RI increases from 1.32 to
1.41, with the increase of wavelength, the loss peak increases gradually, and the FWHM
decreases gradually, and a red shift occurs. The principle of the red shift is comparable
to that of study described in Section 3.3, since the difference of RI (∆RI) between the core
and cladding decreases with the increase of sample RI, resulting in a greater amount of
light penetrating through the cladding and interacting with the metal. The longer the
wavelength, the higher the dp and the greater the absence of confinement.

According to the wavelength corresponding to the loss peak, the confinement loss
value of the sensor can be measured by Equation (10). For example, when na = 1.32 and the
wavelength is 0.60 µm, the peak value of resonance loss is 40.4 dB/cm; when na = 1.33 and
the wavelength is 0.61 µm, the calculated peak loss is 48.9 dB/cm. In the above analysis,
the wavelength change is 0.01 µm, and the RI change is 0.01. According to Equation (11),
the wavelength sensitivity is about 1000 nm/RIU. Similarly, when na is changed from
1.32 to 1.41, the wavelength sensitivity is 4200 nm/RIU at 0.82 µm, and the peak value
of resonant mode loss is 431 dB/cm when na = 1.41. The results show that the maximum
energy transfer from core mode to SPP mode is 0.82 µm when RI is 1.41.
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The amplitude sensitivity obtained by varying the sample RI is shown in Figure 7b.
The amplitude sensitivity increases with the increase in the sample RI, indicating that the
interaction between the evanescent field and the SPP mode is enhanced, and the maximum
sensitivity of the amplitude could reach 450 RIU−1. The average wavelength sensitiv-
ity is 1580 nm/RIU by wavelength interrogation in the RI range (na = 1.32–1.37). Using
the equation R(RIU) = ∆na × (∆λmin)/(∆λpeak) = (∆λmin)/Sλ [43], the sensor resolution is
6.3 × 10−5 RIU, where ∆λmin = 0.1 nm for the current spectrometer resolution technology.
The average wavelength sensitivity is 3900 nm/RIU in the RI range (na = 1.38–1.41), and
the resolution of the sensor is 2.6 × 10−5 RIU. The maximum wavelength sensitivity is
4200 nm/RIU in the 1.32–1.41 RI range, and the highest sensor resolution is 2.3 × 10−5 RIU.

In the simulation process, we usually use the transition boundary condition of the
surface charge (σs) to calculate graphene [28], and the thickness is 1 nm, that is, the surface
charge density is the volume charge density. In order to facilitate a more accurate quanti-
tative calculation, when we calculate the bulk charge density σv = σs

∆ = σs
0.34nm by using

the empirical value of the thickness of single-layer graphene measured experimentally, i.e.,
0.34 nm, it is found that when the grid density is divided into 25 layers and the minimum
cell size of the grid is 0.0136 nm, the average wavelength sensitivity is 3900 nm/RIU, and
the refractive index range is 1.38–1.41.

Therefore, any slight change in the order of the RI of 10−5 can be observed. The
maximum sensitivity and resolution of the wavelength in the proposed sensor was shown
to be higher than those previously found in the literature (Table 3) [1,16,17,49].

Table 3. Performance comparisons.

Analyle RI Resonant Wavelength Max Sensitivity Resolution Ref.

(RIU) (nm) (nm/RIU) (RIU)

1.33–1.37 520–770 2000 5× 10−5 Rifat et al. [1]
1.33–1.37 480–650 3700 2.7× 10−5 Luan et al. [16]
1.33–1.36 520–750 2200 3.75× 10−5 Hasan et al. [17]
1.33–1.35 480–750 2520 3.97× 10−5 Yang et al. [49],
1.32–1.41 500–800 4200 2.3× 10−5 This work

With the increase of RI, the change trend of the resonance wavelength is shown in
Figure 8. For optimization of the sensor, the best polynomial fitting method is proposed.
The polynomial fitting curve can be used to obtain the average sensitivity in the sensing
range of 1.32–1.41. The red line in the figure represents polynomial fitting, and the blue
balls are the resonance wavelengths. In the measurement range of 1.32–1.41, the correlation
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coefficient R2 = 0.99842 between sample RI and resonance wavelength. The corresponding
polynomial regression equation is λ = 21174.2na

2 − 55377.8na + 36807, where na is the
sample RI.
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based on SPR. The finite element method (FEM) was employed to investigate the fiber’s 

properties and sensing performance. By designing the structural geometric parameter of 

PCF and 2D material, high sensitivity was achieved in the proposed sensor. It was proven 

that graphene not only can be used to prevent Au oxidation, but can also enhance sensing 

performance. The proposed PCF-SPR sensor exhibited a maximum wavelength sensitivity 

of 4200 nm/RIU, a maximum amplitude sensitivity of 450 RIU−1, and a maximum resolu-

tion of 2.3 × 10−5 RIU in the sensing range of 1.32–1.41. The results provide a theoretical 

basis to design new high sensitivity biosensors that have great potential in detecting bio-

molecules, organic chemicals, and so on. 
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Figure 8. Polynomial fitting curve for sample refractive index (RI) variations from 1.32 to 1.41.

4. Conclusions

In conclusion, we proposed a graphene-Au coated PCF sensor in the visible regime
based on SPR. The finite element method (FEM) was employed to investigate the fiber’s
properties and sensing performance. By designing the structural geometric parameter
of PCF and 2D material, high sensitivity was achieved in the proposed sensor. It was
proven that graphene not only can be used to prevent Au oxidation, but can also enhance
sensing performance. The proposed PCF-SPR sensor exhibited a maximum wavelength
sensitivity of 4200 nm/RIU, a maximum amplitude sensitivity of 450 RIU−1, and a maxi-
mum resolution of 2.3 × 10−5 RIU in the sensing range of 1.32–1.41. The results provide
a theoretical basis to design new high sensitivity biosensors that have great potential in
detecting biomolecules, organic chemicals, and so on.
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