
sensors

Article

Affordance-Based Grasping Point Detection Using Graph
Convolutional Networks for Industrial Bin-Picking
Applications

Ander Iriondo 1,* , Elena Lazkano 2 and Ander Ansuategi 1

����������
�������

Citation: Iriondo, A.; Lazkano, E.;

Ansuategi, A. Affordance-Based

Grasping Point Detection Using

Graph Convolutional Networks

for Industrial Bin-Picking

Applications. Sensors 2021, 21, 816.

https://doi.org/10.3390/s21030816

Academic Editor: Kourosh

Khoshelham

Received: 26 November 2020

Accepted: 21 January 2021

Published: 26 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Autonomous and Intelligent Systems, Fundación Tekniker, Iñaki Goenaga,
5-20600 Eibar, Spain; ander.ansuategi@tekniker.es

2 Computer Science and Artificial Intelligence (UPV/EHU), Pº Manuel Lardizabal,
1-20018 Donostia-San Sebastián, Spain; e.lazkano@ehu.eus

* Correspondence: ander.iriondo@tekniker.es

Abstract: Grasping point detection has traditionally been a core robotic and computer vision problem.
In recent years, deep learning based methods have been widely used to predict grasping points,
and have shown strong generalization capabilities under uncertainty. Particularly, approaches that
aim at predicting object affordances without relying on the object identity, have obtained promising
results in random bin-picking applications. However, most of them rely on RGB/RGB-D images,
and it is not clear up to what extent 3D spatial information is used. Graph Convolutional Networks
(GCNs) have been successfully used for object classification and scene segmentation in point clouds,
and also to predict grasping points in simple laboratory experimentation. In the present proposal,
we adapted the Deep Graph Convolutional Network model with the intuition that learning from
n-dimensional point clouds would lead to a performance boost to predict object affordances. To the
best of our knowledge, this is the first time that GCNs are applied to predict affordances for suction
and gripper end effectors in an industrial bin-picking environment. Additionally, we designed a
bin-picking oriented data preprocessing pipeline which contributes to ease the learning process and
to create a flexible solution for any bin-picking application. To train our models, we created a highly
accurate RGB-D/3D dataset which is openly available on demand. Finally, we benchmarked our
method against a 2D Fully Convolutional Network based method, improving the top-1 precision
score by 1.8% and 1.7% for suction and gripper respectively.

Keywords: affordance grasping; grasping point detection; graph convolutional network; pick and
place; deep learning

1. Introduction

Pick and place are basic operations in most robotic applications, whether in industrial
setups (e.g., machine tending, assembling or bin-picking) or in service robotics domains
(e.g., agriculture or home). Picking and placing is a mature process in structured scenar-
ios. Nevertheless, it is not the case in less structured industrial environments or when
parts with higher degree of variability have to be manipulated. The market demands
more flexible systems that will allow for a reduction of costs in the supply chain, increas-
ing the competitiveness for manufacturers and bringing a cost reduction for consumers.
The introduction of robotic solutions for picking in unstructured environments requires the
development of flexible robotic configurations, robust environment perception, methods
for trajectory planning, flexible grasping strategies and human-robot collaboration. Such
robotics solutions have not reached the market yet and remain as laboratory prototypes
due to the lack of efficiency, robustness and flexibility of currently available manipulation
and perception technologies.

The grasping point detection is one of the robotic areas that most attention has attracted
since early years of robotic manipulation. The problem of detecting an appropriate grasping

Sensors 2021, 21, 816. https://doi.org/10.3390/s21030816 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2760-435X
https://orcid.org/0000-0002-7653-6210
https://orcid.org/0000-0001-9777-9564
https://doi.org/10.3390/s21030816
https://doi.org/10.3390/s21030816
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21030816
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/3/816?type=check_update&version=2

Sensors 2021, 21, 816 2 of 26

point consists of looking for the best object picking location (position and orientation)
depending on the type of end effector available. The complexity of the grasping point
detection depends on the arrangement of the objects to be handled, and the casuistry varies
depending on the structure of the arrangement:

• Structured: the parts to be picked are organized inside the bin and follow an easily
recognizable pattern.

• Semi-structured: some predictability exists in the way parts are organized and the
items are relatively well separated.

• Random: the parts are randomly organized inside the bin and they do not follow
any pattern.

Noticeably, the less the structure of the arrangement, the higher the complexity of the
grasping point detection.

The grasping point detection has been traditionally tackled as a computer vision
detection problem. In the past, hand-designed features were used to first recognize the
object and then to perform model based grasp planning. However, although those methods
are robust with small subsets of known objects, they lack of flexibility and are time-
consuming. Unlike some other traditional computer vision problems, these detection
methods are used on-line and to meet cycle-time restrictions, computational speed is
required. The work presented here focuses on flexible, safe and dependable part-handling
in industrial environments. In such dynamical areas as warehouses or distribution centres,
a huge number of items need to be handled, usually in unstructured scenarios [1].

Traditional grasping point detection methods, even though being efficient in very
specific tasks, have proven to be inefficient in tasks with uncertainty and more flexible
solutions are demanded. As stated by Kober and Peters in [2], hard coded behaviours
are restricted to the situations that the programmer considered and are impractical in
dynamic scenarios.

Recently, Deep Learning (DL) based methods have gained popularity due to the
affordable price and increasing computation capability of devices such as GPUs and TPUs.
DL based methods have shown state-of-the-art performance in a wide range of computer
vision, audio and natural language processing problems and it has also been successfully
applied to detect grasping points in more complex scenarios [3]. First approaches applied
DL to identify randomly placed objects in the scene, to later heuristically obtain grasping
points, based on the 3D information of the identified object [4]. However, contemporary
approaches do not rely on the identity of the objects and apply DL to predict object
affordances. The affordance-based grasping point detection has gained attention due to
its capability to learn from the shape, colour and texture of the objects, without relying on
part identity. Thus, those algorithms are able to generalize to never seen objects, providing
flexible grasping solutions [5].

Yet, most of the DL based grasping point detection algorithms predict grasping points
in 2D data, typically images obtained from both RGB or RGB-D cameras, losing the 3D
spatial information. Recent approaches use Graph Convolutional Networks (GCNs) to
learn geometric features directly in point clouds, and have been successfully applied to
predict grasping points [6,7]. Although these methods suffer from computational cost due
to the spatial operations applied to the input data, they have shown improved learning
capabilities in non-Euclidean data. To alleviate the computational cost, the input clouds
are usually sub-sampled both to meet hardware restrictions (e.g., GPU and memory) and
to get reasonable computation speeds. In addition to the spatial coordinates of the points
in the cloud, these algorithms are able to learn from n-dimensional points and, therefore,
spatial features such as surface normals can be included in the training data.

The main goal of the work presented here is to analyse whether the usage of n-
dimensional point clouds and GCNs contributes to better learn object affordances for
suction and gripper in a random bin-picking application. The contributions of the paper
are as follows:

Sensors 2021, 21, 816 3 of 26

1. We designed a method based on GCNs to predict object affordances for suction and
gripper end effectors in a bin-picking application. This method includes, an adap-
tation to a point cloud scene segmentation algorithm based on GCNs to predict
affordance scores in n-dimensional point clouds, and a bin-picking oriented data
preprocessing pipeline.

2. We created a highly accurate dataset of random bin-picking scenes using a Photoneo
Phoxi M camera, which is openly available on demand.

3. We benchmarked our GCN based approach with the one presented in [5], which uses
2D Fully Convolutional Networks to predict object affordances.

The rest of the paper is structured as follows: Section 2 reviews the literature. Section 3
presents the details of the generated dataset and introduces the 3D affordance grasping
approach. Additionally, the evaluation procedure and the used metrics are also detailed.
The details of the implementation are explained in Section 4. Finally, the obtained results
and the conclusions are presented in Sections 5 and 6 respectively.

2. Literature Review

The problem of finding a suitable grasping point among an infinite set of candidates
is a challenging and yet unsolved problem. There are many approaches and a huge variety
of methods that try to optimize approximate solutions. According to Sahbani et al. these
methods can be categorized as analytic or data-driven [8].

Traditionally, analytical approaches have been used to develop robotic applications to
solve specific tasks, mainly implemented with rules based on expert knowledge [9]. Those
algorithms are based on kinematic or dynamic models, and the grasping point detection
is formulated as a constrained optimization problem [10–12]. Even though the analytical
approaches are effective, they tend to be very task specific and time-consuming.

Data-driven techniques have proven to overcome the mathematical complexity of the
existing analytical methods that solve the grasping point detection problem [13]. These
alternative techniques focus more on extracting object representations and are implemented
as learning and classification methods. Therefore, grasp representations are learned from
experience and used to retrieve correct grasps in new queries. Besides, the parameterization
of the grasp is less specific and thus, data-driven algorithms are more robust to uncertainties
in perception [14–16]. Nevertheless, data-driven methods usually need a big number of
annotated data, which usually implies a time-consuming annotation process.

In [13], Bohg et al. split data-driven grasping approaches into three sub-categories,
depending on the prior knowledge about the query object:

1. Known objects: The query objects have been previously used to generate
grasping experience.

2. Familiar objects: The query objects are similar to the ones used to generate grasping
experience. This approaches assume that new objects are grasped similar to old ones.

3. Unknown objects: Those approaches do not assume to have prior grasping experience
related to the new object.

When the objects to be manipulated are known and the number of references to be
handled is small, a database with 3D objects and predefined grasping candidates is usually
used (e.g., created using GraspIt! [17]). First, a pose estimation algorithm is applied to
locate the object in the scene, using visual and geometric similarity [18–21]. Then, grasping
candidates are filtered due to collision and reachability issues and the best one is selected,
after being ranked by some quality metrics. In spite of being very robust handling one or
few object references, such ad-hoc solutions fail when the number of references increases
(e.g., due to the unavailability of thousands of 3D models of parts or the computational
cost to find such a high number of references in the scene).

However, in industrial setups with highly unstructured environments, changing
conditions and highly variable or even unknown multi-reference parts, more flexible
methods are needed. To tackle the shortcomings of model based algorithms, most recent

Sensors 2021, 21, 816 4 of 26

approaches use deep neural networks (DNNs) to map robotic sensor readings to labels
annotated either by a human or by a robot [22].

In works such as [23–25], authors use Convolutional Neural Networks (CNNs) to
identify and segment objects in 2D images of the scene. Then, per each identified object,
predefined grasping points are used to pick them. Nevertheless, techniques based on the
object identification fail to deal with high number of references and novel objects.

Instead of relying on the object identification, other approaches try to predict grasping
points focusing on the shape, colour and texture of the parts. In [26], authors created
a grasping dataset with both successful and unsuccessful grasps, to later map RGB-D
images with graspable regions using CNNs. In [27], the aforementioned dataset was used
to create real-time grasps using CNNs. Similar to the previous methods, also in [28–30],
the grasp was represented as a rectangle over the 2D input images that indicated the point,
orientation and the opening of the gripper. In these applications, the grasping pose detector
CNN worked in an sliding window manner, performing an inference per detected object in
the scene. Thus, the computational complexity depended on the number of objects in the
scene. In spite of the fact that the aforementioned methods deal correctly with scattered
objects and show good generalization capabilities with never seen objects, they fail to
predict grasping points in cluttered scenes [22].

As an alternative to codifying the grasp as a rectangle, other approaches try to predict
pixel-wise affordances. For instance, in one of the first attempts, Detry et al. were able
to learn grasping affordance models implemented as continuous density functions [31].
In this case, the affordances were learned letting a robot pick and drop objects. However,
the learned models were specific to a small set of known objects. Recent methods use Fully
Convolutional Networks (FCNs) [32] to learn pixel-wise affordances. Nguyen et al. first
applied DL to predict real-time affordances in RGB-D images, to deal with a small set of
known objects [33]. In a more recent approach, Zeng et al. used DL to predict pixel-wise
affordances for a multifunctional gripper. The predicted grasping scores were used to
choose the best action of a predefined set of 4 actions: suction down, suction side, grasp
down and flush grasp [5]. Same authors also developed a robotic system that was able
to learn to grasp and push objects in a reinforcement learning (RL) setting [34]. In this
case, FCNs were used to model affordance based policies. More recently Zeng et al. also
made use of FCNs to encode affordance based policies to learn complex behaviours such as
picking and throwing objects through the interaction with the environment [35]. In spite of
the fact that these FCN based models have shown to be capable to learn object affordances,
they can not cope with non-euclidean data such as point clouds. Therefore, the feature
extraction is performed uniquely in the RGB/RGB-D images and do not take advantage of
the 3D spatial information.

Rather than learning to predict optimal grasping points, in other works authors try to
learn visuomotor control policies to directly predict robot actions to pick objects, avoiding
the need for an additional robot controller. For instance, Mahler and Goldberg were able
to learn a deep policy to pick objects in cluttered scenes in [36]. In [37] authors trained a
large CNN to predict the probability of success of task space motions of the gripper, only
using RGB images. The learning process was carried out with 14 real robotic manipulators
gathering experience in two months of continuous execution. However, the cost of getting
experience in reality makes the solution hardly transferable to the industry. Similar to the
proceeding proposed by Levine et al., in [38] Kalashnikov et al. used RL to learn high
accurate control policies to pick objects in cluttered scenes, also using RGB images. In this
approach also the experience of multiple real robots was used to optimize the policy neural
network. To avoid the cost of real setups with several robots and to decrease the time to
acquire experience, in [39] James et al. proposed to learn the visuomotor control policies in
simulation. To reduce the simulation to reality gap, the training process is usually carried
out with domain randomization [40].

The aforementioned methods extract grasping features in RGB/RGB-D images, and
therefore only a single point of view of the scene is usually used in the learning process.

Sensors 2021, 21, 816 5 of 26

Even if traditional CNNs are able to learn features in euclidean data (e.g., RGB-D images,
projections or voxels), they fail to deal with non-euclidean unordered data types such as
graphs, were connections between nodes can vary. Recently, Graph Convolutional Net-
works (GCNs) [41] have gained popularity due to their ability to learn representations over
graph-structured data, specially in non-euclidean data such as meshes and point clouds.
Similar to 2D CNNs, those models have been used for classification, scene segmentation
and instance segmentation [42], particularly in 3D point clouds. As suggested in [43,44], tra-
ditional and most used GCNs usually are very shallow models, due to the over-smoothing
and over-fitting problem of deep GCNs. Recent works as [45–47] try to mitigate these
problems introducing several changes in the traditional GCN based model architectures.

GCNs have been successfully applied to solve the grasping point detection problem.
Liang et al. used the PointNet [6] network to infer the quality of grasping candidates for
a gripper end effector, after applying an antipodal grasp sampling algorithm [48]. Al-
though this technique showed good generalization capability with novel objects, the grasp
sampling process was time-consuming due to the need to infer the quality of each proposal.
Besides, only local features around the grasp were used to infer the grasp quality, which
did not take into account the global object distribution and occlusions that happen in
cluttered scenes. Ni et al. proposed a single-shot grasp proposal network for a gripper
end effector, based on PointNet++ [7], to avoid the time-consuming grasp candidate sam-
pling [49]. Furthermore, a simulation-based automatic dataset generation proceeding was
proposed, using Ferrari and Canny metrics [12]. In spite of the fact that authors were able
to predict grasping points also in novel objects, complete 3D models of the objects were
used to generate the training dataset in simulation, which are hard to obtain in setups
where a big number of references have to be handled. In addition, the grasping dataset
was created with single objects, without taking into account global factors in the scene
such as occlusions and entanglements. PointNet++ was also used in [50] to implement a
single-shot grasp proposal network for a gripper end effector. Although at inference time
a single-view point cloud of the scene was used, to train the network, Qin et al. used a
simulation based method, that also depends on the availability of 3D models of the parts.
In this work also the grasping candidates were generated analytically in single objects and
not in cluttered scenes. Although unfeasible grasp proposals are discarded after checking
the collisions in cluttered scenes, the global arrangement of the objects is also not taken
into account when the grasping dataset is generated.

All the reviewed GCN based methods focused their work only on the gripper end
effector and did not consider the grasping point generation for suction. In addition, none of
them took into account the global arrangement of the objects when the grasping database
was generated. Most of them used simulation to generate the dataset, where it is not
straightforward to take into account these global scene factors. Furthermore, none of the
reviewed works proposed a bin-picking oriented method.

Generative approaches have also been updated to deal with 3D data, and applied
to generate grasping points in point clouds. Mousavian et al. presented a variational
auto-encoder which used PointNet++ to implement both the encoder and the decoder [51].
In addition, authors also implemented a PointNet++ based evaluator network to assess the
generated grasp candidates. However, this technique dealt with objects with relatively few
variability and not in heavy cluttered scenes.

In the presented work, we propose to learn a single-shot affordance-based grasping
point detector using GCNs for suction and gripper end effectors, avoiding the need of
complex grasp candidate sampling methods. To the best of our knowledge, this is the
first time that GCNs are applied to predict affordances both for suction and gripper end
effectors in a bin-picking application. Contrary to the general approach in the literature,
we propose not to use 3D object models to generate the dataset in simulation, but to use
real world scenes instead. Following that idea, we avoid the simulation to reality gap
that commonly happens in models trained with synthetically generated data. To annotate
the dataset, we take into account global scene factors such as occlusions (e.g., partially

Sensors 2021, 21, 816 6 of 26

occluded objects are graspable or not depending on the weight of the objects that covers
them), object entanglements, etc. Those are difficult to take into account in simulation but
crucial in real applications. With that purpose, we have created a highly accurate dataset
in real random bin-picking scenes using the industrial 3D Photoneo Phoxi M camera [52].
Although such expensive cameras are not widespread for laboratory level applications,
the high accuracy they offer is vital in industrial bin-picking setups. Furthermore, we show
that GCNs are able to converge with a relatively small training dataset of n-dimensional
point clouds using data augmentation.

3. Problem Specification and Setup

The random bin-picking problem can be divided into the following categories:

1. Mono-reference: the objects are randomly placed but belong to the same reference,
which is usually known (e.g., Figure 1a).

2. Multi-reference: the objects are randomly placed and belong to multiple references.
The number of references can be high and novel objects may appear in the bin (e.g.,
Figure 1b).

Version January 23, 2021 submitted to Journal Not Specified 6 of 23

we show that GCNs are able to converge with a relatively small training dataset of n-dimensional228

point clouds using data augmentation.229

3. Problem specification and setup230

The random bin-picking problem can be divided into the following categories:231

1. Mono-reference: the objects are randomly placed but belong to the same reference, which is232

usually known (e.g., Figure 1a).233

2. Multi-reference: the objects are randomly placed and belong to multiple references. The number234

of references can be high and novel objects may appear in the bin (e.g., Figure 1b).235

(a) Mono-reference bin-picking. (b) Multi-reference bin-picking.
Figure 1. Random bin-picking scenarios.

In mono-reference applications, where the parts to be handled are known and their models can be236

easily obtained, 3D model matching algorithms are typically used to estimate the 6-DoF pose of the237

parts in the scene [?]. However, the multi-reference random bin-picking is an unsolved problem yet238

essential for flexible/efficient solutions.239

Our work is focused on the context of multi-reference bin-picking. DL based algorithms have240

been widely used in the literature to handle uncertainties in the scene and novel objects. Particularly,241

methods that predict object affordances have shown to be robust to uncertainties and have a good242

generalization capability. However, most of them are only able to handle 2D data, and do not take243

into account 3D spatial features of the parts/scene. Recently, ? won the Amazon Robotics Challenge244

(ARC) with a bin-picking method that was based on affordances [?]. Authors faced the multi-reference245

random bin-picking as a 2D scene segmentation problem and were able to get pixel-wise affordance246

scores. Based on that work, our intuition was that learning directly in n-dimensional point clouds247

would lead to a performance boost in the grasping point detection.248

With that aim, we selected the Deep GCN model proposed in [?] where some novelties were249

introduced that led to a very deep GCN based model. Although originally it was implemented250

for segmentation purposes, the adaptation we introduced allows us to obtain affordance scores in251

bin-picking scenes, following the idea of ? . In addition, we followed a bin-picking oriented pipeline,252

which made the learned GCNs applicable to other picking scenarios, as it is later on explained in253

Section 3.2.2.254

For evaluation purposes, we have created a dataset with multiple annotated bin-picking scenes.255

The dataset was annotated once and we used it to train and test both methods (FCNs and GCNs). The256

details of the dataset and the annotations are explained in Section 3.2. Finally, in order to make a fair257

comparison, the metrics defined in [?] have been used to measure the deep models. These are further258

explained in detail in Section 3.4.259

3.1. Multi-functional gripper260

In the context of the Pick-Place European project [?], a multi-functional gripper has been261

developed by Mondragon Assembly (Figure 2). This multi-functional gripper is composed of the262

Figure 1. Random bin-picking scenarios.

In mono-reference applications, where the parts to be handled are known and their
models can be easily obtained, 3D model matching algorithms are typically used to estimate
the 6-DoF pose of the parts in the scene [53]. However, the multi-reference random bin-
picking is an unsolved problem yet essential for flexible/efficient solutions.

Our work is focused on the context of multi-reference bin-picking. DL based algo-
rithms have been widely used in the literature to handle uncertainties in the scene and
novel objects. Particularly, methods that predict object affordances have shown to be robust
to uncertainties and have a good generalization capability. However, most of them are only
able to handle 2D data, and do not take into account 3D spatial features of the parts/scene.
Recently, Zeng et al. won the Amazon Robotics Challenge (ARC) with a bin-picking method
that was based on affordances [5]. Authors faced the multi-reference random bin-picking
as a 2D scene segmentation problem and were able to get pixel-wise affordance scores.
Based on that work, our intuition was that learning directly in n-dimensional point clouds
would lead to a performance boost in the grasping point detection.

With that aim, we selected the Deep GCN model proposed in [46] where some nov-
elties were introduced that led to a very deep GCN based model. Although originally it
was implemented for segmentation purposes, the adaptation we introduced allows us to
obtain affordance scores in bin-picking scenes, following the idea of Zeng et al. In addition,
we followed a bin-picking oriented pipeline, which made the learned GCNs applicable to
other picking scenarios, as it is later on explained in Section 3.2.2.

For evaluation purposes, we have created a dataset with multiple annotated bin-
picking scenes. The dataset was annotated once and we used it to train and test both
methods (FCNs and GCNs). The details of the dataset and the annotations are explained
in Section 3.2. Finally, in order to make a fair comparison, the metrics defined in [5] have
been used to measure the deep models. These are further explained in detail in Section 3.4.

Sensors 2021, 21, 816 7 of 26

3.1. Multi-Functional Gripper

In the context of the Pick-Place European project [54], a multi-functional gripper has
been developed by Mondragon Assembly (Figure 2). This multi-functional gripper is
composed of the following retractable end effectors: A magnet, a suction cup and a two
finger gripper. All of them are equipped with tactile sensors developed by Fraunhofer—IFF
that are designed to softly handle any kind of product.

Figure 2. Multi-functional gripper attached to the UR robot.

Although in this work the gripper was not directly used to annotate the dataset, it was
important to define its particularities since the annotation of the dataset highly depends
on these specifications. In this way, the graspability of the objects was tested individually
with each end effector. For instance, the quality of a grasping point can drastically change
depending on the maximum width between the fingers of the gripper. In this work, both,
suction and gripper end effectors were considered.

3.2. Dataset

In industrial bin-picking applications, the perception of the scene must be as accurate
as possible, due to the precision needed to handle objects with variable shape, colour and
texture. At the same time, industrial 3D cameras are becoming more and more robust
against changing environmental conditions. In a first attempt, we chose to profit from the
dataset provided by [5]. However, the bin localization was not available for the suction
and, preliminary results showed that the depth data was not accurate enough due to
the location of the camera. Thus, this option was discarded. Instead, we opted to use a
Photoneo Phoxi M camera to generate our dataset, which has been widely used in many
bin-picking applications and has demonstrated a great performance [55,56]. We positioned
the camera overhead the bin to reduce occlusions. An example of a captured scene and its
corresponding point cloud are depicted in Figure 3. To generate the dataset, we used a set
of 37 rigid and semi-rigid opaque parts that were selected in the context of the Pick-Place
EU project. In spite of the fact that we included some transparent and shiny objects, we
opted to focus our analysis on opaque parts.

Sensors 2021, 21, 816 8 of 26

Version January 23, 2021 submitted to Journal Not Specified 8 of 23

(a) RGB image of the scene.
(b) Point cloud of the scene.

Figure 3. Dataset sample scene.

As a result, the dataset was composed of the following elements per each scene:284

• Intrinsic parameters of the camera.285

• RGB-D images of the scene. Using the intrinsic parameters, images can be easily transformed to a286

single-view point cloud.287

• Bin localization with respect to the camera.288

• Point cloud of the scene.289

As RGB-D images can be easily converted to single-view point clouds, the annotation process was290

carried out only in RGB-D data.291

3.2.1. Annotation292

The performance of the learned models highly depends on the quality of the annotated data.293

Although simulation based dataset annotation methods are widely used, we believe that the experience294

and the criteria of the human is vital to analyze the particular casuistry of each scene. To overcome295

this burden, we created a small dataset composed of 540 scenes with randomly placed multi-reference296

parts. We followed the annotation style proposed in [?] and we labeled the acquired scenes twice,297

for suction and gripper end effectors respectively. The labeling process was made taking into account298

the restrictions of the multi-functional gripper presented in Section 3.1. We physically used the299

multi-functional gripper to extract the good and bad grasping areas in individual parts and applied300

this knowledge to manually annotate complex scenarios. The manual annotation lets us take into301

account weight distributions, object entanglements and complex situations in general that are difficult302

to consider in simulation. In the application presented by ? , authors tackled the grasping point303

detection as a scene segmentation problem, being able to predict pixel-wise affordances. For that304

purpose, the RGB-D dataset was annotated pixel-wise. The main particularities of each type of305

annotation are described below:306

Suction annotations307

For the suction end effector, a grasping point is defined by a 3D contact point in the scene along308

with its normal vector. Here, the normal vector determines the orientation of the suction end effector.309

As depicted in Figure 4a, the pixels that belong to objects and are affordable for the suction tool, were310

annotated with green colour. The pixels that belong to objects but are not good grasping points, were311

annotated with red colour. Finally, the rest of the points that belonged to the scene were annotated as312

neutral. Suction annotations were stored as masks, and the value of each pixel of the mask indicated313

the class of the corresponding pixel in the original image. The annotation process was carried out314

using the Pixel Annotation Tool [?].315

Figure 3. Dataset sample scene.

As a result, the dataset was composed of the following elements per each scene:

• Intrinsic parameters of the camera.
• RGB-D images of the scene. Using the intrinsic parameters, images can be easily

transformed to a single-view point cloud.
• Bin localization with respect to the camera.
• Point cloud of the scene.

As RGB-D images can be easily converted to single-view point clouds, the annotation
process was carried out only in RGB-D data.

3.2.1. Annotation

The performance of the learned models highly depends on the quality of the annotated
data. Although simulation based dataset annotation methods are widely used, we believe
that the experience and the criteria of the human is vital to analyze the particular casuistry
of each scene. To overcome this burden, we created a small dataset composed of 540 scenes
with randomly placed multi-reference parts. We followed the annotation style proposed
in [5] and we labeled the acquired scenes twice, for suction and gripper end effectors
respectively. The labeling process was made taking into account the restrictions of the
multi-functional gripper presented in Section 3.1. We physically used the multi-functional
gripper to extract the good and bad grasping areas in individual parts and applied this
knowledge to manually annotate complex scenarios. The manual annotation lets us take
into account weight distributions, object entanglements and complex situations in general
that are difficult to consider in simulation. In the application presented by [5], authors
tackled the grasping point detection as a scene segmentation problem, being able to predict
pixel-wise affordances. For that purpose, the RGB-D dataset was annotated pixel-wise.
The main particularities of each type of annotation are described below:

Suction Annotations

For the suction end effector, a grasping point is defined by a 3D contact point in the
scene along with its normal vector. Here, the normal vector determines the orientation of
the suction end effector. As depicted in Figure 4a, the pixels that belong to objects and are
affordable for the suction tool, were annotated with green colour. The pixels that belong to
objects but are not good grasping points, were annotated with red colour. Finally, the rest
of the points that belonged to the scene were annotated as neutral. Suction annotations
were stored as masks, and the value of each pixel of the mask indicated the class of the
corresponding pixel in the original image. The annotation process was carried out using
the Pixel Annotation Tool [57].

Sensors 2021, 21, 816 9 of 26

Version January 23, 2021 submitted to Journal Not Specified 9 of 23

Gripper annotations316

A gripper’s grasping point is defined by:317

1. A 3D point in the space that indicates the position where the center between the fingers of the318

gripper has to be placed.319

2. The orientation of the gripper in the vertical axis.320

3. The opening of the fingers.321

The RGB-D scenes were transformed into orthographic heightmaps, and top views of the scenes were322

obtained, due to the fact that only vertical gripper actions were taken into account. For that purpose,323

first we located the bin with a 3D model matching algorithm, and we transformed the clouds into the324

bin coordinate frame. Then, the points that laid outside the bin were discarded and the resulting cloud325

was projected orthographically and stored again as RGB-D image.326

As it can be seen in Figure 4b, grasps were annotated with straight lines. Good and bad grasps are327

represented with orange and blue colours respectively. Following that approach, only hard negative328

grasping points were annotated as bad. The center of the line indicates the 3D point in the space where329

the gripper should move to, and the orientation of the line with respect to the horizontal axis of the330

image indicates the grasping angle. The opening of the gripper fingers is computed on-line during331

execution, taking into account the local geometry of the grasping area.332

Similar to the annotation proceeding proposed in in [?], the annotations made with lines were333

converted to pixel-wise labels. We only took into account rotations in the z axis to only perform vertical334

grasps. For the sake of simplifying the problem, the z axis was divided into n fixed angles, in our case335

n = 16. To decide to which discrete angle each annotated line belonged to, the angle θ between each336

line and the horizontal axis of the heightmap was computed. Thus, for each annotated RGB-D scene337

for the gripper, 16 pixel-wise annotations were obtained (one mask per angle). The transformation338

from the line annotations into masks was done in the following way:339

1. The θ angle between each line and the horizontal (y) axis indicates the discrete n orientation in z340

axis that the annotation belongs to.341

2. The scene RGB-D image is rotated n times with an increment of 360/n with respect to the z axis342

of the bin.343

3. The center pixel of each annotated line is computed and included in the corresponding annotation344

mask among the n possible orientations.345

(a) Suction annotation example. (b) Gripper annotation example.
Figure 4. Annotation examples in RGB-D data.

To annotate the dataset for the gripper, we modified the VGG Image Annotator to take into346

account the angle of each annotation with respect to the horizontal axis of the heightmap (y) [?].347

Figure 4. Annotation examples in RGB-D data.

Gripper Annotations

A gripper’s grasping point is defined by:

1. A 3D point in the space that indicates the position where the center between the
fingers of the gripper has to be placed.

2. The orientation of the gripper in the vertical axis.
3. The opening of the fingers.

The RGB-D scenes were transformed into orthographic heightmaps, and top views of
the scenes were obtained, due to the fact that only vertical gripper actions were taken into
account. For that purpose, first we located the bin with a 3D model matching algorithm,
and we transformed the clouds into the bin coordinate frame. Then, the points that laid
outside the bin were discarded and the resulting cloud was projected orthographically and
stored again as RGB-D image.

As it can be seen in Figure 4b, grasps were annotated with straight lines. Good and bad
grasps are represented with orange and blue colours respectively. Following that approach,
only hard negative grasping points were annotated as bad. The center of the line indicates
the 3D point in the space where the gripper should move to, and the orientation of the line
with respect to the horizontal axis of the image indicates the grasping angle. The opening
of the gripper fingers is computed on-line during execution, taking into account the local
geometry of the grasping area.

Similar to the annotation proceeding proposed in [5], the annotations made with
lines were converted to pixel-wise labels. We only took into account rotations in the z
axis to only perform vertical grasps. For the sake of simplifying the problem, the z axis
was divided into n fixed angles, in our case n = 16. To decide to which discrete angle
each annotated line belonged to, the angle θ between each line and the horizontal axis of
the heightmap was computed. Thus, for each annotated RGB-D scene for the gripper, 16
pixel-wise annotations were obtained (one mask per angle). The transformation from the
line annotations into masks was done in the following way:

1. The θ angle between each line and the horizontal (y) axis indicates the discrete n
orientation in z axis that the annotation belongs to.

2. The scene RGB-D image is rotated n times with an increment of 360/n with respect to
the z axis of the bin.

3. The center pixel of each annotated line is computed and included in the corresponding
annotation mask among the n possible orientations.

To annotate the dataset for the gripper, we modified the VGG Image Annotator to
take into account the angle of each annotation with respect to the horizontal axis of the
heightmap (y) [58].

Sensors 2021, 21, 816 10 of 26

3.2.2. RGB-D Annotations to 3D Point Clouds

In this section are detailed the steps carried out to transform RGB-D annotated data
into 3D annotated point clouds for both, suction and gripper effectors.

Suction

Our goal was to follow traditional preprocessing pipelines proposed in bin-picking
applications, with the next requirements: To ease the learning process of grasping points in
3D point clouds and to create a generic solution for any bin-picking application. For that
purposes, we designed the pipeline showed in Figure 5 and afterwards we used it to
transform the RGB-D dataset into a single-view point cloud dataset. Basically, we aimed to
abstract from the camera pose in the scene by always working in the bin coordinate frame.
This also gives the possibility to work with multiple extrinsically calibrated cameras.

RGB-D data 3D point cloud Bin localization
Filtering in bin
coordinates

Figure 5. Data preprocessing pipeline.

Conforming to the pipeline, first, the RGB-D images were transformed into point
clouds using the camera intrinsics matrix. Then, the pose of the bin was obtained, using a
3D model matching algorithm previously developed at Tekniker [1]. As the dimensions
of the bin were known, the bin localization algorithm created the 3D model of the top
edges of the bin and matched it to the obtained point cloud of the scene, to finally obtain
its pose. For that purpose the Mvtec Halcon [59] library was used. Finally, the clouds
were transformed into the new coordinate frame and the points that laid outside the bin
were filtered using the bin size. In this case, all the tests were made with a bin size of
length = 600 mm, width = 400 mm and height = 230 mm. Additionally, the standard
voxel downsampling algorithm offered by the Open3D [60] library was used, with voxel
size 0.002 m, followed by a statistical outlier removal from the same library.

Alongside the training data, also the annotations needed to be transformed into 3D.
Figure 6 shows the original (Figure 6a) and the transformed (Figure 6b) annotations for
the suction end effector. The output of the transformation was a semantically annotated
3D point cloud where: green, blue and pink pixels belong to good, bad and neutral
grasping point classes, respectively. In this case, the annotation transformation into 3D was
straightforward, and point classes were assigned depending on which class the original
RGB-D pixel belonged to.

Sensors 2021, 21, 816 11 of 26

Version January 23, 2021 submitted to Journal Not Specified 11 of 23

(a) Suction annotation in RGB-D data. (b) Same scene converted to semantically annotated point
cloud.

Figure 6. Annotation transformation for the suction.

Gripper375

Contrary to the followed procedure for the suction, in this case, the annotated RGB-D orthographic376

heightmap was already transformed into the bin coordinate frame and, thus, the conversion of RGB-D377

images to 3D point clouds in the bin coordinate frame was straightforward. As well as from each378

annotated RGB-D image a labeled point cloud was obtained for suction, in the case of the gripper,379

instead, n point clouds were obtained. As explained before, we only took into account rotations in the380

z axis to only perform vertical grasps. The transformation from 2D annotations into 3D was made in381

the following way:382

1. The θ angle between each line and the y axis (horizontal axis of the orthographic heightmap)383

indicates to which discrete n orientation in the z axis the annotation belongs to.384

2. The scene point cloud was rotated n times with an increment of 360/n with respect to the z axis385

of the bin.386

3. The 3D coordinate of the centre pixel of each annotated line was computed in the corresponding387

point cloud among the n rotated clouds.388

4. The length of each line indicates the radius of the circumference around the centre pixel that was389

annotated.390

An example of the gripper annotation conversion to 3D can be seen in Figures 7 and 8. On the one391

hand, the annotated RGB-D orthographic heightmap can be seen in Figure 7. On the other hand, two392

of the 16 generated annotated clouds are depicted in Figure 8. Specifically, n = 6 and n = 12 discrete393

orientations in the z axis have been selected for illustration purposes. In these examples the y axis394

(green) indicates the orientation of the gripper.395

Figure 7. Gripper annotations in a RGB-D orthographic heightmap.

Figure 6. Annotation transformation for the suction.

Gripper

Contrary to the followed procedure for the suction, in this case, the annotated RGB-
D orthographic heightmap was already transformed into the bin coordinate frame and,
thus, the conversion of RGB-D images to 3D point clouds in the bin coordinate frame was
straightforward. As well as from each annotated RGB-D image a labeled point cloud was
obtained for suction, in the case of the gripper, instead, n point clouds were obtained. As ex-
plained before, we only took into account rotations in the z axis to only perform vertical
grasps. The transformation from 2D annotations into 3D was made in the following way:

1. The θ angle between each line and the y axis (horizontal axis of the orthographic
heightmap) indicates to which discrete n orientation in the z axis the annotation
belongs to.

2. The scene point cloud was rotated n times with an increment of 360/n with respect to
the z axis of the bin.

3. The 3D coordinate of the centre pixel of each annotated line was computed in the
corresponding point cloud among the n rotated clouds.

4. The length of each line indicates the radius of the circumference around the centre
pixel that was annotated.

An example of the gripper annotation conversion to 3D can be seen in Figures 7 and 8.
On the one hand, the annotated RGB-D orthographic heightmap can be seen in Figure 7.
On the other hand, two of the 16 generated annotated clouds are depicted in Figure 8.
Specifically, n = 6 and n = 12 discrete orientations in the z axis have been selected for
illustration purposes. In these examples the y axis (green) indicates the orientation of
the gripper.

Figure 7. Gripper annotations in a RGB-D orthographic heightmap.

Sensors 2021, 21, 816 12 of 26

Version January 23, 2021 submitted to Journal Not Specified 12 of 23

(a) n = 6 annotated 3D point cloud. (b) n = 12 annotated 3D point cloud.

Figure 8. Annotation transformation for gripper.

3.3. 3D affordance grasping with Deep GCNs396

In spite of the fact that CNNs have shown strong performance with Euclidean data, this is not397

the case for many applications that deal with non-euclidean data. Graphs are popular data structures398

that are used in many applications such as social networks, natural language processing, biology or399

computer vision [?]. Although traditional CNNs are not able to systematically handle this kind of400

data, GCNs have shown to be able to overcome the shortcomings of CNNs.401

A graph G = (V , E) is defined by an unordered set of vertices V and a set of edges E indicating402

the connections between vertices. Vertices are represented associating each vertex v ∈ V with a feature403

vector hv ∈ RD, where D indicates the dimension of the feature vectors. So, the graph is represented404

concatenating the feature vectors of the set of unordered vertices hG = [hv1 , hv2 , hv3 , ..., hvN] ∈ RDxN ,405

where N indicates the number of vertices in the graph.406

In GCNs, the most used operations at each layer are aggregation and update. These operations407

receive the input graph Gl = (Vl , El) and they output the graph Gl+1 = (Vl+1, El+1) at the l-th layer.408

On the one hand, the aggregation function is used to collect the information of the neighbour vertices409

(e.g., max-pooling aggregator). On the other hand, the update function applies a transformation to the410

collected data by the aggregate operation, in order to generate new vertex representations (e.g., using411

MLPs). At each layer, the aforementioned operations are applied to each vertex v ∈ Vl and new vertex412

representations are generated [?].413

Most GCNs have fixed graph structures and only per-vertex features are updated at each iteration.414

However, more recent works demonstrate that changing graph structures contribute to better learn415

graph representations. For instance, ? proposed a neural network module dubbed EdgeConv [?] that416

finds k nearest neighbours in the feature space to reconstruct the graph at each EdgeConv layer. The417

authors claim that this architecture is suitable for classification and segmentation tasks in point clouds.418

Furthermore, as reported in recent work, traditional GCNs cannot go as deep as CNNs due to the419

high complexity in back-propagation and they are no more than three layers deep [? ?]. State-of-the-art420

works suggest multiple changes in GCN architectures to overcome the aforementioned shortcomings421

[? ? ?]. The Deep GCNs model architecture developed by ? in [?] proposes multiple changes that422

allow to effectively learn deep GCNs that are up to 56 layers deep. Moreover, this architecture has423

shown great performance in semantic segmentation tasks in the S3DIS indoor 3D point cloud dataset424

[?].425

The adaptations that allow deep GCNs are twofold:426

• Dilated aggregation: Dilated k-NN is used to find dilated neighbours after every GCN layer,427

getting as result a Dilated Graph. Having a graph G = (V , E) with a Dilated k-NN and d dilation428

rate, the Dilated k-NN returns the k× d nearest neighbours in the feature space, ignoring every d429

neighbours. The l2 distance is used in the feature space.430

Figure 8. Annotation transformation for gripper.

3.3. 3D Affordance Grasping with Deep GCNs

In spite of the fact that CNNs have shown strong performance with Euclidean data,
this is not the case for many applications that deal with non-euclidean data. Graphs are
popular data structures that are used in many applications such as social networks, natural
language processing, biology or computer vision [61]. Although traditional CNNs are not
able to systematically handle this kind of data, GCNs have shown to be able to overcome
the shortcomings of CNNs.

A graph G = (V , E) is defined by an unordered set of vertices V and a set of edges
E indicating the connections between vertices. Vertices are represented associating each
vertex v ∈ V with a feature vector hv ∈ RD, where D indicates the dimension of the
feature vectors. So, the graph is represented concatenating the feature vectors of the set of
unordered vertices hG = [hv1 , hv2 , hv3 , ..., hvN] ∈ RDxN , where N indicates the number of
vertices in the graph.

In GCNs, the most used operations at each layer are aggregation and update. These op-
erations receive the input graph Gl = (Vl , El) and they output the graph Gl+1 = (Vl+1, El+1)
at the l-th layer. On the one hand, the aggregation function is used to collect the information
of the neighbour vertices (e.g., max-pooling aggregator). On the other hand, the update
function applies a transformation to the collected data by the aggregate operation, in order
to generate new vertex representations (e.g., using MLPs). At each layer, the aforemen-
tioned operations are applied to each vertex v ∈ Vl and new vertex representations are
generated [62].

Most GCNs have fixed graph structures and only per-vertex features are updated at
each iteration. However, more recent works demonstrate that changing graph structures
contribute to better learn graph representations. For instance, Wang et al. proposed a
neural network module dubbed EdgeConv [63] that finds k nearest neighbours in the
feature space to reconstruct the graph at each EdgeConv layer. The authors claim that this
architecture is suitable for classification and segmentation tasks in point clouds.

Furthermore, as reported in recent work, traditional GCNs cannot go as deep as
CNNs due to the high complexity in back-propagation and they are no more than three
layers deep [43,44]. State-of-the-art works suggest multiple changes in GCN architectures
to overcome the aforementioned shortcomings [45–47]. The Deep GCNs model architec-
ture developed by Li et al. in [46] proposes multiple changes that allow to effectively
learn deep GCNs that are up to 56 layers deep. Moreover, this architecture has shown
great performance in semantic segmentation tasks in the S3DIS indoor 3D point cloud
dataset [64].

The adaptations that allow deep GCNs are twofold:

• Dilated aggregation: Dilated k-NN is used to find dilated neighbours after every GCN
layer, getting as result a Dilated Graph. Having a graph G = (V , E) with a Dilated
k-NN and d dilation rate, the Dilated k-NN returns the k× d nearest neighbours in

Sensors 2021, 21, 816 13 of 26

the feature space, ignoring every d neighbours. The l2 distance is used in the feature
space.

• Residual and Dense connections: Based on the success of models with residual connec-
tions between layers such as ResNet [65], or dense connections such as DenseNet [66],
these concepts have been translated to GCNs, allowing much deeper models.

The model chosen for our affordance-based grasping algorithm includes the dilated
aggregation so to increase the receptive field of the GCN. Additionally, we chose the
residual connections between the layers to increase the depth of the network. The selection
of this network configuration was motivated by the improved performance achieved
against other architectures in [46]. The used architecture is illustrated in Figure 9.

ResGCN

k=16
f=64
d=1

ResGCN

k=16
f=64
d=2

ResGCN

k=16
f=64
d=3

ResGCN

k=16
f=64
d=n

GCN backbone

 1x1
 conv
f=1024

 Global
 Max
Pooling

Fusion
block

 1x1
 conv
f=512

MLP prediction
block

 1x1
 conv
 f= 3

 1x1
 conv
f=256

S
o
ft

m
a
x

Affordance scores

p1 p2p3 pN

...x1 x2x3 xN

Figure 9. Used model architecture.

When the model is fed with the n-dimensional point cloud data, first the GCN back-
bone is in charge of extracting features from the input data. Then, the fusion block fuses the
extracted features by the backbone and global features are extracted. Finally, the prediction
block predicts point-wise labels. As it can be seen in Figure 9, we modified this latter block
to obtain point-wise affordance scores. The output tensor of the network has the following
shape: (Nbatch, Npts, Nclasses), where Nbatch indicates the number of batches fed to the net-
work, Npts is the number of points per batch, and Nclasses the number of classes. In our case
Nclasses = 3 (good, bad and neutral grasping points). Thus, to obtain the point-wise labels,
the argmax operation is performed over the last axis of the output tensor. To obtain good
grasping affordances, however, we only get the channel corresponding to good grasping
points, as the softmax operation outputs the probability distribution over the three classes.
In our case the affordances are predicted in the first channel of the last axis, as shown in
Equation (1).

a f f ordances = [Nbatch, Npts, 0] (1)

Doing so, the points can be ordered depending on their affordance score. The higher
the affordance score, the higher is the likelihood of this grasp being a success. We used the
same general model architecture both for suction and gripper end effectors. Nevertheless,
we selected specific hyper-parameters for each case, as it is later explained in Section 4.

3.4. Benchmark Definition and Metrics

Here we describe the tests defined to compare both FCN and GCN based methods
and the metrics defined to measure the performance of each of them.

3.4.1. Benchmark Definition

To assess each model and to make a comparison between them, two test were car-
ried out:

1. Test 1: The methods were trained with the 80% and assessed against the remaining
20% of the dataset, that was composed of scenes with known objects, but completely
new object arrangements that were not used to train the model.

2. Test 2: We created a set of 100 new scenes containing randomly arranged similar
but never seen objects, in order to assess the generalization capability of each model.
To that end, more than 15 new parts were selected.

Sensors 2021, 21, 816 14 of 26

3.4.2. Metrics

As authors claim in [5], a method is robust if it is able to consistently find at least one
suction or grasp proposal that works. Thus, the metric used to measure the robustness of
the methods is the precision of the predictions against the manual annotations. The precision
was computed with respect to multiple confidence levels:

• Top− 1 precision: For each scene, the pixel (for the FCN) and the point (for the GCN)
with highest affordance score was taken into account to measure the precision.

• Top − 1% precision: In this case the pixels/points were sorted according to their
affordance scores and those within the 99th percentile were selected to measure the
precision.

In both cases, a grasping proposal is considered as a true positive if it has been
manually annotated as good grasping area, and as a false positive if has been manually
annotated as bad grasping area.

4. Implementation

In this section all the details related to the data preprocessing, network configurations
and used training hyper-parameters are explained.

4.1. Data Preprocessing for the Suction

In order to fit the generated 3D dataset with the GCN model for the suction, some
preprocessing steps have been performed. First, the number of points that GCNs could
analyze was limited due to computational complexity issues and hardware restrictions.
In spite of the fact that the general approach in the literature is to split the input point
cloud in blocks later to sequentially feed the model (using a reduced number of points
per block), we decided our model to be a single-shot detector. Therefore we increased the
number of points to be processed in each batch and set it to 8192. As proposed in [46], we
used a random sampling method to reduce the sampling time compared to other complex
sampling methods. For suction, each input point was defined by a 9-dimensional feature
vector containing, (see Equation (2))

1. The point coordinates with respect to the bin coordinate system.
2. RGB values normalized to [0–1].
3. Normal vector computed using the points within a radius of 0.05m before the random

sampling.

[xbin, ybin, zbin, r, g, b, nx, ny, nz] (2)

Here our intuition was that the usage of normal vector information (not available in
2D) would lead to a performance boost, as most suction grasping points are located in flat
and regular surfaces. Furthermore, as the annotated data was limited, we applied some
data augmentation to generate more training data. For suction, after randomly sampling
8192 points from the scene, the sampled point cloud was randomly rotated in the z axis.
As good grasping points do not change when the input cloud is rotated with respect to the
vertical axis, the augmentation was straightforward.

4.2. Data Preprocessing for the Gripper

Similar to the followed preprocessing steps for the suction, again 8192 points were ran-
domly sampled for each scene. As explained in Section 3.2, for each annotated heightmap,
as many rotated point clouds as discrete angles n were obtained. Thus, n inferences were
performed to detect grasping points in a scene for the gripper. Each input point was defined
by a 6-dimensional feature vector (Equation (3)):

1. The point coordinates with respect to the bin coordinate system.
2. RGB values normalized to [0–1].

[xbin, ybin, zbin, r, g, b] (3)

Sensors 2021, 21, 816 15 of 26

As gripper grasping points usually are in irregular surfaces, our intuition was that nor-
mal vector information would not contribute to better learn grasping point representations.
Thus, we opted to exclude it. Aside from that, in this case it was not possible to augment
the data rotating it vertically, as the rotation of the data had implicit information of the
grasping orientation. Therefore, we considered the random sampling as data augmentation,
as each sampled point set was totally different to the previously generated ones.

4.3. Training

The details of the tuning hyper-parameters used in our tests are shown in Figure 10.
The parameters that are not mentioned, were left as default. As aforementioned in
Section 3.2, both for suction and gripper, the dataset was annotated using three classes:
Good, bad and neutral. However, as the main goal was to distinguish between good and
bad points, and to equalize the instances belonging to each class, the background class was
trained with zero loss. Therefore, the elements belonging to that class were not taken into
account when the loss was computed. The random sampling and the data augmentation
were applied on-line at each training step. We trained our models in the cloud using an
AWS EC2 instance with a 16 GB Nvidia V100 GPU.

Version January 23, 2021 submitted to Journal Not Specified 15 of 23

[xbin, ybin, zbin, r, g, b] (3)

As gripper grasping points usually are in irregular surfaces, our intuition was that normal vector495

information would not contribute to better learn grasping point representations. Thus, we opted to496

exclude it. Aside from that, in this case it was not possible to augment the data rotating it vertically, as497

the rotation of the data had implicit information of the grasping orientation. Therefore, we considered498

the random sampling as data augmentation, as each sampled point set was totally different to the499

previously generated ones.500

4.3. Training501

The details of the tuning hyper-parameters used in our tests are shown in Figure 10. The502

parameters that are not mentioned, were left as default. As aforementioned in Section 3.2, both for503

suction and gripper, the dataset was annotated using three classes: Good, bad and neutral. However, as504

the main goal was to distinguish between good and bad points, and to equalize the instances belonging505

to each class, the background class was trained with zero loss. Therefore, the elements belonging to506

that class were not taken into account when the loss was computed. The random sampling and the507

data augmentation were applied on-line at each training step. We trained our models in the cloud508

using an AWS EC2 instance with a 16 GB Nvidia V100.509

FCN Hyper-Parameters

Learning rate type Constant
Base learning rate 0.001
Momentum 0.99
Batch size 1
RGB backbone ResNet-101
Depth backbone ResNet-101
Training steps 5000
Optimizer SGD

GCN Hyper-Parameters

Learning rate type With decay
Base learning rate 0.001
Momentum 0.9
Batch size 2
Backbone GCN EdgeConv
Backbone layers 14
Decay step 20000
Decay rate 0.5
Num neighbours 16
Num filters 64
Points 8192
Optimizer Adam

(a) Hyper-parameters for suction models.

FCN Hyper-Parameters

Learning rate type Constant
Base learning rate 0.001
Momentum 0.99
Batch size 2
RGB backbone ResNet-101
Depth backbone ResNet-101
Training steps 20000
Optimizer SGD

GCN Hyper-Parameters

Learning rate type With decay
Base learning rate 0.001
Momentum 0.9
Batch size 6
Backbone GCN EdgeConv
Backbone layers 7
Decay step 50000
Decay rate 0.5
Num neighbours 16
Num filters 64
Points 8192
Optimizer Adam

(b) Hyper-parameters for gripper models.
Figure 10. Hyper-parameters for suction and gripper Fully Convolutional Network (FCN) and Graph
Convolutional Network (GCN) models.

5. Results510

In this section are detailed the results obtained in the tests defined in Section 3.4. In each and511

every performed test, in addition to the obtained precision scores, a graphical example was given with512

the following colour/class correspondence: green for good grasping points, blue for bad grasping513

points and pink for neutral points.514

Figure 10. Hyper-parameters for suction and gripper Fully Convolutional Network (FCN) and Graph Convolutional
Network (GCN) models.

5. Results

In this section are detailed the results obtained in the tests defined in Section 3.4.
In each and every performed test, in addition to the obtained precision scores, a graphi-
cal example was given with the following colour/class correspondence: green for good
grasping points, blue for bad grasping points and pink for neutral points.

5.1. Test 1

In this test the algorithms were trained with the 80% of the dataset and assessed
against the remaining 20%. The metrics defined in Section 3.4 were used to compare
both methods.

Sensors 2021, 21, 816 16 of 26

5.1.1. Suction

The results obtained with both suction FCN and GCN models are shown in Figure 11.
In the case of the FCN, as the 2D input data were constant for testing, it was executed once.
Nevertheless, as the n-dimensional input points were randomly sampled and with the
aim of measuring the average performance, the GCN was executed five times. Therefore,
the precision scores obtained with the GCN slightly varied.

Version January 23, 2021 submitted to Journal Not Specified 16 of 23

5.1. Test 1515

In this test the algorithms were trained with the 80% of the dataset and assessed against the516

remaining 20%. The metrics defined in Section 3.4 were used to compare both methods.517

5.1.1. Suction518

The results obtained with both suction FCN and GCN models are shown in Figure 11. In the case519

of the FCN, as the 2D input data were constant for testing, it was executed once. Nevertheless, as520

the n-dimensional input points were randomly sampled and with the aim of measuring the average521

performance, the GCN was executed five times. Therefore, the precision scores obtained with the GCN522

slightly varied.523

FCN GCN

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Top 1 precision

(a) Top-1 scores for the suction in test 1.

FCN GCN

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Top 1% precision

(b) Top-1% scores for the suction in test 1.
Figure 11. Obtained precision scores per confidence percentiles for the suction models in Test 1.

The results showed that the deep GCN was able to outperform the precision scores obtained by524

the FCN. On the one hand, the usage of n-dimensional spatial data helped to better learn grasping525

point representations for the suction. As most of the suctionable areas were located in flat surfaces, the526

introduction of the normal vectors in the learning process led to a performance boost. On the other527

hand, the data augmentation played a key role, as the annotated data was somehow limited. First, the528

random sampling avoided over-fitting the input data, since the obtained point set after each sampling529

iteration was totally different to the previously used ones to train the model. In addition, the random530

rotation in z axis of the sampled point set, contributed even more to generate new grasping points that531

helped to learn more generic grasp representations.532

Nevertheless, the data augmentation was not trivial for the 2D FCN. Although visual533

transformations could be applied to the RGB image (light, texture, colour,...), it was not trivial to534

augment the depth data, as it was stored as a 2D image and had pixel-wise correspondence with the535

RGB image. In addition, it was not clear up to what extent 2D models as FCNs take advantage of the536

3D spatial information, since traditional 2D convolution operations were designed to only extract 2D537

features. As our training dataset was not so big, the FCN over-fitted it in few training iterations and,538

thus, the model was not able to learn such good grasp representations as GCNs.539

The designed bin-picking oriented pipeline also contributed to the improvement of the results. As540

all scenes were transformed into the bin coordinate frame and points outside the bin were discarded,541

the learning problem was simplified and the GCN showed an improved performance, independently542

of the location of the bin.543

An example of an inference of the GCN with a scene obtained from the test split of the dataset is544

depicted in Figure 12. For illustration purposes, top-1% and top-5% precisions have been selected.545

Figure 11. Obtained precision scores per confidence percentiles for the suction models in Test 1.

The results showed that the deep GCN was able to outperform the precision scores
obtained by the FCN. On the one hand, the usage of n-dimensional spatial data helped
to better learn grasping point representations for the suction. As most of the suctionable
areas were located in flat surfaces, the introduction of the normal vectors in the learning
process led to a performance boost. On the other hand, the data augmentation played a
key role, as the annotated data was somehow limited. First, the random sampling avoided
over-fitting the input data, since the obtained point set after each sampling iteration was
totally different to the previously used ones to train the model. In addition, the random
rotation in z axis of the sampled point set, contributed even more to generate new grasping
points that helped to learn more generic grasp representations.

Nevertheless, the data augmentation was not trivial for the 2D FCN. Although visual
transformations could be applied to the RGB image (light, texture, colour, . . .), it was
not trivial to augment the depth data, as it was stored as a 2D image and had pixel-wise
correspondence with the RGB image. In addition, it was not clear up to what extent
2D models as FCNs take advantage of the 3D spatial information, since traditional 2D
convolution operations were designed to only extract 2D features. As our training dataset
was not so big, the FCN over-fitted it in few training iterations and, thus, the model was
not able to learn such good grasp representations as GCNs.

The designed bin-picking oriented pipeline also contributed to the improvement of
the results. As all scenes were transformed into the bin coordinate frame and points outside
the bin were discarded, the learning problem was simplified and the GCN showed an
improved performance, independently of the location of the bin.

An example of an inference of the GCN with a scene obtained from the test split of the
dataset is depicted in Figure 12. For illustration purposes, top-1% and top-5% precisions
have been selected.

Sensors 2021, 21, 816 17 of 26

Figure 12. Suction result example. Top-left: Point cloud of the scene. Top-right: Ground-truth
annotation. Bottom-left: top-1% predictions. Bottom-right: top-5% predictions.

5.1.2. Gripper

The results obtained for the gripper with both, FCN and GCN models, are depicted in
Figure 13. We followed the same methodology as in the case of the suction, with one and
five executions for the FCN and GCN respectively. Since in the GCN based approach points
were sampled from the original scene, contrary to the FCN based method, the obtained
precisions vary. As it can be seen in Figure 13a, the GCN based method outperformed the
results obtained with the FCN, giving at least a valid grasping point per each scene with
high precision. Nevertheless, Figure 13b shows that the FCN performed more precisely
taking into account the highest 1% of the predicted affordances. This means that the
GCN showed a more overconfident performance than the FCN, sometimes assigning high
affordance scores to points that did not deserve it.

Version January 23, 2021 submitted to Journal Not Specified 17 of 23

Figure 12. Suction result example. Top-left: Point cloud of the scene. Top-right: Ground-truth
annotation. Bottom-left: top-1% predictions. Bottom-right: top-5% predictions.

5.1.2. Gripper546

The results obtained for the gripper with both, FCN and GCN models, are depicted in Figure547

13. We followed the same methodology as in the case of the suction, with one and five executions548

for the FCN and GCN respectively. Since in the GCN based approach points were sampled from the549

original scene, contrary to the FCN based method, the obtained precisions vary. As it can be seen in550

Figure 13a, the GCN based method outperformed the results obtained with the FCN, giving at least a551

valid grasping point per each scene with high precision. Nevertheless, Figure 13b shows that the FCN552

performed more precisely taking into account the highest 1% of the predicted affordances. This means553

that the GCN showed a more overconfident performance than the FCN, sometimes assigning high554

affordance scores to points that did not deserve it.555

FCN GCN

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Top 1 precision

(a) Top-1 scores for the gripper in test 1.

FCN GCN

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Top 1% precision

(b) Top-1% scores for the gripper in test 1.
Figure 13. Obtained precision scores per confidence percentiles for the gripper models in Test 1.

On the one hand, the random sampling of the input data led the GCN model to learn generic556

features and prevented it from over-fitting the input data. On the other hand, the fact that the557

GCN learned from n-dimensional features allowed the model to be more confident predicting top-1558

affordances. In spite of the fact that the GCN was more confident taking into account the maximum559

affordance value per each scene, this confidence dropped when the affordances in the 99th percentile560

were taken into account and the FCN showed a stronger performance.561

Figure 13. Obtained precision scores per confidence percentiles for the gripper models in Test 1.

On the one hand, the random sampling of the input data led the GCN model to learn
generic features and prevented it from over-fitting the input data. On the other hand,
the fact that the GCN learned from n-dimensional features allowed the model to be more
confident predicting top-1 affordances. In spite of the fact that the GCN was more confident
taking into account the maximum affordance value per each scene, this confidence dropped
when the affordances in the 99th percentile were taken into account and the FCN showed a
stronger performance.

Sensors 2021, 21, 816 18 of 26

The results obtained with two different vertical angles for a single scene are shown in
Figures 14 and 15. For illustration purposes, the n = 4 and n = 5 discrete vertical angles
have been selected, among the n = 16 possible rotations.

Figure 14. Gripper result example for n = 4. Top-left: point cloud of the scene. Top-right: ground-
truth annotation. Bottom-left: Top-1% predictions. Bottom-right: Top-1 grasping point. The vertical
orientation for the gripper is determined by the y (green) axis.

Figure 15. Gripper result example for n = 5. Top-left: point cloud of the scene. Top-right: ground-
truth annotation. Bottom-left: Top-1% predictions. Bottom-right: Top-1 grasping point. The vertical
orientation for the gripper is determined by the y (green) axis.

Sensors 2021, 21, 816 19 of 26

In these examples it can be appreciated that, taking into account the top-1% affordance
scores, the GCN model was able to also correctly predict grasping points also in objects that
were not annotated as good or bad. In addition, sometimes the model was overconfident
and predicted relatively high affordance scores to points that were not good grasping
points. This could happen due to the fact that only hard negative samples are annotated as
bad. Nonetheless, in both examples the predicted top-1 grasping points are correct and the
top-1 precision of the GCN supports its capability to learn grasping points for the gripper.

5.2. Test 2

The main goal of this test was to assess the generalization capability of the trained
models for suction and gripper. For that purpose, the previously trained models were
assessed against a set of 100 new scenes, composed of randomly arranged completely
new parts.

5.2.1. Suction

The achieved top-1 and top-1% precision scores for the FCN and the GCN are depicted
in Figure 16. Similar to the previous tests, also in this test the same number of executions
were performed per each model. In spite of the fact that both models behaved precisely
when they were assessed with scenes full of never seen objects, the GCN showed a stronger
generalization capability, obtaining higher top-1 and top-1% precision scores.

Version January 23, 2021 submitted to Journal Not Specified 19 of 23

In these examples it can be appreciated that, taking into account the top-1% affordance scores, the565

GCN model was able to also correctly predict grasping points also in objects that were not annotated566

as good or bad. In addition, sometimes the model was overconfident and predicted relatively high567

affordance scores to points that were not good grasping points. This could happen due to the fact that568

only hard negative samples are annotated as bad. Nonetheless, in both examples the predicted top-1569

grasping points are correct and the top-1 precision of the GCN supports its capability to learn grasping570

points for the gripper.571

5.2. Test 2572

The main goal of this test was to assess the generalization capability of the trained models for573

suction and gripper. For that purpose, the previously trained models were assessed against a set of 100574

new scenes, composed of randomly arranged completely new parts.575

5.2.1. Suction576

The achieved top-1 and top-1% precision scores for the FCN and the GCN are depicted in Figure577

16. Similar to the previous tests, also in this test the same number of executions were performed per578

each model. In spite of the fact that both models behaved precisely when they were assessed with579

scenes full of never seen objects, the GCN showed a stronger generalization capability, obtaining580

higher top-1 and top-1% precision scores.581

FCN GCN
0.90

0.92

0.94

0.96

0.98

1.00

Top 1 precision

(a) Top-1 scores for the suction in Test 2.

FCN GCN
0.90

0.92

0.94

0.96

0.98

1.00

Top 1% precision

(b) Top-1% scores for the suction in Test 2.
Figure 16. Obtained precision scores per confidence percentiles for the suction models in Test 2.

Regarding the generalization capability of the FCN, although no data augmentation methods582

were applied, in few iterations it learned generic enough features to correctly predict affordances in583

new objects with random arrangements. Nevertheless, the data augmentation and the random input584

data sampling had a lot to do with the results obtained with the GCN. Due to the fact that all point585

clouds were transformed into the bin coordinate frame, the application of these preprocessing steps586

was straightforward. Consequently, this preprocessing prevented the model from over-fitting the input587

data, being able to learn more meaningful spatial features than with the 2D FCN.588

A graphical example of the predicted affordances with top-1% and top-5% confidences are shown589

in Figure 17. Watching this graphical results, it can be said that the learned GCN model shows a strong590

capability to predict affordances for randomly placed completely new parts.591

Figure 16. Obtained precision scores per confidence percentiles for the suction models in Test 2.

Regarding the generalization capability of the FCN, although no data augmentation
methods were applied, in few iterations it learned generic enough features to correctly
predict affordances in new objects with random arrangements. Nevertheless, the data
augmentation and the random input data sampling had a lot to do with the results obtained
with the GCN. Due to the fact that all point clouds were transformed into the bin coordinate
frame, the application of these preprocessing steps was straightforward. Consequently,
this preprocessing prevented the model from over-fitting the input data, being able to learn
more meaningful spatial features than with the 2D FCN.

A graphical example of the predicted affordances with top-1% and top-5% confidences
are shown in Figure 17. Watching this graphical results, it can be said that the learned GCN
model shows a strong capability to predict affordances for randomly placed completely
new parts.

5.2.2. Gripper

As it can be seen in Figure 18, the precision of both, FCN and GCN decreased con-
siderably when the models were assessed in scenes with totally new objects. Particularly
in the case of the GCN, the performance worsened even more than in the case of the
FCN, suggesting that the learned model focused more on learning specific features of the
training data.

Sensors 2021, 21, 816 20 of 26

Figure 17. Suction result example with totally new objects. Top-left: point cloud of the scene. Top-
right: ground-truth annotation. Bottom-left: top-1% predictions. Bottom-right: top-5% predictions.

Version January 23, 2021 submitted to Journal Not Specified 20 of 23

Figure 17. Suction result example with totally new objects. Top-left: point cloud of the scene. Top-right:
ground-truth annotation. Bottom-left: top-1% predictions. Bottom-right: top-5% predictions.

5.2.2. Gripper592

As it can be seen in Figure 18, the precision of both, FCN and GCN decreased considerably when593

the models were assessed in scenes with totally new objects. Particularly in the case of the GCN, the594

performance worsened even more than in the case of the FCN, suggesting that the learned model595

focused more on learning specific features of the training data.596

FCN GCN
0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Top 1 precision

(a) Top-1 scores for the gripper in test 2.

FCN GCN
0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Top 1% precision

(b) Top-1% scores for the gripper in test 2.
Figure 18. Obtained precision scores per confidence percentiles for the gripper models in Test 2.

For the gripper, the random sampling was considered as a data augmentation method, due to the597

fact that the input data varied at each training step. Nonetheless, it was not enough to learn generic598

grasp representations for the gripper. Contrary to the case of the suction where the GCN model was599

able to correctly extrapolate how to predict affordances in new parts, in the case of the gripper it600

seemed that the model focused too much in the particularities of the training objects. In Figures 19 and601

20, the affordances obtained for two different vertical angles for the gripper are shown, for n = 2 and602

n = 3 respectively.603

Figure 18. Obtained precision scores per confidence percentiles for the gripper models in Test 2.

For the gripper, the random sampling was considered as a data augmentation method,
due to the fact that the input data varied at each training step. Nonetheless, it was not
enough to learn generic grasp representations for the gripper. Contrary to the case of the
suction where the GCN model was able to correctly extrapolate how to predict affordances
in new parts, in the case of the gripper it seemed that the model focused too much in the
particularities of the training objects. In Figures 19 and 20, the affordances obtained for
two different vertical angles for the gripper are shown, for n = 2 and n = 3 respectively.

In these graphical results we can see that, in some cases the model assigned high
confidence values to points that were not annotated as good and, indeed, were not good
grasping points. As an example, in spite of the fact that the top-1 grasping point predicted
in Figure 19 had the correct orientation, it was not an adequate grasping point for the
gripper due to the width of the part. In some other cases as in Figure 20, however, the model
found a correct top-1 grasping point although it assigned high affordances also to points
that did not deserve it.

Sensors 2021, 21, 816 21 of 26

Figure 19. Gripper result example for n = 2. Top-left: Point cloud of the scene. Top-right: Ground-
truth annotation. Bottom-left: Top-1% predictions. Bottom-right: Top-1 grasping point. The vertical
orientation for the gripper is determined by the y (green) axis.

Figure 20. Gripper result example for n = 3. Top-left: point cloud of the scene. Top-right: ground-
truth annotation. Bottom-left: top-1% predictions. Bottom-right: top-1 grasping point. The vertical
orientation for the gripper is determined by the y (green) axis.

6. Discussion

In the work presented here we used a GCN to test if the assumption that n-dimensional
information is crucial for predicting object affordances fulfills. We successfully adapted
the Deep GCN model that was designed for scene segmentation problems to predict object
affordance scores for suction and gripper end effectors. To train the GCNs, we created
a dataset composed of industrial bin-picking scenarios with randomly arranged multi-
reference parts. To that end, we used a Photoneo Phoxi M camera and obtained highly

Sensors 2021, 21, 816 22 of 26

accurate 2D/3D acquisitions of multiple scenes. In our application we selected a varied set
of rigid and semi-rigid objects with different material, shape, colour and texture that were
used in the context of the Pick-Place EU project.

Rather than 2D images containing single views of the scene, we used n-dimensional
point clouds offering a richer information of the scene (e.g., multiple viewpoints and
multiple features per point). Although the usage of unordered n-dimensional point clouds
introduced complexity to the learning process, we showed that it is possible to learn to
predict object affordances with GCNs. The innovations introduced in [46] let us create deep
GCN models for suction and gripper end effectors. Besides, the designed data processing
pipeline contributed to create a system which was agnostic to the bin localization in the
scene and to the number of cameras being used. Thus, the designed methodology was
easily transferable to new scenarios and setups.

Traditionally, DL based methods need arduous manual annotation processes which
sometimes make those applications intractable. This drawback of DL applications high-
lights the importance of automatic data augmentation methods, to automatically increase
the training samples in the dataset. Synthetically augmented datasets are widely used
and help to generate much data with little effort. However, simulation based methods
increase the simulation to reality gap, due to the difficulty to replicate real world conditions
in simulators. We directly augmented real n-dimensional spatial data. As we are using
3D data the process was rather trivial contrary to augmenting RGB images where data is
arranged in a grid.

The quantitative performance measures obtained confirm our assumption and we
can say that indeed 3D spatial information contributes to predict object affordances more
precisely. Test 1 showed that the GCNs correctly predict object affordances with known
objects but in completely new scenarios and arrangements, obtaining better precisions than
the 2D FCN. On the other hand, Test 2 allowed us to check the generalization capability of
the trained models. These models had to predict affordances in new objects with random
arrangements. The obtained results demonstrated that the GCN based suction model had
strong generalization capabilities to correctly predict affordances in similar but completely
new parts. However, the precision scores obtained with the gripper indicate that the FCN
generalized better to new parts than the GCN, suggesting that the input data was not
significant enough for the GCN in the more complex gripper scenario.

Despite the promising results obtained predicting object affordances by training
GCNs with n-dimensional spatial features, the system suffered from various limitations.
The former was directly related to the resolution of the data. As each point in the scene
is represented as a n-dimensional vector, the computational cost increases proportionally
when more features are included. Due to hardware and cycle time restrictions, the amount
of data to be processed at each step is limited. In this work, each scene was represented
by 8192 points, which seemed to be enough in our case with relatively big objects, but not
with very small parts. Even though the general approach with GCNs is to split the point
cloud in smaller cubes to gain resolution, the general perspective of the scene is lost, which
is crucial in the grasping point detection problem.

The second limitation came when the system had to deal with transparent or shiny
parts. As most of the depth sensors fail to reconstruct the 3D information of these parts,
typically only visual information can be used to infer their affordances.

As far as the grasping strategies are concerned, the developed method for suction
takes full advantage of the 3D space and grasps are predicted and executed with 6-DoF.
However, that is not the case for the gripper, where the affordances are only predicted
taking into account vertical grasps and discrete angles. Consequently, the computational
cost is proportional to the selected number of discrete angles, and that makes the solution
hardly scalable.

The developed work allowed us to gain experience and knowledge that should be en-
riched by testing the models with the real robotic system in a real application to see whether
the learned grasping representations are valid to pick real objects. Moreover, the manual

Sensors 2021, 21, 816 23 of 26

annotation is a very time-consuming process. Although data augmentation techniques
somehow alleviate it, the DL models still need too much annotated data to converge. Thus,
we must look for ways to learn to predict object affordances, with less manually annotated
samples. In spite of the fact that current state-of-the-art GCN based approaches mostly
focus only on the gripper end effector, it would be enriching to benchmark our work with
other methods in a bin-picking scenario. Lastly, the grasping strategy for the gripper must
be extended to 6-DoF in a more flexible way to overcome the current generalization and
scalability limitations.

Author Contributions: conceptualization, A.I. and A.A; methodology, A.I., A.A., and E.L.; software,
A.I.; formal analysis, A.I., A.A.; data curation, A.I.; writing—original draft preparation, A.I.; writing—
review and editing, E.L. and A.A.; and supervision, E.L., A.A. All authors have read and agreed to
the published version of the manuscript.

Funding: This Project received funding from the European Union’s Horizon 2020 research and
Innovation Programme under grant agreement No. 780488.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on demand from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

GPU Graphical Processing Unit
TPU Tensor Processing Unit
SGD Stochastic Gradient Descent
MLP Multi Layer Perceptron
DNN Deep Neural Network
DL Deep Learning
RL Reinforcement Learning
CNN Convolutional Neural Network
FCN Fully Convolutional Network
GCN Graph Convolutional Network
RGB Red Green Blue
RGB-D Red Green Blue Depth
ARC Amazon Robotics Challenge
DoF Degrees of Freedom

References
1. Susperregi, L.; Fernandez, A.; Molina, J.; Iriondo, A.; Sierra, B.; Lazkano, E.; Martínez-Otzeta, J.M.; Altuna, M.; Zubia, L.; Bautista,

U. RSAII: Flexible Robotized Unitary Picking in Collaborative Environments for Order Preparation in Distribution Centers.
In Bringing Innovative Robotic Technologies from Research Labs to Industrial End-Users; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 129–151.

2. Kober, J.; Peters, J. Imitation and reinforcement learning. IEEE Robot. Autom. Mag. 2010, 17, 55–62. [CrossRef]
3. Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning applications and

challenges in big data analytics. J. Big Data 2015, 2, 1. [CrossRef]
4. Yu, J.; Weng, K.; Liang, G.; Xie, G. A vision-based robotic grasping system using deep learning for 3D object recognition and

pose estimation. In Proceedings of the International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14
December 2013; pp. 1175–1180.

5. Zeng, A.; Song, S.; Yu, K.T.; Donlon, E.; Hogan, F.R.; Bauza, M.; Ma, D.; Taylor, O.; Liu, M.; Romo, E.; et al. Robotic pick-and-place
of novel objects in clutter with multi-affordance grasping and cross-domain image matching. In Proceedings of the International
Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 1–8.

6. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.

http://doi.org/10.1109/MRA.2010.936952
http://dx.doi.org/10.1186/s40537-014-0007-7

Sensors 2021, 21, 816 24 of 26

7. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings
of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5099–5108.

8. Sahbani, A.; El-Khoury, S.; Bidaud, P. An overview of 3D object grasp synthesis algorithms. Robot. Auton. Syst. 2012, 60, 326–336.
[CrossRef]

9. Prattichizzo, D.; Trinkle, J.C. Grasping. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 955–988.
10. Nguyen, V.D. Constructing force-closure grasps. Int. J. Robot. Res. 1988, 7, 3–16. [CrossRef]
11. Bicchi, A.; Kumar, V. Robotic grasping and contact: A review. In Proceedings of the ICRA. Millennium Conference. International

Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), San Francisco, CA, USA, 24–28 April
2000; Volume 1, pp. 348–353.

12. Ferrari, C.; Canny, J.F. Planning optimal grasps. ICRA 1992, 3, 2290–2295.
13. Bohg, J.; Morales, A.; Asfour, T.; Kragic, D. Data-driven grasp synthesis—A survey. IEEE Trans. Robot. 2013, 30, 289–309.

[CrossRef]
14. Felip, J.; Morales, A. Robust sensor-based grasp primitive for a three-finger robot hand. In Proceedings of the International

Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 1811–1816.
15. Pastor, P.; Righetti, L.; Kalakrishnan, M.; Schaal, S. Online movement adaptation based on previous sensor experiences.

In Proceedings of the International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September
2011; pp. 365–371.

16. Brost, R.C. Automatic grasp planning in the presence of uncertainty. Int. J. Robot. Res. 1988, 7, 3–17. [CrossRef]
17. Miller, A.T.; Allen, P.K. Graspit! a versatile simulator for robotic grasping. IEEE Robot. Autom. Mag. 2004, 11, 110–122. [CrossRef]
18. Papazov, C.; Haddadin, S.; Parusel, S.; Krieger, K.; Burschka, D. Rigid 3D geometry matching for grasping of known objects in

cluttered scenes. Int. J. Robot. Res. 2012, 31, 538–553. [CrossRef]
19. Aldoma, A.; Vincze, M.; Blodow, N.; Gossow, D.; Gedikli, S.; Rusu, R.B.; Bradski, G. CAD-model recognition and 6DOF pose

estimation using 3D cues. In Proceedings of the International conference on computer vision workshops (ICCV workshops),
Barcelona, Spain, 6–13 November 2011; pp. 585–592.

20. Hinterstoisser, S.; Lepetit, V.; Ilic, S.; Holzer, S.; Bradski, G.; Konolige, K.; Navab, N. Model based training, detection and pose esti-
mation of texture-less 3d objects in heavily cluttered scenes. In Asian Conference on Computer Vision; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 548–562.

21. Goldfeder, C.; Allen, P.K. Data-driven grasping. Auton. Robot. 2011, 31, 1–20. [CrossRef]
22. Caldera, S.; Rassau, A.; Chai, D. Review of deep learning methods in robotic grasp detection. Multimodal Technol. Interact. 2018,

2, 57. [CrossRef]
23. Zeng, A.; Yu, K.T.; Song, S.; Suo, D.; Walker, E.; Rodriguez, A.; Xiao, J. Multi-view self-supervised deep learning for 6d pose

estimation in the amazon picking challenge. In Proceedings of the International conference on robotics and automation (ICRA),
Singapore, 29 May–3 June 2017; pp. 1386–1383.

24. Schwarz, M.; Milan, A.; Periyasamy, A.S.; Behnke, S. RGB-D object detection and semantic segmentation for autonomous
manipulation in clutter. Int. J. Robot. Res. 2018, 37, 437–451. [CrossRef]

25. Morrison, D.; Tow, A.W.; Mctaggart, M.; Smith, R.; Kelly-Boxall, N.; Wade-Mccue, S.; Erskine, J.; Grinover, R.; Gurman, A.;
Hunn, T.; et al. Cartman: The low-cost cartesian manipulator that won the amazon robotics challenge. In Proceedings of the
International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 7757–7764.

26. Lenz, I.; Lee, H.; Saxena, A. Deep learning for detecting robotic grasps. Int. J. Robot. Res. 2015, 34, 705–724. [CrossRef]
27. Redmon, J.; Angelova, A. Real-time grasp detection using convolutional neural networks. In Proceedings of the International

Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 1316–1322.
28. Kumra, S.; Kanan, C. Robotic grasp detection using deep convolutional neural networks. In Proceedings of the International

Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 769–776.
29. Jiang, Y.; Moseson, S.; Saxena, A. Efficient grasping from rgbd images: Learning using a new rectangle representation. In Pro-

ceedings of the International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3304–3311.
30. Zhou, X.; Lan, X.; Zhang, H.; Tian, Z.; Zhang, Y.; Zheng, N. Fully convolutional grasp detection network with oriented anchor

box. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018;
pp. 7223–7230.

31. Detry, R.; Kraft, D.; Kroemer, O.; Bodenhagen, L.; Peters, J.; Krüger, N.; Piater, J. Learning grasp affordance densities. Paladyn J.
Behav. Robot. 2011, 2, 1–17. [CrossRef]

32. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

33. Nguyen, A.; Kanoulas, D.; Caldwell, D.G.; Tsagarakis, N.G. Detecting object affordances with convolutional neural networks.
In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016;
pp. 2765–2770.

34. Zeng, A.; Song, S.; Welker, S.; Lee, J.; Rodriguez, A.; Funkhouser, T. Learning synergies between pushing and grasping with
self-supervised deep reinforcement learning. In Proceedings of the International Conference on Intelligent Robots and Systems,
Madrid, Spain, 1–5 October 2018; pp. 4238–4245.

http://dx.doi.org/10.1016/j.robot.2011.07.016
http://dx.doi.org/10.1177/027836498800700301
http://dx.doi.org/10.1109/TRO.2013.2289018
http://dx.doi.org/10.1177/027836498800700101
http://dx.doi.org/10.1109/MRA.2004.1371616
http://dx.doi.org/10.1177/0278364911436019
http://dx.doi.org/10.1007/s10514-011-9228-1
http://dx.doi.org/10.3390/mti2030057
http://dx.doi.org/10.1177/0278364917713117
http://dx.doi.org/10.1177/0278364914549607
http://dx.doi.org/10.2478/s13230-011-0012-x

Sensors 2021, 21, 816 25 of 26

35. Zeng, A.; Song, S.; Lee, J.; Rodriguez, A.; Funkhouser, T. Tossingbot: Learning to throw arbitrary objects with residual physics.
IEEE Trans. Robot. 2020, 36, 1307–1319. [CrossRef]

36. Mahler, J.; Goldberg, K. Learning deep policies for robot bin picking by simulating robust grasping sequences. In Proceedings of
the Conference on Robot Learning, Mountain View, California, 13–15 Novermber 2017; pp. 515–524.

37. Levine, S.; Pastor, P.; Krizhevsky, A.; Ibarz, J.; Quillen, D. Learning hand-eye coordination for robotic grasping with deep learning
and large-scale data collection. Int. J. Robot. Res. 2018, 37, 421–436. [CrossRef]

38. Kalashnikov, D.; Irpan, A.; Pastor, P.; Ibarz, J.; Herzog, A.; Jang, E.; Quillen, D.; Holly, E.; Kalakrishnan, M.; Vanhoucke, V.; et al.
Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation. arXiv 2018, arXiv:1806.10293.

39. James, S.; Davison, A.J.; Johns, E. Transferring end-to-end visuomotor control from simulation to real world for a multi-stage task.
arXiv 2017, arXiv:1707.02267.

40. Tremblay, J.; Prakash, A.; Acuna, D.; Brophy, M.; Jampani, V.; Anil, C.; To, T.; Cameracci, E.; Boochoon, S.; Birchfield, S. Training
deep networks with synthetic data: Bridging the reality gap by domain randomization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 969–977.

41. Zhang, S.; Tong, H.; Xu, J.; Maciejewski, R. Graph convolutional networks: A comprehensive review. Comput. Soc. Netw. 2019,
6, 11. [CrossRef]

42. Gezawa, A.S.; Zhang, Y.; Wang, Q.; Yunqi, L. A Review on Deep Learning Approaches for 3D Data Representations in Retrieval
and Classifications. IEEE Access 2020, 8, 57566–57593. [CrossRef]

43. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural
Netw. Learn. Syst. 2020, 32, 1–21. [CrossRef] [PubMed]

44. Zhou, J.; Cui, G.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and
applications. arXiv 2018, arXiv:1812.08434.

45. Rong, Y.; Huang, W.; Xu, T.; Huang, J. DropEdge: Towards Deep Graph Convolutional Networks on Node Classification.
In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26 April–1 May 2020.

46. Li, G.; Muller, M.; Thabet, A.; Ghanem, B. Deepgcns: Can GCNs go as deep as CNNs? In Proceedings of the IEEE International
Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9267–9276.

47. Chiang, W.L.; Liu, X.; Si, S.; Li, Y.; Bengio, S.; Hsieh, C.J. Cluster-GCN: An efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, Anchorage, AK, USA, 3–7 August 2019; pp. 257–266.

48. Liang, H.; Ma, X.; Li, S.; Görner, M.; Tang, S.; Fang, B.; Sun, F.; Zhang, J. Pointnetgpd: Detecting grasp configurations from point
sets. In Proceedings of the International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May
2019; pp. 3629–3635.

49. Ni, P.; Zhang, W.; Zhu, X.; Cao, Q. PointNet++ Grasping: Learning An End-to-end Spatial Grasp Generation Algorithm from
Sparse Point Clouds. In Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2020, Paris, France,
31 May–31 August 2020; pp. 3619–3625.

50. Qin, Y.; Chen, R.; Zhu, H.; Song, M.; Xu, J.; Su, H. S4g: Amodal single-view single-shot se (3) grasp detection in cluttered scenes.
In Proceedings of the Conference on Robot Learning, PMLR, Osaka, Japan, 30 October–1 November 2019; pp. 53–65.

51. Mousavian, A.; Eppner, C.; Fox, D. 6-dof graspnet: Variational grasp generation for object manipulation. In Proceedings of the
IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 2901–2910.

52. Kovacovsky, T.; Zizka, J. PhoXi® 3D Camera. In Imaging and Machine Vision Europe; Landesmesse Stuttgart GmbH: Stuttgart,
Germany, 2018; pp. 38–40.

53. Song, K.T.; Wu, C.H.; Jiang, S.Y. CAD-based pose estimation design for random bin picking using a RGB-D camera. J. Intell.
Robot. Syst. 2017, 87, 455–470. [CrossRef]

54. PICK-PLACE. Available online: https://pick-place.eu/ (accessed on 5 October 2020).
55. Mahler, J.; Matl, M.; Satish, V.; Danielczuk, M.; DeRose, B.; McKinley, S.; Goldberg, K. Learning ambidextrous robot grasping

policies. Sci. Robot. 2019, 4. [CrossRef]
56. Danielczuk, M.; Mahler, J.; Correa, C.; Goldberg, K. Linear push policies to increase grasp access for robot bin picking.

In Proceedings of the 14th International Conference on Automation Science and Engineering (CASE), Munich, Germany, 20–24
August 2018; pp. 1249–1256.

57. Bréhéret, A. Pixel Annotation Tool. 2017. Available online: https://github.com/abreheret/PixelAnnotationTool (accessed on 5
October 2020).

58. Dutta, A.; Gupta, A.; Zissermann, A. VGG Image Annotator (VIA). Version: 2.0.10; 2016. Available online: http://www.robots.
ox.ac.uk/~vgg/software/via/ (accessed on 5 October 2020).

59. Mvtec Halcon. Available online: https://www.mvtec.com/products/halcon/ (accessed on 5 October 2020).
60. Zhou, Q.Y.; Park, J.; Koltun, V. Open3D: A Modern Library for 3D Data Processing. arXiv 2018, arXiv:1801.09847.
61. Aggarwal, C.C.; Wang, H. Managing and Mining Graph Data; Springer: Berlin/Heidelberg, Germany, 2010; Volume 40.
62. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the Advances in Neural

Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1024–1034.
63. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds.

ACM Trans. Graph. 2019, 38, 1–12. [CrossRef]

http://dx.doi.org/10.1109/TRO.2020.2988642
http://dx.doi.org/10.1177/0278364917710318
http://dx.doi.org/10.1186/s40649-019-0069-y
http://dx.doi.org/10.1109/ACCESS.2020.2982196
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://dx.doi.org/10.1007/s10846-017-0501-1
https://pick-place.eu/
http://dx.doi.org/10.1126/scirobotics.aau4984
https://github.com/abreheret/PixelAnnotationTool
http://www.robots.ox.ac.uk/~vgg/software/via/
http://www.robots.ox.ac.uk/~vgg/software/via/
https://www.mvtec.com/products/halcon/
http://dx.doi.org/10.1145/3326362

Sensors 2021, 21, 816 26 of 26

64. Armeni, I.; Sener, O.; Zamir, A.R.; Jiang, H.; Brilakis, I.; Fischer, M.; Savarese, S. 3d semantic parsing of large-scale indoor spaces.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 1534–1543.

65. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

66. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

	Introduction
	Literature Review
	Problem Specification and Setup
	Multi-Functional Gripper
	Dataset
	Annotation
	RGB-D Annotations to 3D Point Clouds

	3D Affordance Grasping with Deep GCNs
	Benchmark Definition and Metrics
	Benchmark Definition
	Metrics

	Implementation
	Data Preprocessing for the Suction
	Data Preprocessing for the Gripper
	Training

	Results
	Test 1
	Suction
	Gripper

	Test 2
	Suction
	Gripper

	Discussion
	References

