2	Nonezymatic Glucose Sensors Based on Copper
3	Sulfides: Effect of Binder-Particles Interactions
4	in Drop-Casted Suspensions on Electrodes
5	Electrochemical Performance
6	Julia Mazurków *, Anna Kusior and Marta Radecka
7	Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al.
8 9	Mickiewicza 30, 30-059 Kraków, Poland; akusior@agh.edu.pl (A.K.); radecka@agh.edu.pl (M.R.) * Correspondence: mazurkow@agh.edu.pl; Tel.: +48-12-617-24-68
10	Number of Pages: 4

11 Number of Figures: 7

12

1

13

- 14 Figure S1. Volume distribution of copper sulfides particles in different solutions: water, CH_0.5/1%,
- 15 CH_0.5/5%, CH_0.5/25%, CH_0.1/25%, CH_1.0/25%, PVP_1.0/25% and NAF_0.5.

16

17 Figure S2. Microscope images of dry deposit of undiluted Nafion-based suspension (5 wt.% of polymer).

19

Figure S3. Amperometric responses of two independent electrodes to glucose additions in the concentration range 0–1.0 mM (step 0.1 mM) for: (a) CH_0.5/25%; (b) NAF_0.5; (c) PVP_1.0/25%.

Figure S4. Cyclic voltammograms for 1.5 mM glucose addition and their first derivatives for: (a) CH_0.5/25%; (b) NAF_0.5; (c) PVP_0.1/25%.

Figure S5. Voltammograms recorded in 0.1 M KCl + 1 mM K₃[Fe(CN)₆] with different scan rates
(6.25, 12.5, 25, 50, 100, 200, 250 and 500 mV/s) for: (a) CH_0.5/25%; (b) NAF_0.5; (c) PVP_1.0/25%.

Figure S6. Amperometric responses to glucose in the concentration range 0–6 mM for
CH_0.5/25%, NAF_0.5 and PVP_1.0/25%. Inset shows range from 0–0.1 mM.

31

Figure S7. Raman spectra of pure polymers, copper sulfides, and casted nanosuspensions before and
after CV measurements for: (a) CH_0.5/25%; (b) NAF_0.5; (c) PVP_1.0/25%.