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Abstract: A treadmill was used to perform continuous walking tests in a limited space that can
be covered by marker-based optical motion capture systems. Most treadmill-based gait data are
analyzed based on gait cycle percentage. However, achieving continuous walking motion trajectories
over time without time normalization is often required, even if tests are performed under treadmill
walking conditions. This study presents a treadmill-to-overground mapping method of optical
marker trajectories for treadmill-based continuous gait analysis, by adopting a simple concept of
virtual origin. The position vector from the backward moving virtual origin to a targeted marker
within a limited walking volume is the same as the position vector from the fixed origin to the forward
moving marker over the ground. With the proposed method, it is possible (i) to observe the change in
physical quantity visually during the treadmill walking, and (ii) to obtain overground-mapped gait
data for evaluating the accuracy of the inertial-measurement-unit-based trajectory estimation. The
accuracy of the proposed method was verified from various treadmill walking tests, which showed
that the total travel displacement error rate was 0.32% on average.

Keywords: treadmill-to-overground mapping; optical motion capture system; gait analysis

1. Introduction

People usually walk 10,000 steps a day and close to hundreds of millions of steps
throughout their lives [1]. This is why gait analysis is constantly being actively studied.
Marker-based optical motion capture (MoCap) systems are considered a gold standard
in biomechanical gait research due to their high accuracy [2–12]. In MoCap-based gait
analysis, markers are attached to the lower limb of subjects and the gait is analyzed using
the trajectories of these markers. However, MoCap systems have a limited capture volume,
as their measurement is based on fixed cameras. Accordingly, in gait research using MoCap,
the subject’s gait is limited to, at most, a dozen steps. Thus, gait data are usually obtained
by repeating a fixed course within a limited space [6,7].

MoCap is often combined with a treadmill to achieve a continuous walking trajectory
for biomechanical research in a limited space [13–20]. A treadmill provides a convenient
experiment environment in terms of unlimited gait trackability under volume constraint
and speed controllability. Although treadmills allow continuous walking, the MoCap data
repeated in a limited space during the treadmill walking are overlapped in the restricted
space. Therefore, most of the gait data obtained through treadmill walking are analyzed
based on gait cycle percentage. That is, each gait period from one heel strike to the next
heel strike of the same foot is the time normalized as one gait cycle and the average and
standard deviation of a physical quantity with respect to the gait cycle are used for the gait
analysis [5–7,13–17,21–24].

However, achieving continuous walking motion trajectories over time without time
normalization is often required. It should be noticed that human gait is not consistent.
For example, the stride length, cadence, and gait pattern of a pedestrian can meaningfully
change during the measurement due to, for example, muscle fatigue. This is particularly
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true in the case of patients who experience discomfort in walking, such as stroke and
Parkinson’s patients [15,16,22–24]. In this situation, the gait-cycle-based analysis may not
be effective, as it is difficult to observe the change in physical quantity according to the
movement in the forward direction such as overground walking. This is a motivation for
treadmill-to-overground (T2OG) mapping of the gait data.

More importantly, another motivation for the T2OG mapping originates from gait
research using inertial measurement units (IMUs). Recently, IMUs have been actively
used in gait analysis [14,21,25–33]. This is mainly because they can overcome the inherent
in-the-lab limitation of optical MoCap systems in terms of measuring volume, due to their
sourceless (or self-contained) property not requiring external sources [28,34,35]. Weara-
bility of IMUs due to the sourceless property provides tremendous benefits that could be
associated with long-term activity monitoring of patients and individuals in home and
community settings [36–38]. The prerequisite for obtaining gait data through IMUs is IMU-
based estimation of position or trajectory, which requires a process of double integration of
gravity-compensated acceleration. It should be noticed that, even if the data measurements
are performed on a treadmill, the position estimated through the double integration of
the acceleration proceeds in the forward direction, like overground walking. Therefore, to
verify the accuracy of IMU-based trajectory estimation at the research stage, a comparison
with MoCap-based trajectory data, which are used as a reference, is required. For this,
mapping of the MoCap-based trajectory data collected during the treadmill walking to
overground is necessary. In other words, direct comparison of IMU-based trajectory and
MoCap-based trajectory is not possible without the mapping process (see Figure 1).
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Figure 1. Examples of walking trajectory from each system during the same treadmill walking test: (a) trajectory
from a marker-based optical motion capture (MoCap) system, (b) trajectory estimated using inertial measurement unit
(IMU) signals.

With regards to the above two motivations, this study deals with the T2OG mapping
of optical marker trajectories for continuous gait analysis. Using the proposed T2OG
mapping, the marker trajectory during the treadmill walking on a track belt rotating in
an infinite orbit is not confined to a limited treadmill walking volume but extends on an
unfolded belt, which can be considered the overground.

The second section presents the T2OG mapping method and describes the experiments
under various conditions for the validation of the method. The third section presents
the results of experiments showing the accuracy of the T2OG mapping. Finally, several
discussion points are made, and conclusions are drawn in the fourth section.

2. Method and Experiments
2.1. Treadmill-to-Overground Mapping Method

The basic concept of the proposed T2OG mapping method is as follows. As the
treadmill belt moves backward, the position of the origin of a frame attached onto the
belt moves backward, and this moved origin is called a virtual origin. The position vector
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from the virtual origin (which is “moving backward”) to a targeted marker (which is
moving within a limited walking volume of the treadmill) is the same as the position vector
from the “fixed” origin to the marker moving “forward” over the ground. Hence, the key
process of the T2OG mapping is the estimation of the position (or displacement) of the
virtual origin, which is the same as the estimation of the belt displacement change while
moving backward.

Three groups of markers of a MoCap system are attached for the mapping (see
Figure 2a). The first group of markers is attached onto the treadmill belt in line. Hereafter,
these markers are referred to as a “marker chain”. The marker chain is used to estimate
the displacement of the virtual origin, which plays a key role in the mapping. At least two
markers of the marker chain must be captured while the treadmill is operating. The total
number of markers in the marker chain can vary depending on the length of the belt and
other setting conditions. The second group of three markers is attached onto the side panel
of the treadmill to form a treadmill frame {TR}. The treadmill frame is required to consider
the inclination change of the treadmill. The third group of markers is attached to body
segments to be tracked.
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Figure 2. (a) Walking test setup with markers attached to a treadmill and a subject; (b) subject-
attached markers viewed from the coronal and sagittal planes.

The captured marker of the marker chain is denoted as mn where the subscript n
indicates the nth marker from the rear end of the treadmill (see Figure 3). Note that the
markers of the marker chain attached onto the moving belt will appear and disappear,
repeatedly. Therefore, shifting between a series of adjacent markers occurs. For instance,
before the marker m1 disappears under the running track, the next marker m2 is shifted
and designated as the post m1, and the marker m3 becomes the post m2, sequentially. The
position of the marker mn is denoted as pmn and its position change during one time step
∆pmn, t is

∆TRpmn, t =
TR pmn, t −TR pmn, t−1 (1)

where the subscripts t and t− 1 indicate the current and previous steps, respectively, and
the superscript TR indicates that the corresponding vector is expressed with respect to the
treadmill frame {TR}.
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In T2OG mapping, it is essential to estimate the position of the virtual origin Gpvo, t
which can be expressed as

Gpvo, t =
Gpvo, t−1 + ∆Gpvo, t (2)

where the position increment of the virtual origin with respect to the global frame {G},
∆Gpvo, t, is nonetheless the position change of the belt during one time step. In Equation
(2), as the movement of the marker chain is the same as the movement of the virtual origin,
∆Gpvo, t can be replaced with ∆Gpmn, t. Note that any marker in the marker chain can be
selected for ∆Gpmn, as long as it is well captured and is thus suitable to represent the belt
movement. In this study, the 4th marker m4 is selected, as it is at the center of the capture
volume and thus can be stably captured by the MoCap cameras. Subsequently, Equation
(2) can be rewritten as

Gpvo, t =
Gpvo, t−1 +

G
TRR ∆TRpm4, t (3)

where G
TRR is the orientation of {TR} with respect to {G} and is available via the second

group of markers. At the moment of shifting, pm4, t and pm4, t−1 are obtained from different
markers. Accordingly, ∆TRpm4, t at the shifting moment should be differently treated, i.e.,

∆TRpm4, t =

{ TRpm4, t −TR pm4, t−1 , if ‖∆TRpm4, t‖ < ε
TRpm3, t −TR pm4, t−1 , otherwise

(4)

where ε is the threshold to determine the shifting moment based on the norm of ∆TRpm4, t.
Next, the increment ∆TRpm4, t is projected onto the x-axis of the treadmill frame TRX

to remove belt movement other than in the walking direction. This projection procedure is
required to avoid error accumulation due to the unavoidable belt deflection caused by the
weight or movement of the pedestrian. The projected ∆TRpm4, t is obtained as

∆TRpm4,proj,t =
TRX

(
∆TRpm4,t · TRX

)
(5)

Consequently, the position of the virtual origin in Equation (3) is replaced by

Gpvo, t =
G pvo, t−1 +

G
TRR ∆Gpm4,proj,t (6)

Finally, when the nth marker attached to the body is denoted by bn, the overground-

mapped position of the body marker G ^
pbn,t is estimated by subtracting the position of the

virtual origin Gpvo,t from the body marker position Gpbn,t.

G ^
pbn,t =

Gpbn,t −
Gpvo, t (7)

Figure 3 is an illustration of the T2OG mapping procedure. ∆pm4, t is continuously
updated to estimate the position of the virtual origin pvo,t. The body marker position

mapped to the overground
^
pbn,t is estimated by using the relative vector from the virtual

origin to the body marker pbn,t. The frame t + 2 in Figure 3 shows the shifting moment
when m1 disappears.

2.2. Experiments

A treadmill KOBE-4000 (Kobesports, Goyang, Korea) and an optical motion capture
camera system OptiTrack Flex13 (Natural Point, Corvallis, OR, USA) were used to verify
the proposed T2OG mapping method. Seven cameras were used and the MoCap data
were sampled at 120 Hz. In this study, the marker chain has 14 markers with intervals of
25 cm on a 350 cm-long belt. Six or more markers are captured on the belt during treadmill
operation with this setting. In the treadmill setup, the time duration and speed were
controlled with a treadmill built-in program and the inclination was adjusted manually.
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Two types of tests were conducted: one without pedestrian walking and the other with
pedestrian walking.

2.2.1. Test without Pedestrian Walking

The displacement of the treadmill belt represents the displacement of the pedestrian
in the T2OG mapping result. Therefore, it is essential to estimate the displacement of the
belt accurately for precise mapping. We conducted a test without pedestrian walking to
verify the accuracy of the estimation of belt displacement without any influences due to
pedestrian walking. The total travel displacements (TTDs) of the belt with respect to the
frame {TR} obtained from the reference and the proposed method were compared. The
reference of the belt displacement was estimated from the number of revolutions of the belt
counted manually and the pre-measured length of the belt. In addition, the unmeasured
extra length was considered. The TTD from the proposed method was obtained using
TRpvo,x, which is the heading (or x-direction) component of TRpvo.

Two different camera settings of the MoCap system were tested to evaluate the effect
of camera settings on the estimation accuracy: setting 1 wherein seven cameras were evenly
placed around the treadmill (see Figure 4a) and setting 2 wherein three cameras were
placed only behind the treadmill (see Figure 4b). The tests were conducted for five minutes
at three different speeds: 2, 4, and 6 km/h. Each test was repeated five times. Additionally,
the accuracy of the MoCap system was evaluated using a digital linear scale, ME-HZ300
(Machine DRO, Hoddesdon, UK). The ruler had a resolution of 10 µm and a maximum
operating range of 300 mm (see Figure 4c). This evaluation was conducted to identify the
cause of errors when comparing the TTDs from the reference and the proposed methods. A
reflective marker was attached onto the translating part of the digital linear scale, and then
the part and the marker were translated by approximately 30 cm. The translating distances
from the ruler and the MoCap system were compared.
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2.2.2. Test with Pedestrian Walking

The pedestrian walking tests were conducted to demonstrate the T2OG mapping
results. As a case study, one healthy male subject (age 27 years, height 176 cm, and weight
70 kg) performed two different tests: (i) constant-speed walking without inclination and
(ii) variable-speed walking with various inclinations. The constant-speed walking test was
performed at 4 km/h for five minutes. For the variable-speed walking test, which lasted for
ten minutes, the applied speed and inclination were as follows: 4 km/h without inclination
for three minutes→ 1 km/h without inclination for three minutes→ 4 km/h with the
inclination of 4◦ for three minutes→ 4 km/h without inclination for one minute. Each test
was repeated three times, i.e., for three trials each.

Nine markers were attached to the right lower limb and pelvis of the subject: three
markers to the foot, two markers to the ankle, two markers to the knee, and two markers
to the pelvis. The positions of the joints were estimated by averaging the two marker
positions of the joints (see Figure 2b). The reference data for comparison were collected
in the same way as in the previous test without the pedestrian test. The camera setting
was also the same as the setting 1 of the previous test where cameras were evenly placed
around the treadmill.

3. Results

Table 1 shows the estimation results of the TTD for the tests without pedestrian
walking, in terms of averages and standard deviations for five trials. Table 1a shows the
results of setting 1. In this setting, the error increased when the speed was increased.
However, the TTD error rate remained almost constant regardless of the speed, i.e., 0.19%
on average. In Table 1b, which is based on setting 2, although the magnitude of the
error rate increased compared with that in setting 1, the error rate tended to be constant
regardless of speed, i.e., 1.01% on average. Therefore, the proposed T2OG mapping method
shows consistent performance for different treadmill speeds. Comparing a and b in Table 1,
the TTD error rate increased by approximately 0.82% as the camera setting was changed
from setting 1 to setting 2. Therefore, a proper camera setting is required to ensure the
estimation accuracy. The error rates from the linear scale were 0.16 ± 0.004% for setting 1
and 0.91 ± 0.003% for setting 2. The error rate increased by approximately 0.76% as the
camera setting was changed from setting 1 to setting 2. This shows that the TTD error rates
shown in Tables 1 and 2 are close to the error rates from the linear scale. Consequently, it
can be said that most of the errors in the T2OG mapping are caused by an accumulation of
the errors from the MoCap system.

Table 1. Total travel displacement (TTD) errors of the tests without pedestrian walking
(mean ± standard deviation).

Speed Reference Error Error Rate

(a) Camera setting 1

2 km/h 18,080.3 cm 36.2 ± 0.5 cm 0.20 ± 0.003%
4 km/h 36,239.7 cm 66.0 ± 0.3 cm 0.18 ± 0.001%
6 km/h 54,412.0 cm 101.2 ± 0.5 cm 0.19 ± 0.001%

(b) Camera setting 2

2 km/h 18,080.0 cm 183.2 ± 1.0 cm 1.01 ± 0.005%
4 km/h 36,238.1 cm 365.2 ± 1.47 cm 1.01 ± 0.004%
6 km/h 54,417.9 cm 542.1 ± 2.47 cm 1.00 ± 0.005%
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Table 2. TTD errors of the tests with pedestrian walking (unit: cm).

(a) Constant-speed walking without inclination

Trial 1 Trial 2 Trial 3 Average

Reference 35,198.7 35,177.7 35,179.6 -
Proposed 35,311.4 35,287.5 35,293.0 -

Error 112.7 109.8 113.4 111.9
Error rate 0.32% 0.31% 0.32% 0.32%

(b) Variable-speed walking with various inclinations

Trial 4 Trial 5 Trial 6 Average

Reference 54,596.4 54,582.1 54,548.0 -
Proposed 54,763.4 54,749.8 54,715.2 -

Error 169.8 167.0 167.7 167.3
Error rate 0.31% 0.31% 0.31% 0.31%

Table 2 shows the TTD estimation results for the tests with pedestrian walking.
Table 2a, which presents the results of the constant-speed walking test, shows an error rate
of 0.32%, which is higher than the error rate of 0.18% for the test without pedestrian walking
at 4 km/h. The error rate from the linear scale of the walking test was 0.28%, which shows
only a difference of 0.04% from the TTD error rate. Note that the camera setting has not been
changed between the two tests but the MoCap system calibration has been renewed for
each test. Therefore, it can be concluded that the estimation accuracy of belt displacement
was not significantly affected by pedestrian walking. Instead, a slight difference caused
by the calibration process resulted in an increase in the error rate. Table 2b shows the belt
TTD estimation results for walking tests under various conditions. The constant-speed and
variable-speed walking tests have the same camera arrangement and initial calibration.
Consequently, the average TTD error rates of the two tests showed a difference of only
0.01%. The proposed T2OG mapping method shows consistent performance regardless of
the walking conditions.

Figure 5 is the mapping result of Trial 3 with the constant-speed walking test as an
example. Figure 5a shows the x-axis (heading direction) and z-axis (vertical direction)
trajectory mapping results of the ankle marker over time, and Figure 5b shows the marker
trajectories on the x–z plane before and after the overground mapping during the time range
of 150–153 s. The marker trajectories before the mapping show repetitive movements within
the range of 0.8 m and the pelvis marker shows little movement. After the mapping, as the
marker trajectories spread to the overground, the stance and swing phases during walking
can be observed. Note that Figure 5b is Figure 1a. It is obvious that direct comparison of
Figure 5b which is the MoCap trajectory before the mapping and Figure 1b which is the
IMU-based trajectory is not possible. Instead, Figure 1b can be compared with Figure 5c
which is the MoCap trajectory after the mapping, to evaluate the accuracy of IMU-based
trajectory estimation.
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Figure 5. Mapping results from Trial 3 of the constant-speed test without inclination: (a) shows the x- and z-axes ankle
marker trajectories with respect to time, (b,c) show marker trajectories on the sagittal plane before and after the mapping,
respectively (t = 150–153 s).

Figure 6 is the mapping result of Trial 6 with the variable-speed walking test with
various inclinations as an example. Figure 6a shows the x- and z-axes trajectory mapping
results of the ankle marker over time, and Figure 6b,c show the marker trajectories on
the x–z plane after the overground mapping, for 1 km/h without inclination and for
4 km/h with inclination, respectively. Comparing the walking at 4 km/h with and without
inclination, the gradient of the z-position increases rapidly during the inclined period. In
the enlarged graph of the time range of 490–500 s, the z-axis displacement occurs only in
the swing phase.
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4. Discussion and Conclusions

This paper presented the T2OG mapping method of optical marker trajectories for
continuous gait analysis by adopting the simple concept of virtual origin as follows. As
the treadmill belt moves backward, the position of the virtual origin attached onto the
belt moves backward. The position vector from the backward moving virtual origin to a
targeted marker within a limited walking volume is the same as the position vector from
the fixed origin to the forward moving marker over the ground. After the T2OG mapping,
the marker trajectory during the treadmill walking on a track belt rotating in an infinite
orbit is not confined to a limited treadmill walking volume but extends on an unfolded
belt, which can be considered the overground.

As mentioned earlier, the IMU-based trajectory data do not stay in the treadmill-
located limited space even if the data measurements are performed on a treadmill. Instead,
the IMU-based treadmill walking data proceed forward like the overground walking data.
Accordingly, direct comparison of IMU-based trajectory and MoCap-based trajectory is
not possible without the mapping process. This necessity is our particular interest as we
are working on IMU-based wearable gait tracking systems, for which accuracy should be
verified using the MoCap measurement. To our knowledge, nevertheless, research on this
has not been conducted yet. Considering the wide applicability and popularity of the IMU
as a wearable motion sensor, the proposed method is highly valuable in that it provides an
accurate reference for the treadmill-based gait analysis with IMU signals.

As a proof-of-concept study, only one subject performed the pedestrian walking test
and the meaning of the figures in the validation results may be limited. Further validations
using multiple subjects are warranted to generalize the proposed methodology. However,
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this study demonstrated the feasibility of the T2OG mapping of marker trajectory for
treadmill-based continuous gait analysis.

The accuracy of the proposed method was verified from various treadmill walking
tests, which showed the TTD error rate of 0.32% on average. Note that most of the errors in
the T2OG mapping are caused by an accumulation of the very small errors from the MoCap
system, by considering that the TTD error rates shown in Tables 1 and 2 are close to the
error rates from the linear scale. The proposed method estimates the displacement of the
track belt by continuously integrating the marker displacement in the same section of the
marker chain. Therefore, if there is a tiny measurement error in the marker position from
the MoCap system, the tiny error is continuously accumulated in the estimated track belt
displacement. Moreover, as the travel distance increases, the effect of MoCap calibration
on the mapping accuracy becomes larger. In this regard, when using the proposed method,
it is necessary to pay careful attention to the calibration to minimize estimation errors.
While the proposed method provides a gold standard reference based on the MoCap-based
trajectory data for the accuracy evaluation of the IMU-based trajectory data, securing a
reference to verify the accuracy of the proposed method is a separate task. Further research
is needed in this issue.

With the proposed method, it is possible (i) to observe the change in physical quantity
visually during the treadmill walking and (ii) to obtain overground-mapped gait data for
evaluating the accuracy of the IMU-based trajectory estimation. Furthermore, the proposed
method can be linked to various potential applications for Industry 4.0 and rehabilitation
robotics by improving the dynamics of human-robot collaboration [39–44]. For example,
using the proposed approach, the collaborating robot working as a rehabilitation robot
in the area of physiotherapy will be able to better track the day-to-day and real-time
progress of a stroke patient practicing to walk again by walking on a treadmill during the
rehabilitation phase.
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