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Abstract: The conventional sound source localization systems require the significant complexity
because of multiple synchronized analog-to-digital conversion channels as well as the scalable algo-
rithms. This paper proposes a single-channel sound localization system for transport with multiple
receivers. The individual receivers are connected by the single analog microphone network which
provides the superimposed signal over simple connectivity based on asynchronized analog circuit.
The proposed system consists of two computational stages as homomorphic deconvolution and
machine learning stage. A previous study has verified the performance of time-of-flight estimation
by utilizing the non-parametric and parametric homomorphic deconvolution algorithms. This paper
employs the linear regression with supervised learning for angle-of-arrival prediction. Among the cir-
cular configurations of receiver positions, the optimal location is selected for three-receiver structure
based on the extensive simulations. The non-parametric method presents the consistent performance
and Yule–Walker parametric algorithm indicates the least accuracy. The Steiglitz–McBride parametric
algorithm delivers the best predictions with reduced model order as well as other parameter values.
The experiments in the anechoic chamber demonstrate the accurate predictions in proper ensemble
length and model order.

Keywords: linear regression; sound source localization; single channel; time of flight; angle of
arrival; homomorphic deconvolution; cepstrum; machine learning; Yule–Walker; Prony; Steiglitz–
McBride; vehicle

1. Introduction

The signal propagation over the airborne space contains the spatial information of de-
livery. The sound source localization (SSL) system interprets the received signal to estimate
the angle of arrival (AoA) for the signal source. Understanding the spatial information
usually requires the extensive processing over the multi-channel signals. The dominant
methods utilize the phase differences between the receivers for beamforming [1,2] which
can be employed for various applications such as underwater warfare systems. Along
with processing power, the number of receivers determines the beamforming performance
equivalent to the AoA estimation resolution. The beamforming limitations are confronted
with the biomimetics methods. Certain animals including humans can precisely local-
ize sound sources in three-dimensional (3D) space by using the binaural correlation and
structure profile [3]. Numerous monaural [4] and binaural [5] sound localization systems
have been suggested to mimic the human-like hearing system. Recently, researchers are
performing studies to comprehend the propagation on the practical structure with single
or dual receivers for precise and feasible SSL systems [6–14].

The acoustic information can be used for improving the safety of future autonomous
transport systems. The acoustic reception with a single channel can classify the sound
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source to identify the obstacles and hazards. Beyond the identification, the SSL system
provides the further information on the sound source in conjunction with a vision system.
The sound propagates the information over the non-line-of-sight (NLOS) locations via
diffraction property; hence, the system safety is significantly enhanced by the sound
identification and localization on the extended ranges and directions. The system may
recognize the direct or indirect endangerment to activate the pre-emptive safety devices
which reduce or remove the impact of the imminent collisions. Therefore, the sound is
the complementary to vision for navigating mobile objects. This paper extends the SSL
methods toward the novel, feasible, and deployable structure to realize them on mobile
systems such as vehicles, robots, etc. Observe that the intricate shape of the mobile system
produces the complex propagation pathway which requires the complex mathematical
model in the SSL algorithms. The proposed SSL system should contain the high scalability
and low complexity to meet the objective. The goal of this paper is that the SSL designer
can place the receivers on anywhere in the installation system without concern about the
hardware and algorithm complexity for optimal performance.

The SSL system for mobile vehicle requires the additional hardware and algorithm
complexity compared to the simple sound classifier. The beamforming, monaural, and
binaural approach can be used for the SSL system. Note that the arrival level- and time-
based methods are not considered for SSL system due to the substantial performance
limitations. The beamforming for SSL system provides the accurate localization once the
acoustic propagation model is precisely built [2]. The localization resolution is proportional
to the receiver number; therefore, the decent number of microphones demonstrate the
pinpoint accuracy for AoA finding. In contrast, the beamforming method requires the
significant computational power to realize the algorithm with numerous receivers [15].
The non-flat surface of the SSL system creates the extra difficulty to derive the sound
propagation model which is the essential components for beamforming realization. The
system-wide synchronized sampling of individual signal is necessary to employ the phase
information between the receivers. Occasionally, the synchronized sampling causes the
realization problem for distributed system in centralized beamforming processing [16].

The monaural and binaural SSL system utilizes the inter-aural level and time differ-
ences with frequency variation induced by receiver structure [4,17]. The structure related
transfer function generates the variety variation on magnitude, time, and frequency of
received signals. The isotropic single or dual receiver without the structure cannot imple-
ment the monaural or binaural SSL system due to the absence of variation over the AoA.
The head and pinna shape can be adopted as the structure for the SSL system [18,19]. The
precise transfer function for the structure exceeds the conventional SSL performance via
using the structure produced information [3]. The low number of receivers present the
low-profile SSL system as well. However, the structure for the monaural and binaural
SSL system may provide the installation limitations on aerodynamic or artistic figure. The
placement of the SSL system requires the transfer function analysis again due to the mutual
relation by attachment. No explicit parameters are observed for performance scalability
in the monaural and binaural SSL system which is not suitable for the super-resolution
localization. Numerous research articles [6–14] have proposed the improvement methods
for a monaural and binaural SSL system by employing the novel algorithm and combining
approach; however, the scalability is barely observed without the saturation.

This paper proposes the single analog-to-digital converter (ADC) channel SSL system
for transport with multiple receivers. The proposed SSL system does not involve any
physical structure for localization and the in-situ receivers are placed within the target
system. The individual receivers are connected by the analog microphone network which
provides the simple communication and connectivity based on asynchronized analog
adder circuit [20]. On the microphone network bus, the various time delay data on the
mixed signal represents the time of flight (ToF) between microphones. The homomorphic
deconvolution (HD) algorithm estimates the implicit ToF distribution based on the homo-
morphic system. The HD algorithm can produce the output in terms of non-parametric
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and parametric configurations for the feature extraction which is used for machine learning
to derive the AoA. The distribution of the non-parametric method as well as coefficients
of the parametric model are important clues to compute AoA information. The proposed
vehicle SSL system is extensive to present the complete proposition in single article. Hence,
the previous paper [21] demonstrated the ToF estimation for two microphones with non-
parametric and parametric HD algorithms. Observe that Figure 1 is parallel to the previous
article illustration except the receiver number and machine learning stage. This article
describes the SSL system with machine learning based on the findings in previous paper.
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The proposed single-channel multiple-receiver (SCMR) SSL system consists of two
computational stages as homomorphic deconvolution and machine learning stage indi-
cated in Figure 1. The previous paper verified the performance of ToF estimation by
utilizing the non-parametric and parametric HD algorithms [21]. The machine learning
trains the algorithm to recognize the AoA from the output of HD algorithms. This paper
employs the linear regression with supervised learning for AoA prediction. The SCMR SSL
system demonstrates the consistent computational requirement for any problem size in
terms of receiver number. The single channel HD computation shows the constant compu-
tational burden for any receiver configuration. The extracted features (in non-parametric or
parametric distribution) from HD are delivered to the linear regression which establish the
uniform computational order for fixed regression degree. Once the receiver configuration
presents the proper ToF between microphones to distinguish the AoA distribution, the
linear regression estimates the arrival angle accurately with constant computational require-
ment. The surface and numerical profile of receiver installation hardly affect the SCMR SSL
performance when the linear regression is trained deeply with extensive featured dataset.
The mathematical model of the sound propagation is not mandatory for SCMR SSL system
for 2D or 3D surface, and extensive or reduced number of receivers. However, the dense
and considerable dataset should follow the massive computational power for learning
process in linear regression.

Recently numerous investigations have been conducted for SSL systems with ma-
chine/deep learning and are organized as below. Sun et al. [23] suggests the indoor SSL
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system based on the generalized cross correlation feature and probabilistic neural network
to tolerate the high reverberation and low signal-to-noise ratio (SNR) situation. The con-
volutional recurrent neural network is developed for joint sound event localization and
detection of multiple overlapping sound events in 3D space from a sequence of consecutive
spectrogram time frames [24]. Ma, Gonzalez, and Brown present the novel binaural sound
localization that combines the model-based information about the spectral characteristics
of sound sources and deep neural networks [25]. In underwater ocean waveguides, the
generalized regression neural network localizes the sound source based on the normalized
sample covariance matrix of input signal [26]. The AoA estimation is performed by the
input inter-channel phase differences from the deep neural network-based phase differ-
ence enhancement [27]. In the mismatched head-related transfer function condition, the
data-efficient and clustering method based on deep neural network is provided to improve
binaural localization performance [28].

This paper accomplishes the goals proposed by the authors’ previous SSL publications.
The ToFs between microphones were estimated by non-parametric and parametric homo-
morphic deconvolutions which are served as the fundamental ground for this paper [21].
The asymmetric horizontal pyramidal horns were organized for the far-field monaural
SSL system by utilizing cepstral parameters induced by fundamental frequencies [13]. The
asymmetric vertical cylindrical pipes around a single microphone realized the small-profile
near-field monaural SSL system [12]. To be estimated by homomorphic deconvolution, the
direction-wise time delays from the multiple plate structure were designed for the reflec-
tive monaural SSL system [11]. The binaural system detected the azimuthal movement
of the sound source [10] and the low-power acoustic sensor network localized the target
in the distributed field [29] as the efforts for the SSL subject by the authors. Observe that
the identical anechoic chamber [30] has been operated for the acoustic experiments and
evaluations of the prior works.

2. Non-Parametric and Parametric Homomorphic Deconvolution

This section is provided by editing and modifying the previous paper [21] to improve
readability of the overall presentation. For further information, the readers are recom-
mended to pursue the article for discovering the detail description on non-parametric and
parameter HD. In the paper, the HD utilizes the homomorphic systems in cascade to derive
the propagation function which represents ToFs between the receivers. The real cepstrum
of the received signal as the geometric series form realizes the forward conversion of the
homomorphic system. The robust method to extract the propagation function from the
received signal is delivered by the distinct geometric series rates in cepstrum domain. The
actual separation in the cepstrum domain is performed by the simple window known
as frequency-invariant linear filtering (FILF). Finally, the propagation function for ToF is
derived by the backward conversion of the homomorphic system in inverse cepstrum. For
non-parametric estimation, the discrete Fourier transform (DFT) or fast Fourier transform
(FFT) is extensively used for the real cepstrum. The propagation function model imple-
ments the parametric ToF estimation in last stage of HD via applying Yule–Walker [31,32],
Prony [32,33], and Steiglitz–McBride [32,34]. Observe that the parametric method calculates
model coefficients and the non-parametric technique generates the numerical distribution.
Figure 2 illustrates the overall computational procedure for non-parametric and parametric
HD algorithm.
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Figure 2. Computational procedure for parametric and non-parametric homomorphic deconvolution.

Figure 3 demonstrates the estimation procedure for two receivers with numerical exam-
ples. Both microphones receive the signal x[n] with dTs time difference. The corresponding
propagation function h[n] is represented by δ[n] + αδ[n− d] with sampling period Ts, Kro-
necker delta function δ[n], and attenuation rate α. The received signal y[n] is the convolution
sum as x[n] ∗ h[n]. The first FFT (stage 1©in Figure 2) and IFFT (stage 3©) pair with absolute
logarithm (stage 2©) presents the real cepstrum cy[n] to divide the signal and propagation
distribution. Figure 3a shows the numerical example of forward conversion with marked
areas for contributions. The window function w[n] extracts the propagation function. The
other FFT (stage 5©) and IFFT (stage 7©) pair with exponential function (stage 6©) reestablishes
and estimates the non-parametric propagation impulse response h̃[n]. Figure 3b presents
the example for windowed cy[n] in upper and derived h̃[n] in lower. The original h[n] is
δ[n]− 0.8δ[n− 30] which is identical to the estimated h[n] as h̃[n].
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The regressive model is utilized for the parametric estimation to define the peaky
distribution in propagation function h[n]. The Yule–Walker, Prony, and Steiglitz–McBride
method are devised to provide the signal spectral property. The conventional regressive
signal models in time and z domain are below.

y[n] + a1y[n− 1] + · · ·+ aNy[n− N] = b0x[n] + b1x[n− 1] + · · ·+ bMx[n−M] (1)

H(z) =
b0 + b1z−1 + · · ·+ bMz−M

1 + a1z−1 + · · ·+ aNz−N (2)
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The Yule–Walker algorithm estimates the model parameters below to describe the
propagation function h[n] of a given time signal.

{ã1, ã2 . . . , ãN} ∈ C and b0 = σ̃2, b1 = b2 = · · · = bM = 0

The Prony and Steiglitz–McBride algorithm computes the model coefficients below to
represent h[n]. {

ã1, . . . , ãN , b̃0, . . . , b̃M

}
∈ C

The last computational stage ( 7© in Figure 2) of the non-parametric and parametric
HD algorithms performs the inverse transformation from frequency to time domain. The
Yule–Walker, Prony, and Steiglitz–McBride algorithms are originally devised for forward
transformation from time to frequency domain. The conjugated frequency domain distribu-
tion to the Yule–Walker, Prony, and Steiglitz–McBride algorithms generate the conjugated
parameters for estimation according to Equation (3). X[k] and x[n] is the frequency and
time domain data, respectively with FFT in L length.

(x[n])∗ =
1
L

FFTL
(
X[k]∗

)
= (IFFTL(X[k]))∗ (3)

Between the microphones, the likelihood of ToF information is produced by the
numerical distribution of non-parametric HD. Hence, the time positions standing for the
maximum values specify the propagation function estimation. The last inverse Fourier
transform ( 7© in Figure 2) of non-parametric HD is replaced for the parametric methods
by Yule–Walker, Prony, and Steiglitz–McBride. The ToF positions by maximum values
from following regressive model is properly indicated by the derived complex number
coefficients for the parametric method.∣∣∣h̃[n]∣∣∣2 =

∣∣∣b̃0 + b̃1e−j 2π
L n + · · ·+ b̃Me−jM 2π

L n
∣∣∣2∣∣∣1 + ã1e−j 2π

L n + · · ·+ ãNe−jN 2π
L n
∣∣∣2
{

ã1, . . . , ãN , b̃0, . . . , b̃M

}
∈ C; 0 ≤ n ≤ L− 1 (4)

The simulations for various SNR and ensemble average length (after logarithm stage
in 2©) present statistical performance outcomes [21]. The Steiglitz–McBride and non-
parametric HD method demonstrate the consistent distribution with low variance and bias
in general. The Prony and Yule–Walker methods are subject to the simulation conditions.
In both methods, the better statistical performance is produced by the high SNR and long
ensemble length overall. The experiments in anechoic chamber similarly provides the
equivalent outcomes as the simulation. In the Steiglitz–McBride and non-parametric HD
method, near zero bias and variance are shown for the increased ensemble length. The
Prony and Yule–Walker method illustrate the performance enhancement in terms of bias
and variance for longer ensemble length situations. The FILF window w[n] is determined to
remove the 25 sample (18 cm in equivalence) underneath with maximum phase realization
in the experiments. Figure 4 indicates the normalized

∣∣∣h̃[n]∣∣∣ with 100 ensemble average
length and 60 cm distance situations for non-parametric and parametric HD algorithms.



Sensors 2021, 21, 760 7 of 24Sensors 2021, 21, x FOR PEER REVIEW 7 of 24 
 

 

  

(a) (b) 

Figure 4. Estimated �ℎ�[�]� distribution (normalized) with 100 ensemble average length for 60 cm between microphones: 

(a) magnitude distribution; (b) decibel distribution in upper and magnified decibel distribution in lower. ℎ�[�] is repre-

sented by ~ℎ[�]. 

3. Methodology 

The SCMR SSL system is realized by the derived the propagation function from non-

parametric and parametric HD algorithm. The incident arrival angle determines the ToF 

distribution for propagation function based on the receiver configuration. To estimate the 

AoA, the propagation function is properly organized for linear regression. The linear re-

gression generates the predicted output based on the learning process which provides the 

optimal coefficients from least square procedure. The non-parametric and parametric HD 

algorithms deliver the unique numerical distribution for propagation function; hence, the 

proper feature extraction is required for linear regression processing. The following sub-

sections show the feature extraction for data preprocessing and linear regression toward 

machine learning.  

3.1. Feature Extraction 

The linear regression is classified as the supervised learning which involves the la-

beled examples for optimal coefficients. The regression problem is answered by a regres-

sion learning algorithm that investigates a collection of labeled examples. Subsequently, 

the model with optimal coefficients take an unlabeled example for prediction. The feature 

and label are prepared as below:  

{(��,��)}���
�  where �� ∈ ℝ�×�,�� ∈ ℝ (5)

For the L dataset, the bold lower case indicates the vector and the lower case represents 

the scalar. The subscript presents the i-th dataset. The feature vector xi corresponds to the 

label yi. The individual vector xi is arranged as below. 

�� = ���
(�)

 ��
(�)

… ��
(���)

 ��
(�)

�
�
 (6)

The superscript number n with parenthesis denotes the n-th feature in the vector. Note 

that there are M features in the vector. 

��[�] = ��[�] ∗ ℎ�[�] (7)

The input yi[n] to the HD algorithm is the convolution sum (denoted by ∗) between 

sound source signal xi[n] and propagation function hi[n] as shown above for i-th iteration. 

Note that the sound source xi[n] and feature vector xi are individual and independent label 

each other. The HD algorithm described in Equation (8) specifies the procedure up to ○5  

stage in Figure 2. 

Figure 4. Estimated
∣∣∣h̃[n]∣∣∣ distribution (normalized) with 100 ensemble average length for 60 cm between microphones:

(a) magnitude distribution; (b) decibel distribution in upper and magnified decibel distribution in lower. h̃[n] is represented
by ∼ h[n].

3. Methodology

The SCMR SSL system is realized by the derived the propagation function from non-
parametric and parametric HD algorithm. The incident arrival angle determines the ToF
distribution for propagation function based on the receiver configuration. To estimate
the AoA, the propagation function is properly organized for linear regression. The linear
regression generates the predicted output based on the learning process which provides
the optimal coefficients from least square procedure. The non-parametric and parametric
HD algorithms deliver the unique numerical distribution for propagation function; hence,
the proper feature extraction is required for linear regression processing. The following
subsections show the feature extraction for data preprocessing and linear regression toward
machine learning.

3.1. Feature Extraction

The linear regression is classified as the supervised learning which involves the labeled
examples for optimal coefficients. The regression problem is answered by a regression
learning algorithm that investigates a collection of labeled examples. Subsequently, the
model with optimal coefficients take an unlabeled example for prediction. The feature and
label are prepared as below:

{(xi, yi)}L
i=1 where xi ∈ RM×1, yi ∈ R (5)

For the L dataset, the bold lower case indicates the vector and the lower case represents
the scalar. The subscript presents the i-th dataset. The feature vector xi corresponds to the
label yi. The individual vector xi is arranged as below.

xi =
[

x(1)i x(2)i . . . x(M−1)
i x(M)

i

]T
(6)

The superscript number n with parenthesis denotes the n-th feature in the vector. Note
that there are M features in the vector.

yi[n] = xi[n] ∗ hi[n] (7)

The input yi[n] to the HD algorithm is the convolution sum (denoted by ∗) between
sound source signal xi[n] and propagation function hi[n] as shown above for i-th iteration.
Note that the sound source xi[n] and feature vector xi are individual and independent label
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each other. The HD algorithm described in Equation (8) specifies the procedure up to 5©
stage in Figure 2.

Ĥ[k] =
N−1

∑
n=0

((
1
N

N−1

∑
k=0

1
E

E

∑
i=0

(
log

∣∣∣∣∣N−1

∑
n=0

yi[n]e−j 2π
N kn

∣∣∣∣∣
)

ej 2π
N kn

)
w[n]

)
e−j 2π

N kn (8)

After the Ĥ[k] computation in HD algorithm, exponential ( 6© stage) and final Fourier
transform ( 7© stage) are necessary to complete non-parametric HD calculation. Below
equation provides the final steps for the non-parametric HD algorithm.

h̆[n] =
1
N

N−1

∑
k=0

eĤ[k]ej 2π
N kn (9)

The non-parametric HD is normalized and bisected as below for feature extraction.
Observe that first half of the non-parametric HD delivers the propagation function due to
the symmetricity of Fourier transform.

h̃[n] =

∣∣∣h̆[n]∣∣∣
max

∣∣∣h̆[n]∣∣∣ for 0 ≤ n ≤ N
2

(10)

A certain range of the HD distribution presents the propagation function based on the
ToF over the receiver configuration. The lower bound initiates from the window function
w[n] as W value. The window function removes the sound source signal xi[n] by using the
weight function in frequency-invariant filtering in HD 4© stage of Figure 2. Additionally,
the non-parametric HD h̃[n] is zero in W below. Note that w[n] is non-zero from W + 1 time
index as shown in Figure 3a.

The nmax is the maximum time delay caused by the receiver configuration. Once the d
is the maximum distance between receivers, the nmax can be calculated by round(d fs/c ),
where fs is sampling frequency and c is sound speed.

x(l)i = h̃[l + W] 1 ≤ l ≤ nmax −W (11)

Equation (11) represents the extraction in h̃[n] from W + 1 to nmax for features as x(l)i .
Figure 5 demonstrates the direct feature extraction for non-parametric HD. In left figure, the
normalized non-parametric HD distribution is illustrated with range indicator (purple
vertical lines) which presents the span from W + 1 to nmax. On right figure, the extracted
feature vector is pictorialized by stem plot. Note that the highlighted values on both figures
indicate the identical position and value.
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Figure 5. Feature extraction for non-parametric HD by direct feature extraction: (a) non-parametric homomorphic decon-
volutions (HD) distribution with range indicators (two purple lines) for the feature; (b) the extracted feature vector for
non-parametric HD. The highlighted values indicate the identical position for the HD value and feature value, respectively.
The x value is shifted due to the W value in window function.

The parametric HD provides the coefficient values for the signal model based on the
Z-transform as shown in Equation (2). The direct feature extraction, which is applied to the
non-parametric HD feature, cannot be employed for parametric HD because of numerical
inaccessibility for HD distribution. According to the relationship between Z-transform
and Fourier transform, the unit circle in z domain should correspond to the feature vector
for linear regression. The radial projection presents the implicit non-linear transform to
convert the coefficients for the HD distribution. Equation (12) is the derived coefficients
from parametric HD algorithms. Note that the Yule–Walker method only computes the
denominator coefficients ai since the autoregressive model is utilized.{

ã1, . . . , ãP, b̃0, . . . , b̃Q

}
= ParametricHD

((
eĤ[k]

)∗) {
ã1, . . . , ãP, b̃0, . . . , b̃Q

}
∈ C (12)

The poles of the model are the dominant components to create the peaky response in
HD distribution; therefore, the poles are computed and considered as below. Note that the
solution of following polynomial represents the poles of the given regressive model.

1 + ã1z−1 + ã2z−2 + . . . + ãPz−P =
(

1− µ1z−1
)(

1− µ2z−1
)

. . .
(

1− µPz−1
)

(13)

The individual pole consists of magnitude and phase as below.

µu = ruejθu for 1 ≤ u ≤ P j =
√
−1 (14)

The phase in z domain corresponds to the time delay in HD distribution. Hence,
the range of the θu is employed for radial projection. Similar to the non-parametric HD,
the lower bound initiates from the window function w[n] as W value and the nmax is
the maximum time delay caused by the receiver configuration. Equation (15) delivers
the conversion from the pole phase to the time delay and the pole magnitude to the
feature value.

l = round
(

θu

∆

)
+ 1→ x(l)i = ru only for ∆W ≤ θu ≤ ∆nmax where ∆ =

2π

N
, l ∈ N (15)

The circular resolution ∆ indicates the radian distance for the time delay and denotes
the radian per sample. The radian range for propagation function is given as above based
on the receiver configuration. The poles within the range are involved for the radial
projection which assigns the corresponding magnitude on the specific time delay. The
temporal location is calculated by dividing the radian value with the resolution ∆. Observe
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that the time delay should be rounded to the nearest natural number. Overall, the radial
projection matches the unit circle arc in z domain with HD distribution for feature extraction.
Except the pole locations, the numbers in the feature vector are zeros. Due to the limited
order in parametric method, the sparse numerical distribution is expected in feature vector.
Note that the feature vector for the non-parametric HD provides the values most likely
non-zeros because of direct feature extraction.

Figure 6 shows the feature extraction for the Yule–Walker parametric HD by radial
projection. The pole-zero plot presents the poles and zeros for the order 10 Yule–Walker
algorithm model. Observe that the complex number input eĤ[k] to the parametric method
provides the non-symmetric distribution of pole and zero locations. The arc in the pole-
zero plot specifies the range for the radial projection. The feature vector in right figure
demonstrates the two poles in the range arc. Other than the poles, the values in the
feature vector are zeros. The size of feature vector for non-parametric and parametric HD
algorithms are identical. The complexity of the extractions is also comparable since one is
direct mapping and the other is circular assigning.
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Figure 6. Feature extraction for parametric HD by radial projection. (a) Yule–Walker HD (order 10) pole-zero plot
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indicate the identical positions for Yule–Walker HD pole values and feature values, respectively. The x value is derived by
circular resolution.

3.2. Linear Regression

The linear regression [35] predicts the output based on the linear combination of
features. The individual feature with coefficient is cumulated for output estimation close to
the label for the feature vector. The linearity in the regression model indicates the linearity
in terms of coefficients; therefore, the higher order feature polynomial can be used for the
regression. The SSL system employs the linear regression model contains an intercept,
linear terms, and pair products of distinct features as below.

yi = c0 + c1x(1)i + c2x(2)i + · · ·+ cMx(M)
i + cM+1x(1)i x(2)i + cM+2x(1)i x(3)i + · · ·+ cRx(M−1)

i x(M)
i + εi (16)

Note that the εi is the error or residual between the label and estimation. The regression
length except intercept is calculated by adding the feature length M with its combination
to take two terms as below.

R = M +

(
M
2

)
= M +

M!
(M− 2)!2!

(17)

For L dataset, the linear regression in matrix form is shown as below.
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
y1
y1
...

yL

 =


1 x(1)1 · · · x(M)

1

1 x(1)2 · · · x(M)
2

...
...

. . .
...

1 x(1)L · · · x(M)
L

x(1)1 x(2)1 · · · x(M−1)
1 x(M)

1

x(1)2 x(2)2 · · · x(M−1)
2 x(M)

2
...

. . .
...

x(1)L x(2)L · · · x(M−1)
L x(M)

L





c0
c1
...

cM
cM+1

...
cR


+


ε1
ε2
...

εL

 (18)

The short representation is presented with proper alphabets as below. Observe that
the bold upper case denotes the matrix.

y = Xc + ε where y ∈ RL×1, X ∈ RL×(R+1), c ∈ R(R+1)×1, ε ∈ RL×1 (19)

The solution of the matrix algebra above can be derived by minimizing the sum of
squared residuals. Equivalently, the solution can be introduced from the normal equa-
tion [36] which multiply the XT for each side front of the above equation. Below is the
solution known as the least square solution.

c =
(

XTX
)−1

XTy (20)

In general, the normal equation for least square solution presents the low numerical
stability because of high condition number for XTX. The low stability signifies the high
sensitivity to the matrix perturbations in numerical computation. In order to improve the
stability, the QR decomposition can be used for the least square solution [37]. The QR
decomposition divides the X into a product of QR of an orthogonal matrix Q and an upper
triangular matrix R as below.

X = QR where Q ∈ RL×(R+1), R ∈ R(R+1)×(R+1) (21)

According to the orthonormal property, matrix QTQ is equivalent to the identity
matrix I. The matrix R inversion is existed as long as all diagonal elements of the R is
not zero. The previous least square solution can be written as below by using the QR
decomposition.

c =
(

XTX
)−1

XTy =
(

RTQTQR
)−1

RTQTy = R−1
(

RT
)−1

RTQTy for det(R) =
R+1

∏
k=1

rkk 6= 0 (22)

The least square solution based on the QR decomposition is simplified as below.

Rc = QTy (23)

Due to the R matrix property, upper triangular matrix, the solution to find the c vector
can be quickly solved by back substitution. Various QR decomposition algorithms are
available for unique complexities and stabilities [38–40].

4. Simulations

Prior to discuss the SCMR SSL system simulation, the overall algorithmic procedures
are required to summarize for fluent readability. The sound source is propagated over
the medium with multiple arrivals on single-channel multiple-receiver configuration. The
AoA determines the time delays between the arrivals and establishes the corresponding
propagation function h[n]. The HD algorithms decompose the received signal y[n] for h[n]
by non-parametric and parametric methods. The features for the linear regression are pre-
pared with direct feature extraction (non-parametric HD) and radial projection (parametric
HD). Using the labeled datasets, the linear regression based on the QR decomposition
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performs the least square solution for optimal coefficients to predict the AoA. The linear
regression provides the accurate estimations for unlabeled received signal y[n].

The first step in simulation is to decide the receiver locations for the proposed SSL
system. Note that the SSL system understands the datasets for prediction by calculating
the coefficients of the linear model. Unlike the conventional beamforming algorithms [1,2],
the SCMR SSL system does not involve the sophisticated mathematical model to place the
receivers and to derive the direction. However, the optimal placements should be found
by using the brute force method which consists of systematically enumerating all possible
receiver configurations for the least prediction error. The extensive simulation datasets
are necessary for searching the best receiver positions. The SSL system performance is
numerated by root mean square error (RMSE) as below.

RMSE(ŷ) =

√√√√ 1
L

L

∑
i=1

(ŷi − yi)
2 (24)

The yi is the real output (label) of the given input features x(j)
i . The estimated output ŷi

is the output of the linear regression based on the calculated coefficients c̃i in Equation (23).

ŷi = c̃0 + c̃1x(1)i + c̃2x(2)i + · · ·+ c̃Mx(M)
i + c̃M+1x(1)i x(2)i + c̃M+2x(1)i x(3)i + · · ·+ c̃Rx(M−1)

i x(M)
i (25)

The receiver configuration presents the circular fashion in receiver placement. From
the origin, two concentric circles are located with 25 cm and 50 cm diameter, respectively.
The circular angle is divided by 8 directions and individual angular distance between
the adjacent directions is π/4. The receiver grid is the overlap between the concentric
circles and radial directions as shown in Figure 7a which demonstrates the possible receiver
locations as blank circles. Figure 7b exhibits the example of the receiver locations with 3
sensors. The number of selections for placing receivers in the given grid can be calculated
by simple binomial coefficient. For instance, 17 grid points are available in Figure 7 and 3
receivers are accessible the 680 possibilities for the combination.
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Figure 7. Receiver configuration in centimeter. (a) Receiver grid—blank circle indicates the possible receiver locations;
(b) example configuration—filled circle specifies the occupied location with receiver.

With given receiver locations, the arrival times can be computed by direct distance
from the sound source. Additionally, the distance provides the attenuation based on the
inverse square law which describes the magnitude of propagation signal over the distance.
The equation for inverse square law is shown in below.

Lp(ri) = 20 log
[

a
ri − r0

]
(26)
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The Lp(ri) is the sound pressure level in decibels at the distance ri. The terms a and r0
are model parameter for amplitude and distance, correspondingly. The acoustic anechoic
chamber used in the experiments records the signal with various distance to measure
and compute the parameters for precise simulation. The derived values are a = 36.1438
and r0 = 0.0043 cm for the given anechoic chamber [29]. For the sensor configuration,
the inverse square law equation calculates the relative magnitude difference between the
receivers in numerical simulation.

The simulation parameters are presented in Table 1. The input data is generated by
the numbers such as SNR, angle range, sound speed, receiver count, and etc. The non-
parametric and parametric HD are performed by the values for instance ensemble length,
frame length, etc. Some parameters show the certain proportionality over the performance;
however, the purpose of the pilot simulation is to deliver the optimal receiver configuration
by RMSE outcome with fixed parameter values. Further analysis determines the ensemble
length and parametric order based on the optimal receiver configuration.

Table 1. Simulation parameters and values.

Parameter Value Parameter Value

Sampling frequency 48,000 Hz Angle range 0 ∼ π
Frame length 1024 samples Angle resolution π/35 rad (5.1429◦)

Overlap length 768 samples (210–28) Number of angles 36 angles
Ensemble length 50 frames HD window length 5 samples

Iterations 1000 times Max time delay (nmax) 70 samples
SNR 20 dB Sound speed 34,613 cm/sec

Number of receivers 3 Parametric order 10

The RMSE performances for all 680 possible receiver configurations are demonstrated
in Figure 8 with ascending order from left to right. The simulation was performed by the
14 computers with intel i7-7700 processor and DDR4 32GB memory for 25-h execution
time. The MATLAB parallel processing toolbox provides the coarse-grained parallelism
by dividing the for-loop iterations over the multi-core processor. Figure 8b magnifies
the left-bottom corner of Figure 8a to select the optimal configuration. The highlighted
numbers in each HD algorithms represent the particular receiver configuration which
indicates the overall best performance. Note that the x numbers in Figure 8b specify the
performance rank. The chosen configuration shows the 1, 3, 4, and 4 rank in non-parametric,
Steiglitz–McBride, Yule–Walker, and Prony HD, respectively.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 24 
 

 

The RMSE performances for all 680 possible receiver configurations are demon-

strated in Figure 8 with ascending order from left to right. The simulation was performed 

by the 14 computers with intel i7-7700 processor and DDR4 32GB memory for 25-h exe-

cution time. The MATLAB parallel processing toolbox provides the coarse-grained paral-

lelism by dividing the for-loop iterations over the multi-core processor. Figure 8b magni-

fies the left-bottom corner of Figure 8a to select the optimal configuration. The highlighted 

numbers in each HD algorithms represent the particular receiver configuration which in-

dicates the overall best performance. Note that the x numbers in Figure 8b specify the 

performance rank. The chosen configuration shows the 1, 3, 4, and 4 rank in non-paramet-

ric, Steiglitz–McBride, Yule–Walker, and Prony HD, respectively.  

  

(a) (b) 

Figure 8. The root means square error (RMSE) performances for all 680 possible receiver configurations. (a) Ascending 

rank order from left to right; (b) magnifies the left-bottom corner (highlighted numbers represent the particular receiver 

configuration). 

The selected receiver configuration is presented in Figure 9a. The black filled dots 

represent the receiver locations over the potential blank positions. The asymmetricity with 

wide distribution in locations provides the prominent and distinctive arrival time distri-

bution for linear regression. One of the worst performance configurations is depicted in 

Figure 9b. Contrary to the best receiver distribution, the configuration demonstrates the 

symmetricity and tight spreading which delivers the significant ambiguity for linear re-

gression. The higher number of receivers expects the better performance and the three-

receiver configuration is the minimum requirement to predict the half circular angle.  

  

(a) (b) 

Figure 9. Selected receiver configurations: (a) best; (b) worst. 

Figure 8. The root means square error (RMSE) performances for all 680 possible receiver configurations. (a) Ascending
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The selected receiver configuration is presented in Figure 9a. The black filled dots
represent the receiver locations over the potential blank positions. The asymmetricity
with wide distribution in locations provides the prominent and distinctive arrival time
distribution for linear regression. One of the worst performance configurations is depicted
in Figure 9b. Contrary to the best receiver distribution, the configuration demonstrates
the symmetricity and tight spreading which delivers the significant ambiguity for linear
regression. The higher number of receivers expects the better performance and the three-
receiver configuration is the minimum requirement to predict the half circular angle.
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The RMSEs of non-parametric and parametric HD with linear regression (LR) are
illustrated with various ensemble lengths and model orders in Figure 10. The model order
is changed from 1 to 20 in every 1 step and the ensemble length is modified from 20 to 200 in
every 20 interval. Note that the non-parametric HD/LR contains the parameter of ensemble
length only. The order in the non-parametric HD/LR in Figure 10a is dummy variable to
compare with the performance of the other HD/LR algorithms. Additionally, the color
scale for non-parametric HD/LR in Figure 10a indicates the reduced range because of
the high consistent and low variance RMSE distribution. The longer ensemble length
in non-parametric HD/LR presents the daker shade in the RMSE figure on right. The
Yule–Walker HD/LR shows the daker lake and river around the order 11/length 160 and
order 10 ~ order 7, respectively. The Prony HD/LR demonstrates the darker river similar to
the Yule–Walker HD/LR distribution. The Steiglitz–McBride HD/LR displays the darker
district above the order 2 and length 160 boundary. The non-parametric HD/LR and
Steiglitz–McBride HD/LR establish the best overall performance in Figure 10.

The minimum RMSE values for HD/LR algorithms are organized with corresponding
ensemble length and model order in Table 2. In general, the longer ensemble length presents
the improved performance in prediction. The parametric HDs with linear regression do
not demonstrate the performance proportionality in terms of model order due to the
under- and over-determined parameter. The Yule–Walker HD/LR and Prony HD/LR show
the similar performance in order 11 and 6, respectively. The Steiglitz–McBride HD/LR
indicates around 70 times better performance than the other parametric HDs in order 10.
The non-parametric HD/LR RMSE is located between two performance levels. Note that
the worst minimum RMSE in Table 2 is 1.2514 degree.
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Table 2. Minimum RMSE values for HD/LR simulations and corresponding parameters.

Method Non-Parametric Yule–Walker Prony Steiglitz–McBride

Min. RMSE (radian) 2.1620 × 10−3 2.1841 × 10−2 2.0359 × 10−2 2.9541 × 10−4

Ensemble length (Frames) 200 200 180 160
Order Not applicable 11 6 10

The RMSE distributions of Figure 10 are recharted in Figure 11 with the decibel scale.
Observe that all plots in Figure 11 are coded with single color scale. Hence, the RMSE
performances can be sorted as Yule–Walker, Prony, non-parametric, and Steiglitz–McBride
HD/LR in ascending order by examining the color shade. The Yule–Walker HD/LR shows
the sweet spot around the model order 11 and 12 with ensemble length 120 and above. The
Prony HD/LR demonstrates the sweet belt along with model order 6 and 7 for ensemble
length 60 and above. The Steiglitz–McBride HD/LR presents the deeper and narrower
sweet spot in model order 10 and ensemble length 160. As expected, the non-parametric
HD/LR delivers the consistent and proportional performance improvement for longer
ensemble length.
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The simulation above is performed to find the optimal receiver locations for three-
sensor configuration. Among the radial configuration, the asymmetric and wide distribu-
tion is selected over the 680 possibilities. The RMSE is used for evaluation and the error is
defined as the difference between the real and predicted angle. Over the optimal receiver
configuration, the range of model orders and ensemble lengths were placed to calculate
the RMSEs for the non-parametric and parametric HD with linear regression. The RMSE
distributions represent that the longer ensemble length and particular model order provide
the least RMSE value. The Steiglitz–McBride HD/LR shows the best performance and
Yule–Walker HD/LR demonstrates the least accuracy in this simulation.

5. Results

The field experiments are realized and evaluated in an anechoic chamber which is
verified to show the limited conformance with ISO 3745 [41] for the 1 kHz–16 kHz 1/3
octave band in a hemi-free-field mode and for the 250 Hz–16 kHz 1/3 octave band in a
free-field mode [30]. The proposed SCMR SSL methods are evaluated with the free-field
mode which involves entirely covered surfaces for all directions with acoustic pyramids.
The experiment configuration consists of three microphones with given locations and one
speaker with far-field provision. The direction and angle between receivers and transmitter
are guided by the line laser (GLL 3–80 P, Bosch, Gerlingen, Germany) placed above the
sound source speaker. The far-field provision is maintained by keeping one meter the
minimum distance for signal propagation.
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The microphones are located on the frames made of lumbers with plastic connectors.
The structure sustains the microphone height and receiver shape for angular movements.
Observe that the sound source and receiver level should be identical for horizontal propa-
gation. The angle movement for AoA is engaged by the pair of saw-toothed wheels with
engraved and intagliated shape for 10◦ rotation. As shown in Figure 9a, the three receivers
are located on the radial pattern with concentric circles; therefore, the center of the circles
provides the angular movement center which is dedicated for saw-toothed wheel pair.
The overall experiment configuration is illustrated in Figure 12a and the receiver center
is shown in Figure 12b for the angular movement engager. The plastic parts are realized
by the 3D printer (Replicator 2, MakerBot, Brooklyn, NY, USA) from the polylactic acid
(PLA) filament.
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The analog mixer (MX-1020, MPA Tech, Seoul, Korea) connects to the microphones
(C-2, Behringer, Tortola, British Virgin Islands) for single channel signal which is digitized
by the computer-connected audio device (Quad-Capture, Roland, Hamamatsu, Japan).
The speaker (HS80M, Yamaha, Hamamatsu, Japan) is also wired to the audio device to
generate the wideband signal. The real-time audio for generation, reception, and execution
is processed by the MATLAB system object with the audio stream input/output (ASIO)
driver. With 48 kHz sampling rate, the audio is recorded for 20 s in every designated
angles. In order to reduce the interruption by transition conditions, the first and last one
second data is eliminated. Therefore, the distinct angle experiments employ the overall 18
s of recorded data. Each data frame is established by 1024 samples and the new ensemble
average process is begun after the 10 frames later. For data consistency, the rest of the
frames are overlapped with given parameter. The experiment parameters are presented in
the Table 3.
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Table 3. Experiment parameters and values.

Parameter Value Parameter Value

Sampling frequency 48,000 Hz Angle range 0 ∼ π
Frame length 1024 samples Angle resolution π/18 rad (10◦)

Overlap length 768 samples (210–28) Number of angles 19 angles
Ensemble length Variable HD window length 5 samples

Iterations 1000 times Max time delay (nmax) 70 samples
SNR Not applicable Sound speed 34,613 cm/s

Number of receivers 3 Model order Variable

Similar to the simulation results, the RMSEs of non-parametric and parametric HD
with linear regression are demonstrated with ensemble lengths and model orders in
Figure 13. Note that the model order and color scale in the non-parametric HD/LR in
Figure 13a is inconsistent with the other RMSE figures as discussed in simulation section.
Compare to the simulation Figure 10, the RMSE colors are represented by the darker shade
overall which indicates the improved performance in predictions. The longer ensemble
length provides the reduced RMSE in all HD/LR algorithms. Additionally, the higher
model order delivers the better prediction performance in marginal manner because of the
shade gradation in vertical direction. The performance glitches can be observed in order
12 and 9 in Yule–Walker and Prony HD/LR method, respectively. The Steiglitz–McBride
HD/LR shows darkest RMSE shade which is below 0.1 radian for most of area except 20
and 40 frames for ensemble length.
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The RMSE plots are changed to the decibel scale in Figure 14. The consistent and wide
scale is used for non-parametric and parametric HD/LRs. Note that the RMSE approaches
down to the −100 dB in Steiglitz–McBride HD/LR method. The non-parametric HD/LR
presents the coherent and proportional performance enhancement for longer ensemble
length. The Yule–Walker and Prony HD/LR show the similar performance with distinct
areas and patterns for darker shade. Compare to the simulation result in Figure 11, higher
model order produces the lower RMSE overall for Yule–Walker and Prony HD/LR. The
Steiglitz–McBride HD/LR method indicates the extensive area for below −60 dB RMSE
with uneven boundary of ensemble length 80 above and model order 3 higher. The deep
dark shade can be perceived in the low model order as below as 3.
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Table 4 establishes the minimum RMSE values for HD/LR algorithms with corre-
sponding ensemble length and model order. The experiments produce the performance
in terms of minimum RMSE with 2, 9, 40, and 21 times better than the simulation coun-
terparts for Table 2 listing order. Therefore, the non-parametric and Steiglitz–McBride
HD/LR method show 2 and 21 times lower RMSE than the simulation minimum values,
correspondingly. Note that the experiments are performed with identical parameters in-
dicated in simulation specifications except SNR and angle resolution. Overall, the longer
ensemble length delivers the higher prediction performance for all HD/LR algorithms.
The minimum RMSEs are located in the higher model order than the simulation outcomes
for Yule–Walker and Prony HD/LR. The Steiglitz–McBride HD/LR method presents the
best performance in low model order 3 since the Steiglitz–McBride algorithm accurately
describes the propagation function as shown in previous paper [21]. Note that the worst
minimum RMSE in Table 4 is 0.1411 degree.
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Table 4. Minimum RMSE values for HD/LR experiments and corresponding parameters.

Method Non-Parametric Yule–Walker Prony Steiglitz–McBride

Min. RMSE (radian) 1.0859 × 10−3 2.4620 × 10−3 5.0397 × 10−4 1.4024 × 10−5

Ensemble length (Frames) 200 200 140 200
Order Not applicable 16 18 3

The actual predictions are demonstrated in Figure 15. The simulations and exper-
iments are performed by two datasets which include the training set and test set for
1000 iterations each. The training set is annotated by the labels and test set is classified
as hold-out set for blind test. All RMSEs in this paper are computed by the test set over
the linear regression model which is built by training set. Note that the given frame size,
overlap size, and sampling frequency provide the approximately 6.5 s for 1000 iterations.
Figure 15 illustrates the individual coordinate by x axis with real angle and y axis with
predicted angle. Therefore, the solid diagonal line in the figures indicates the perfect
prediction. The 19 angular points are separated by π/18 radian with equiprobable chance
for all iterations. The single point in the plot is the cumulated spots with highly accurate
predictions. The non-parametric, Prony, and Steiglitz–McBride HD/LR show the high
precision predictions with distinct points in Figure 15. The Yule–Walker HD/LR presents
the spread distribution for certain angular points; therefore, the Yule–Walker HD/LR
produces the least performance.
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Figure 15. Prediction experiments with test set. (a) Non-parametric HD/LR; (b) Yule–Walker HD/LR; (c) Prony HD/LR;
(d) Steiglitz–McBride HD/LR.

The combined RMSE distribution derives the optimal parameters for all HDs with
LR. In order to reduce the bias of certain outcome, the weighted RMSE distributions
are averaged for final result. The minimum RMSE of each HD/LR is normalized to the
non-parametric HD/LR minimum by constant weight for individual algorithm output.
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The weighted HD/LR average RMSE distribution indicates the optimal parameters as
ensemble length 200 and model order 14. With derived values, Table 5 demonstrates the
minimum RMSE values for all HD/LR algorithms. Observe that no model order is applied
to the non-parametric HD/LR algorithm. The Steiglitz–McBride HD/LR provides the best
performance followed by non-parametric, Prony, and Yule–Walker HD/LR. Except the non-
parametric HD/LR, the parametric HD/LRs deliver the minor performance degradation
due to the quantity shift for length and order. The highest performance glitch is the Prony
HD/LR RMSE with 5.2 times lower than own minimum.

Table 5. Min. RMSEs for HD/LRs with single optimal parameters as ensemble 200 and order 14.

Method Non-Parametric Yule–Walker Prony Steiglitz–McBride

Min. overall RMSE (radian) 1.0859 × 10−3 4.8380 × 10−3 2.6301 × 10−3 2.8692 × 10−5

The weighted average HD/LR RMSE distribution and individual prediction plots are
shown in Figure 16. The average RMSE distribution presents the precise accuracy on longer
ensemble length and higher model order in general. Especially, the model order 14, 15, and
18 provide the darkest shade in performance gradation on Figure 16a. The Yule–Walker
and Prony HD/LR estimate the individual angle with minor variance in certain points as
shown in prediction plots in Figure 16b,c, respectively. The Steiglitz–McBride HD/LR still
produces very accurate prediction in Figure 16d. The non-parametric HD/LR prediction
is identical to the Figure 15a since the ensemble length is 200 frames. Note that the worst
minimum RMSE in Table 5 and Figure 16 is 0.2772 degree.
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Figure 16. Weighted average HD/LR RMSE distribution and individual prediction plots for ensemble 200 and order 14.
(a) Weighted average HD/LR RMSE distribution; (b) Yule–Walker HD/LR for ensemble 200 and order 14; (c) Prony HD/LR
for ensemble 200 and order 14; (d) Steiglitz–McBride HD/LR for ensemble 200 and order 14.
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The experiments in the anechoic chamber demonstrate the performance of non-
parametric and parametric HDs with LR. The designed angles with π/18 apart are blindly
provided to estimate the AoA with individual HD algorithms with LR. Overall, the accu-
rate predictions are expected in proper ensemble length and model order. The optimal
parameter values for each HD/LR produce the pinpoint accuracy for prediction in the
descending performance order of Steiglitz–McBride, Prony, non-parametric, and Yule–
Walker HD/LR. The weighted RMSE distribution derives the overall RMSE minimum at
ensemble length 200 and model order 14. The obtained parameter value generates accurate
estimations with minor variance. The performance can be sorted in the descending order as
Steiglitz–McBride, non-parametric, Prony, and Yule–Walker HD/LR. The non-parametric
HD/LR presents the consistent performance and Yule–Walker HD/LR indicates the least
accuracy in simulation as well as experiments. The worst minimum RMSE in simulation
and experiments are 1.2514 and 0.2772 degree, respectively. Hence, the proposed HD/LR
algorithms deliver the highly accurate predictions in overall.

6. Conclusions

This paper presents the novel method to localize the angle of arrival by using the
deconvolution with linear regression. The deconvolution is realized by the homomorphic
systems in cascade to remove the sound source and to derive the propagation function
which represents time of flight between the receivers. The numerical distribution of ho-
momorphic deconvolution represents the non-parametric output for propagation. The
propagation model realizes the parametric estimation by applying Yule–Walker, Prony, and
Steiglitz–McBride in last stage of homomorphic deconvolution. The linear regression with
terms and products is necessary to calculate the coefficients by using the feature data and
QR decomposition. Once the learning process is finalized, the linear regression provides the
estimated angle for the given feature input. The non-parametric and parametric homomor-
phic deconvolutions prepare the feature by direct feature extraction and radial projection,
respectively. Among the circular configurations of receiver positions, optimal location is
selected for three-receiver structure based on the extensive simulations. The simulations
represent that the longer ensemble length and particular model order provide the least root
mean square error. The Steiglitz–McBride shows the best performance and Yule–Walker
demonstrates the least accuracy. The experiments in the anechoic chamber demonstrate
the accurate predictions in proper ensemble length and model order. The non-parametric
method presents the consistent performance and Yule–Walker algorithm indicates the least
accuracy in simulation as well as experiments. The Steiglitz–McBride algorithm delivers
the best predictions with reduced model order as well as other parameter values.

This paper extends the non-parametric and parametric homomorphic deconvolutions
of previous article to the comprehensive sound localization system by linear regression.
The benefits of the system include the reduced system complexity because of the single ana-
log microphone network and the single analog-to-digital converter for multiple receivers.
The second advantage of the proposition contains the absent of signal propagation model
to derive the specific estimation algorithms. The training process of the linear regression
provides the proper sound localization. Of course, the linear regression could involve
the receiver relocations for optimal performance. Another improvement of this paper
comprises the consistent algorithm complexity for receiver number. Once the ensemble
length and model order are selected, the computational requirement is invariant to the
sensor number. By statistical simulations and experiments, the sound localization func-
tionality is validated for the algorithms based on the homomorphic deconvolutions with
linear regression. This paper contributes to design the feasible and deployable sound
localization algorithm for mobile systems by improving the scalability and complexity
of the proposition. The safety of the mobile system is considerably enhanced by placing
the localization receivers on any places in the system without sacrificing hardware and
algorithm complexity for estimating sound arrival direction. The algorithm performance is
expected to be improved by the discrete perspective from advanced learning algorithms.
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The massive evaluations from simulations and experiments are involved to achieve the
further robust sound localization system. Future work may aim to improve the proposed
localization system in sophisticated situations for instance fault-tolerance to receiver failure
and middle angle predictions etc. Additionally, the paper will investigate the localization
performance in the field data collected by the mobile robot with a dedicated operating
system. The application of the proposed method is not limited to the sound localization
because of expandability and flexibility in deconvolution and machine learning. Any se-
quential signals can be applied to the proposed algorithm for extraction by deconvolution
and prediction by learning. The future works will help to discover the further applications
other than sound localization with wide open possibilities.
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Abbreviations
The following abbreviations are used in this manuscript (listed by order of appearance in the text).
SSL Sound source localization
AoA Angle of arrival
3D Three-dimensional
NLOS Non-line-of-sight
ADC Analog-to-digital converter
ToF Time of flight
HD Homomorphic deconvolution
SCMR Single-channel multiple-receiver
SNR Signal-to-noise ratio
FILF Frequency-invariant linear filtering
DFT Discrete Fourier transform
FFT Fast Fourier transform
RMSE Root mean square error
LR Linear regression
PLA Polylactic acid
ASIO Audio stream input/output
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