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Abstract: Three-phase induction motors are widely diffused in the industrial environment. Many
times, the rated power of three-phase induction motors is not properly chosen causing incorrect
operating conditions from an energetic point of view. Monitoring the mechanical dimension of a
new motor is helpful, should an existing motor need to be replaced. This paper presents an IoT
sensors network for monitoring the mechanical power produced by three-phase induction motors,
adopting an indirect measuring method. The proposed technique can be easily adopted to monitor
the mechanical power using only one line of current transducer, reducing the cost of the monitoring
system. The proposed indirect measurement technique has been implemented on a low-cost IoT
system, based on a Photon Particle SoC. The results show that the proposed IoT system can estimate
the mechanical power with a relative error of within 8%.

Keywords: three-phase induction motor; indirect measurement; mechanical power; distributed
measurement system; IoT

1. Introduction

Nowadays, it is estimated that more than 70% of the electrical energy consumption in
industrial environments is used to feed three-phase induction motors. The energy efficiency
of a factory, therefore, depends primarily on the efficiency of its motors. The efficiency
is affected by the actual mechanical power delivered by a factory’s motors, with respect
to the motors’ rated power, and therefore it is crucial that appropriately sized motors are
operated from an energetic point of view. On the one hand, a motor cannot be significantly
oversized because it would operate at a low efficiency value. Installation and operating
costs would also rise. On the other hand, a motor cannot be undersized because it would
have a shorter operating life, caused by overheating [1]. Usually, a slightly oversized motor
is used for safety reasons when the mechanical load is well known. Most of the time, in
many small and medium companies, the mechanical load is not accurately estimated and
the choice of the motor rated power is a difficult task.

Useful information on the mechanical load can be obtained by monitoring a motor’s
actual load power in a significant time interval in order to correctly identify under- or over-
sized machines for replacement. Unfortunately, given that the load power measurement
involves angular velocity and torque measurement, such a technique is not suitable for a
large number of motors. Moreover, commercial data acquisition systems or data loggers
for monitoring the mechanical power of many motors would be too expensive. Therefore,
a low-cost slightly invasive monitoring system that can share the measured data over
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the Internet could be a good choice to monitor the operating conditions of three-phase
induction motors installed in a company’s facility.

For these reasons, in this paper, we propose a low-cost IoT system that performs
indirect measurements of mechanical power and publishes the data on a cloud system.
Although new emerging technologies are spreading worldwide [2], the IoT technology has
been chosen because it provides fast and effective access to data published on the web, and
therefore is the most suitable for this application.

Mechanical power is evaluated by measuring a line current [3–6] and current mea-
surements are carried out by using a low-cost transducer instead of a more sophisticated
performing transducer [7–9]. These indirect measurements require a mathematical relation-
ship between the mechanical power and a line current. Consequently, a model that is valid
for a range of rated powers can be developed by starting from experimental measurements
on motors with different rated powers.

The basic idea is to use the motor nameplate to identify the mechanical power vs.
current characteristics, in order to estimate the mechanical power starting from the mea-
surement of a line current without any other experimental analyses.

Then, a low-cost IoT device is developed. The acquired signal is processed locally
and the data are available on the Internet network in order to create a distributed and
multipoint measurement system to have a clear scenario of the whole system [10,11].

The network architecture is based on a cloud system, which produces a separation
between the IoT device and the user interface via web methods and web functions that
allow data exchange. The data are displayed on an Android application to give much more
freedom to the measurement network.

The validity of the line current–mechanical power relationship had been checked
in a previous paper [3] by considering only the motors in the set used to find such a
relationship. On the contrary, this paper refers to new experimental tests on other motors,
out of the previous set. The new experimental tests are carried out, using the proposed
measurement equipment, to evaluate the performance of both the proposed technique in
terms of measurement errors and the hardware/software of the proposed and realized
network architecture and IoT device.

2. The Proposed Technique

Induction motors can be considered to be systems that convert electrical power into
mechanical power. Assuming sinusoidal voltage and current are at a steady state and the
induction motor as a balanced three-phase load, the line current can be expressed [12,13] as:

I =
Pm√

3Vp-pη(Pm) cos φ(Pm)
, (1)

where:

• I is the line current;
• Pm is the mechanical power;
• Vl is the line voltage;
• η is the efficiency;
• cosφ is the active factor.

Equation (1) can be used to evaluate the mechanical power, starting from the measure-
ment of a line current [12–14], considering the voltage equal to the rated value. Unfortu-
nately, the relation in Equation (1) it is not linear, since the functions η(Pm) and cosφ(Pm)
depend on the mechanical power, as shown in [3] (Figure 1), where the typical trends of
efficiency and active factor are plotted for different values of mechanical power.

The mechanical power as a function of line current Pm = f (I) can be approximated
with a second order polynomial as follows:

Pm = aI2 + bI + c, (2)
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where Pm and I are expressed in p.u. values and the three coefficients (a, b, and c) depend
on the parameter values of the motor equivalent circuit.

High power induction motors are designed to obtain higher active factors and efficien-
cies. For this reason, the parameters of the equivalent circuits, as well as the coefficients a, b,
and c, depend on the rated power [15–18]. Other parameters, such as the number of polar
pairs, play a minor rule in the mechanical power–current relationship. The mechanical
power of an induction motor can be estimated by measuring the line current by means of
Equation (2).

Thirteen three-phase induction motors with rated power from 1.1 to 75 kW have been
tested to evaluate their coefficients a, b, and c. Five or more measurement points have
been carried out for each motor [19–21] and data have been processed using the MatLAB
environment to find the best fitting parabola, i.e., the coefficients a, b, and c. Thus, the
measurement points and the best fitting parabola for the 13 three-phase induction motors
considered are shown in [3], while the best fitting coefficients a, b, and c obtained for all the
13 motors are shown in [3] (Figure 4).

To give more flexibility to the proposed system, the results obtained for each single
coefficient have been interpolated using the same function as follows:

y = α + β×
(

1− e
x
γ

)
+ δ× x, (3)

where x is the rated power expressed in kW and y represents the best fitting parameter (a,
b, or c). The other constants of Equation (3) (α, β, γ, and δ) have been evaluated using the
minimum square method. Their values and their trends vs. the motor rated power are
reported in [3] (Table 2 and Figure 5).

3. Results Obtained from the Proposed Technique

In order to check the validity of the proposed method, the relative errors corresponding
to five output powers (0.25, 0.50, 0.75, 1.00, and 1.25) p.u. have been evaluated using the
following procedure:

1. A motor among the 13 induction motors is selected.
2. Given the value of the mechanical power Pm in one of the ranges (0.25, 0.50, 0.75,

1.00 and 1.25) p.u., the value of the corresponding line current Im is evaluated using
the original interpolated curve which accurately represents the current-mechanical
power relationship.

3. Adopting the proposed method, the mechanical power Pm is estimated using the line
current value Im(using the Equation (2)).

4. The relative error between the indirectly estimated (Pm ) and the directly measured

(Pm) power is evaluated.

The results obtained for each motor have been tabulated in Table 1. The obtained
results show that the proposed method can be applied to estimate the mechanical power
for three-phase induction motors ensuring a maximum relative error of 0.36%. At rated
power, the maximum relative error is 0.02%. The proposed method, applied to three-phase
induction motors with rated powers between 1.1 and 75 kW, can also be extended to other
series of motors.
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Table 1. The error vs. motor mechanical power (in p.u.).

Motor 0.25 0.50 0.75 1.00 1.25

Motor 1 (1.1 kW) 0.298 0.181 0.074 −0.017 −0.076
Motor 2 (1.5 kW) −0.024 −0.007 0.027 0.090 0.220
Motor 3 (1.5 kW) 0.472 0.248 0.031 −0.173 −0.349
Motor 4 (3 kW) −0.023 0.027 0.041 0.006 −0.109
Motor 5 (3 kW) −0.409 −0.351 −0.253 −0.09 0.199

Motor 6 (5.5 kW) 0.364 0.271 0.223 0.243 0.379
Motor 7 (7.5 kW) −0.141 −0.060 0.010 0.061 0.083
Motor 8 (7.5 kW) 0.333 0.194 0.061 −0.061 −0.162
Motor 9 (11 kW) −0.903 −0.597 −0.158 0.194 0.367
Motor 10 (22 kW) 0.174 0.129 0.073 −0.000 −0.099
Motor 11 (45 kW) −0.226 −0.185 −0.152 −0.133 −0.132
Motor 12 (75 kW) 0.440 0.322 0.210 0.108 0.019
Motor 13 (75 kW) −0.397 −0.280 −0.162 −0.045 0.071

4. The Proposed IoT System

Starting from the results obtained from the proposed method, a low-cost IoT system is
developed to estimate the mechanical power of three-phase induction motors. The three
main parts of the proposed system are shown in Figure 1, i.e., a low-cost split-core current
transformer, a signal conditioning circuit that adapts the output of the current transducer
to the input of the A/D converter embedded in the processing unit, and a Photon Particle-
based network front-end and processing system. In the following sections, the main parts
of the proposed system are described in more detail.
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4.1. Current Transducer

The low-cost current transducer selected for the proposed measurement system is
the SCT-013-030 [22]. The transducer presents the following characteristics: (i) dielectric
strength, 3 kV; (ii) operating range, 0 to 30 A; (iii) output range, 0 to 1 V; (iv) not linearity,
±3%, (v) mechanical dimensions, 13× 13 mm; (vi) operating temperature,−25 to 70 ◦C., (as
reported in Figure 2). The Fluke 6100 is used to calibrate the transducer, adopting increasing
current values with steps ∆I = 0.5 A and decreasing currents with steps ∆I = 0.75 A. The
results show that 1% is the maximum error introduced by the transducer.
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4.2. Signal Conditioner

The signal conditioning circuit is the element that adapts the electrical characteristic
of the transducer to the analog-to-digital converter (ADC) embedded in the processing
unit. The SCT-013-030 transducer provides an output range of 0 to 1 V, for an input current
of 0 to 30 A. Given that the input signal is sinusoidal, the transducer output values are in
the range of −1 to 1 V. The ADC input range is 0 to 3.3 V. As shown in Figure 3, the signal
conditioning circuit performs the following operations: (i) scales the output signal of the
transducer from 2 to 3.3 V in order to use the entire ADC range and (ii) adds a constant
voltage of 1.65 V to the transducer output signal to put the signal in the range of 0 to 3.3 V.
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4.3. Processing and Network Front-End Unit

The Photon Particle device [23] (see Figure 4) is a system-on-chip (SoC) where a
Broadcom BCM43362 Wi-Fi 802.11b/g/n and a STM32F205RGY6 120 MHz ARM Cortex
M3 are present in the same chip. The main characteristics are 1 MB flash memory, 128 kB
RAM, real-time operating system (FreeRTOS), and 18 mixed-signal GPIO.
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The built-in Wi-Fi module enables cloud communication via Internet access. Impor-
tantly, the oscillators that allow both chips to work are integrated within the same SoC.
This additional degree of integration also simplifies the development of the board because
the SoC does not require any other external components, but it is sufficient to power the
SoC and both chips work. In addition, the SoC is certified for electromagnetic emission
which does not allow installation restrictions in an ordinary environment. Finally, a built-in
3 × 12-bit A/D converter at 6 MSPS can acquire analog signals.

4.4. The Developed Board

The developed board is shown in Figure 5.
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4.5. Signal Processing

The processing unit samples the signal from the condition circuit unit, executes the
Root Mean Square (RMS) algorithm, and performs the proposed interpolation technique,
starting from the rated power and the rated current. The RMS value of the line current can
be calculated as:

RMS = K×

√√√√ 1
M× N

(M×N)−1

∑
i=0

[c(i)− coffset]
2, (4)

where:

• K is a constant which depends on the numbers of bit and on the range of analog-to-
digital converter;

• N is the number of sampling points in one cycle;
• M is the number of acquired cycles;
• c(i) is the generic sampling code associated to the input signal;
• coffset is the code which corresponds to the voltage offset introduced in order to put

the input signal into the half of A/D range (0 to 3.3) V.

Introducing ∆c (i) = c(i) − coffset, the flowchart of the RMS implementation is reported
in Figure 6.

The ADC sampling frequency f s is introduced and the time to evaluate the RMS values
can be calculated as:

Tacq =
Npoints ×Mcycles

fs
. (5)
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5. Network Architecture and Security Consideration

Figure 7 shows the network architecture of the proposed system. Each IoT system
was implemented using the Particle Proton device as the processing unit and network
front-end, to access the Internet via a Wi-Fi connection. A local router creates the Wi-Fi
network, where the IoT device can publish the processed data on a cloud system. If the
number of induction motors, and therefore that of IoT devices, increases, it is possible to
install more Wi-Fi routers for managing Internet traffic.
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5.1. Access to Published Data via Cloud System

Particle provides a complete WEB platform for managing particle proton devices. It
allows to control the status of the IoT system connected to the Internet and it also provides
a complete integrated development environment (IDE) to download the firmware remotely
directly via the WEB. Particle provides a complete cloud system to check both published
data and published function, and to download data via API rest mechanism.
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The proposed IoT system uses this functionality to expose web functions and to
upload the three-phase induction motor nameplate connected to the system (in terms of
rated power and nominal current) in order to download the evaluated mechanical power.

5.2. Network Security Consideration

The Particle Photon device adopts the http’s protocol for the Application Programming
Interface (API) rest. The Secure Sockets Layer (SSL) creates a secure communication system
between two endpoints, i.e., the IoT system and the client. The API rest web methods are
available using an http query string approach, i.e., a formatted URL is able to access the
WEB methods and WEB functions published by the remote device. The URL is organized
with two main fields, IoT ID and access token. The IoT ID is 24 characters long and it is
provided by Particle platform when the device is connected to the Web IDE. The access
token is 40 characters long and it is associated with the developer. These two fields are
related to the device, so the entire URL is not searchable by common web site and this
functionality increases the intrinsic security of the system.

5.3. Client

An Android-based mobile client was developed to access the published data and
configure the low-cost IoT system. Although a desktop-based solution is the most popular,
a mobile Android client is very close to the idea of IoT, where the Thing can be connected
anywhere to download data or send remote commands.

In any case, the proposed network architecture allows a large degree of freedom,
because the cloud system based on API rest web methods and web functions exposed
by the Particle platform guarantees an abstraction between the IoT device and the web
interface (see Figure 8). Since the application only needs to show mechanical power trends
(data download) and sets the rated power of the three-phase induction motor (data load),
the client is developed using the MIT App Invertor tool [24]. This platform offers an easy
way to develop an Android application. As shown in Figure 9, the application has two
screens as follows: The first screen plots the mechanical power over time and provides the
actual data in a table and the second screen configures the application by setting the rated
power and the rated current of the three-phase induction motor, uploading the data on the
selected IoT device.
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6. Measurement Setup

The block diagram of the measurement setup is shown in Figure 10. A Yokogawa
WT1800 power analyzer with motor evaluation function has been adopted for measuring
electrical quantities, such as RMS voltage and current of each phase, as well as active input
power and mechanical power output, to monitor the behavior of induction motors during
tests. Torque and speed analog signals, supplied by the test bench, were also acquired.
Motor enclosure temperature was monitored with a type J thermocouple and a Fluke
179 DMM. A photo of the measurement setup during testing is shown in Figure 11.
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Figure 11. The measurement setup.

For the experimental verification of the proposed system, four three-phase induction
motors of different rated power values were used. Their rated values are reported in
Table 2.

Table 2. The rated values of three-phase induction motors used to validate the proposed system.

Motor Power
(kW)

Current
(A) Active Factor Angular Speed

(min−1)
Number of Poles

Motor 1 11 20.5 0.83 1465 4
Motor 2 7.5 13.9 0.90 2915 2
Motor 3 5.5 10.7 0.88 2900 2
Motor 4 3 6.1 0.80 1455 4

7. Results

Two tests were carried out as follows: (i) The first test was performed with the motor
in thermal equilibrium, rapidly varying the load from 25% to 125% of the rated power,
to keep the motor temperature constant (Figure 12). (ii) The second test was carried out
with an induction motor loaded at rated power, during the thermal transient, with data
acquisition performed in 4 ◦C steps near the thermal equilibrium (Figure 13).
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Figure 12. The relative error vs. load to rated power ratio for the four considered three-phase induc-
tion motors.
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Figure 13. The relative error for thermal transient evaluated for the four considered three-phase induction motors. (a) Motor 1:
11.5 kW, 20.5 A; (b) Motor 2: 7.5 kW, 13.9 A; (c) Motor 3: 5.5 kW, 10.7 A; (d) Motor 4: 3 kW, 6.1 A.

8. Discussion and Conclusions

A low-cost monitoring system for three-phase induction motors that can share the
measured data over the Internet is proposed. The aim of such a system is to estimate the
output mechanical power of induction motors by sampling a line current and knowing the
motor nameplate. The relationship between the rms value of the p.u. current and the p.u.
mechanical power, based on theoretical considerations, was carried out experimentally by
testing a set of 13 motors in a rated power range of 1.1 to 75 kW. A maximum relative error
of 0.36% (0.02% at rated power) was obtained when motors in the tested set are considered.

Another four three-phase induction motors, out of the set used to tune the system,
were considered to validate the proposed technique, and a maximum relative error of 8% at
thermal steady state was found. Such a value is related to the motor with the lowest rated
power (3 kW) and much smaller values correspond to motors with higher rated power.
The following two aspects could justify this different behavior:

1. First of all, low rated power motors have a larger standard deviation from the effi-
ciency point of view; this affects the standard deviation of the values of the equivalent
circuit parameters, and therefore the values of the coefficients a, b, and c used for the
interpolation of the experimental points.

2. The rate of variation of the coefficients a, b, and c is higher in the low rated power range.

In addition to these two aspects, the system can be improved by considering other
motors parameters, such as:



Sensors 2021, 21, 754 12 of 13

• The pole pair number parameter, although it does not directly affect the relation
between current and mechanical power, it can have an impact on the efficiency value.
Generally speaking, two-pole motors have higher efficiency.

• The efficiency class of the machine, that obviously influences the relationship between
current and mechanical power.

Further study should be carried out in order to take into account both pole pair
numbers and efficiency classes of the motors.

Moreover, given that the current is sampled, the possibility of using the proposed
system for condition monitoring to detect a fault in the operating conditions of the motor
by means of the current THD factor should also be investigated.
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