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Abstract: Data collection from distributed automated production systems is one of the main pre-
requisites to leverage information gain from data analysis in the context of Industrie 4.0, e.g., for
the optimization of product quality. However, the realization of data collection architectures is
associated with immense implementation efforts due to the heterogeneity of systems, protocols, and
interfaces, as well as the multitude of involved disciplines in such projects. Therefore, this paper
contributes with an approach for the model-driven generation of data collection architectures to
significantly lower manual implementation efforts. Via model transformations, the corresponding
source code is automatically generated from formalized models that can be created using a graphical
domain-specific language. The automatically generated architecture features support for various
established IIoT protocols. In a lab-scale evaluation and a unique generalized extrapolation study,
the significant effort savings compared to manual programming could be quantified. In conclusion,
the proposed approach can successfully mitigate the current scientific and industrial challenges to
enable wide-scale access to industrial data.

Keywords: data collection architecture; data analysis; domain-specific language; IIoT architectures
and frameworks; IIoT communication; industrial automation; model-driven development; quantita-
tive evaluation

1. Integration of Systems and Accessibility of Data as Prerequisites for Industrie 4.0

With the advent of the fourth industrial revolution, called Industrie 4.0 (I4.0), the
domain of industrial automation transforms rapidly due to increased digitization of pro-
cesses and the ever-increasing amount of available data in production. Leveraging this data
to adjust machine parameters and production plants is vital for an efficient and flexible
production [1,2].

Consequently, a significant prerequisite for the realization of I4.0 is the stronger inte-
gration and interconnection of production systems into cyber-physical systems of systems
(CPSoS) [3–5]. CPSoS are characterized by a large number of distributed systems, dis-
tributed control of these systems, partial autonomy, as well as continuous re-configuration
and evolution. However, classical automation systems are organized in a hierarchical struc-
ture, called the automation pyramid [6], which limits their communication capabilities. The
automation pyramid results from divergent boundary conditions on the operational level,
with operational technology (OT) to ensure real-time requirements and high reliability, and
the superordinate layers that coordinate the production using classical information technol-
ogy (IT). The long life-cycles of up to 40 years of production plants further complicate this
integration as a large number of existing legacy systems need to be supported and their
data gathered [7–9].

Dotoli et al. [10] conclude that suitable I4.0 technologies for the integration of CPSoS
are already available, but significant implementation efforts limit industrial applicability.
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This can be explained by the significant heterogeneity of existing legacy systems, incompat-
ible communication protocols and interfaces, as well as the large number of different I4.0
technologies currently available [11].

Hence, one of the foremost priorities for adopting I4.0 principles and the increased
availability of data are the reduction of the effort to engineer data collection architectures.
The term data collection architecture is defined as a system architecture to collect and
integrate data from machines in the field as well as from superordinate IT systems for
subsequent data analysis [12].

Model-driven development (MDD) can decrease manual implementation efforts sig-
nificantly [13]. However, as Wortmann et al. [14] point out, there is a lack of adequate
metrics and quantitative evaluations in the domain of MDD for I4.0.

Therefore, this paper’s contribution is an approach for the MDD of data collec-
tion architectures in the domain of industrial automation. The contribution includes
a domain-specific language (DSL) based on the graphical notation by Trunzer et al. [12],
as well as a toolchain for the automatic, model-driven generation of the communication
architecture of data collection architectures. Furthermore, this paper contributes with a
unique extrapolation case study to estimate the generalized efforts savings compared to
manual implementation.

The remainder of this paper is structured as follows: in the next section, Section 2,
related work and the lack of comparable approaches are discussed. In Section 3, the re-
quirements for an MDD of data collection architectures are discussed (Section 3.1) and the
concept for an MDD of data collection architectures is introduced (Section 3.2). The ap-
proach is subsequently (Section 4) evaluated in a lab-scale feasibility study and a general
extrapolation study, including a mathematical consideration of the effort savings. The paper
closes (Section 5) with a conclusion and an outlook on further research in the field.

2. Related Work and State-Of-The-Art

The related work is structured into different aspects: after an introduction into Indus-
trial Internet of Things (IIoT) communication protocols (Section 2.1), related approaches
for data collection architectures are presented (Section 2.2). Next, an overview of modeling
languages and DSLs in general, as well as specific examples, is given (Section 2.3). Finally,
the concept of model-driven development is introduced, including relevant state-of-the-art
contributions from the field of data collection architectures (Section 2.4). The section closes
with a summary of the identified research gap.

2.1. IIoT Communication Protocols

Numerous communication protocols and architecture styles are available for IIoT
connectivity and system integration [11]. These protocols stem from different domains
and have their very own characteristics: while, on the shop floor, OPC UA (OPC Unified
Architecture) is propagated as the new de-facto standard for machine connectivity, the
Message Queuing Telemetry Transport (MQTT) protocol is predominant in the domain
of cheap IIoT sensors. Other protocols encompass the Advanced Message Queuing Pro-
tocol (AMQP) protocol with its extensive support of Quality of Service (QoS) features
for reliable communication, as well as lightweight and decoupled web technology-based
Representational State Transfer (REST) architecture styles. Furthermore, Data Distribution
Services (DDS) offer truly decentralized but reliable machine communication and can be
found in specific domains, such as robotics or transport systems. An additional alternative
is the usage of Apache Kafka and its communication protocol for the high-performance
processing of data. An overview and comparison of the different protocols can be found in
Trunzer et al. [15].

While some protocols are dominant for specific purposes (e.g., OPC UA on the shop
floor or AMQP on higher levels), a full convergence of protocols cannot be foreseen.
Therefore, in addition to the heterogeneity of systems and interfaces, the industry is also
confronted with heterogeneity in IIoT communication protocols for interoperability and
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data collection. In addition, the distribution of protocols differs between different domains
and applications. Therefore, industry often needs to support more than one communication
protocol to be competitive, further increasing the implementation efforts for interoperability
and data collection.

2.2. Data Collection Architectures

Before being able to analyze and operationalize machine data, it has to be collected
from the field. Therefore, special communication structures, so-called data collection
architectures, can be used. These are implemented to interface the distributed CPSoS and
their superordinate systems to collect all relevant data. This data can include live sensor
and actuator signals from the production process and historic measurements, engineering
documents, recipes, or orders.

Data-collection architectures must be able to interface the respective systems and
access and forward their data to the destination of their processing. Besides syntactic
interoperability (structure of data, protocols), semantic interoperability (the meaning of
data, information models) has to be ensured to allow all connected systems to process the
collected data. Several approaches for data collection architectures and I4.0 system architec-
tures in general that provide data collection functionalities have been published recently.

Gama et al. [16] present a dedicated data collection architecture to collect data from
distributed RFID (Radio-frequency Identification) readers. Communication between a
central, mediating component and the scanners is established using web service technology.
Additionally, the integration of existing legacy systems is not considered.

Peres et al. [17] propose the IDARTS framework, a hybrid multi-agent/Apache Kafka-
based architecture for data collection and analysis in industrial automation. While the
focus of the architecture is on the field level, superordinate systems could theoretically be
interfaced. Nevertheless, the implementation of IDARTS is tailored for the JADE agent
framework (Java Agent Development Framework) and Apache Kafka.

In the scope of the COCOP project [18], a plant monitoring architecture is developed.
Therefore, data from different hierarchical levels of the automation systems are collected.
While different communication technologies (AMQP, OPC UA, and REST) are compared,
the implementation is limited to AMQP.

The PERFoRM project [19] proposes an architecture for flexible reconfiguration of
CPSoS. PERFoRM foresees the support of various protocols. However, practical implemen-
tations are centered around AMQP.

In summary, various data collection architectures can be found in the literature. Still,
they are centered around specific protocols and often do not support multiple protocols,
limiting their practical applicability.

2.3. Modeling Languages and DSLs

Modeling languages allow the abstract description of complex problems. Therefore,
model elements are used to describe distinct relevant aspects of systems [20]. Modeling
languages consist of an abstract syntax (metamodel), a concrete syntax (notation), and
semantics. While the metamodel describes the model elements, their names, and relations,
the notation refers to users’ application of the modeling language. The notation can have
different representations, for instance, textual or graphical. The semantics relate the model
elements to their meaning in the real world.

Their scope of modeling can differentiate modeling languages: while so-called general-
purpose modeling languages (GPMLs) can be applied to any domain, DSLs are tailored
for specific domains and applications. The loss in universality is compensated by more
fine-grained and specific model elements that can allow greater expressiveness of the
modeling language.

An example of a relevant modeling language for the description of embedded systems
is the UML-profile MARTE (Modeling and Analysis of Real-Time Embedded Systems) [21].
MARTE can be used to model available hardware resources, inputs and outputs (I/Os), and
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communication interfaces. With this, MARTE is limited to the basic graphical capabilities
of UML as it adds no additional visual syntax. In addition, while the internal behavior
and dynamics of systems can be modeled, the model elements to capture data flows
between complex, interconnected systems are limited. MARTE foresees the specification of
properties and requirements related to the systems.

Another example of a modeling language for complex system architectures is the
graphical modeling language ArchiMate [22]. While MARTE is focused on a description of
low-level hardware interactions, ArchiMate is centered around the description of complex
IT architectures with no particular focus on CPSoS. Therefore, model elements for the
description of relevant aspects and terms of the industrial automation domain are missing,
for instance, master/slave networks or I/O signals.

The group around Vogel-Heuser [12,23,24] presents several variants of a graphical no-
tation for the description of distributed control systems, communication architectures, and
data collection architectures. These variants are all based on the same foundation and share
the majority of model elements. The graphical notation presented by Trunzer et al. [12]
allows the description of systems from the OT up to the IT level, including a separate
viewpoint for tracing the flow of data through all systems. However, the basic approach is
limited to a graphical notation and does not encompass a metamodel. Therefore, it cannot
be considered as a full-fledged DSL. The same group recently published the so-called
DSL4hDNCS [25], which features the extension of the graphical notation by a metamodel
to allow modeling of heterogeneous distributed, networked control systems (hDNCS)
including their time requirements and deployment scenarios.

In conclusion, modeling languages can be used to capture information about complex
systems abstractly. While some approaches exist, no graphical DSL for the description
of data collection architectures for CPSoS, ranging from OT to IT, can be found in the
literature. However, modeling techniques have been identified as key for managing the
complexity of CPSoS [4].

2.4. State-Of-The-Art in Model-Driven System Architectures

In MDD, models not only serve documentation purposes but are used as essential
components during the development of systems. Via so-called model transformations, the
modeled information can be leveraged and parts of the development process automated.
Model transformations can be differentiated into three kinds: model-to-model (M2M),
text-to-model (T2M), and model-to-text (M2T) transformations.

Models can have various shapes, depending on the specific goals and problems that
are addressed. For instance, models can be used to formalize or approximate the behavior
and characteristics of systems in a mathematical way [26,27], or the structure of systems
and software [28].

Some examples of model-driven development of system architectures in general
and specifically for data collection can be found in literature. Tekinerdogan et al. [29]
developed an approach for the simulation and deployment optimization of DDS systems.
Therefore, based on an abstract model of the systems, feasible deployment scenarios
are derived automatically and simulated for their feasibility. However, the approach
does not contain a graphical modeling language, as well as an automatic set up of the
communication infrastructure.

Another relevant approach is the contribution by Benaben et al. [30] related to model-
driven engineering of middleware systems. The approach focuses on the domain of
enterprise integration between companies. Based on a metamodel, services can be modeled,
which are then used to generate web services and configure the middleware components.

Based on the UML MARTE profile, Ebeid et al. [31] introduce a model-driven approach
for distributed, embedded systems. The approach captures QoS requirements but is limited
to generating runnable configurations for a simulation environment instead of generating
code for the embedded systems.



Sensors 2021, 21, 745 5 of 20

Harrand et al. [32] present the so-called Thing-ML, a textual DSL for embedded
IoT devices. The DSL focuses on the description of embedded devices and low-level
interactions between them. Based on the models, basic communication interfaces can
automatically be generated.

Thramboulidis and Christoulakis [33] propose a model-driven development of mi-
croservice architectures for CPSoS based on a metamodel. The approach aims to replace
existing infrastructures and does not take legacy systems into account. In addition, the
modeled level of detail concerning the hardware, software, and networks is relatively low.
The approach does not include the means to model data flow between systems. It is limited
to the non-graphical presentation using the metamodel and a single, propriety protocol.

Another approach is presented by Mazak et al. [34] based on an extended version of
the generic, non-graphical exchange format AutomationML (AML). The authors extend
AML with a description of data dependencies between systems. Based on the modeled
information, OPC UA servers act as data providers and a data collection architecture,
including a central data repository, are automatically set up. The approach is tailored for
greenfield environments without special consideration of legacy systems. The flow of
data are implicitly modeled over the introduced dependencies, but it cannot be followed
through the system or over a multi-stage process.

While MDD is an accepted paradigm for software development, only a limited number
of approaches can be found for MDD of data collection architectures. None of the presented
approaches includes a graphical DSL. Furthermore, none of the approaches provides
support for multiple communication protocols and includes considerations related to
legacy systems.

2.5. Identified Research Gap

While several system architectures for data collection and related modeling approaches
exist, no comprehensive graphical DSL for the description of data collection architectures,
nor an integrated, model-driven approach for automatic generation and setup of the
communication infrastructure can be found literature. In addition, as Wortmann et al. [14]
pointed out, there is a significant lack of quantitative evaluations and proofs for implied
efforts savings when using MDD in the domain of I4.0.

3. Requirements and Concept for a Model-Driven Data Collection Architectures

In the following section, the requirements for a model-driven data collection archi-
tectures are presented. Afterwards, the derived concept for and integrated, model-driven
development of data collection architectures is given.

3.1. Requirements for a Model-Driven Development of Data Collection Architectures

To be practically applicable, an approach for MDD of data collection architectures has
to fulfill several requirements (indicated by R), which are derived below:

RDSL During data collection and analysis projects in the domain of industrial automa-
tion, a multitude of disciplines is involved, ranging from data analysts, over IT
architectures, to automation engineers and process experts. All of these experts
have different backgrounds and use different terminology. Therefore, the approach
should be based on a graphical DSL that allows for sharing modeled information in-
tuitively and understandably. Moreover, the graphical notation and the underlying
metamodel have to provide the means to capture all relevant aspects needed for the
design of data collection architectures in the domain of industrial automation.

RCom The realization of data collection architectures requires the repetitive implementation
of numerous communication channels that form the communication part of the
architecture, and specific glue code that transforms, analyzes, or stores the collected
data. The approach should be capable of automatically generating code for the
communication part to reduce manual implementation efforts efficiently.
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RProt The significant heterogeneity of IIoT protocols and the uncertainty, whose protocol
will be predominant in the future, hinders and slows down industrial adoption of
I4.0 principles. In addition, if a product has to be offered for different markets or
domains, manufacturers may have to support multiple protocols for the same
machine. This further increases the implementation efforts for data collection
architectures. Therefore, the approach should feature modular support for relevant
IIoT protocols to increase technology adoption.

RInit Initial deployments (development from scratch) of data collection architectures
are associated with substantial implementation efforts due to heterogeneity and
complexity of CPSoS. MDD has the potential to significantly lower these efforts in
comparison to manual programming. However, these efforts’ savings have to be
quantifiable and of general validity and not just of qualitative nature, as found in
the literature. The quantification has to take the effort to create the MDD toolchain
into account to estimate the break-even between MDD and classical manual pro-
gramming of data collection architectures.

RMig Besides initial deployment, re-deployments, also called migrations, are of significant
interest for industrial applicability [10]. Despite the availability of new solutions,
which are better suited for the needs of automated production, enterprises hesitate
to apply them. This is due to the excessive cost associated with re-implementing
all connected systems’ communication interfaces, consequently causing vendor
lock-in. In addition, the need to support more than one communication protocol
for data collection inside CPSoS can be seen as a migration scenario. This leads
to the requirement that the MDD approach has to support migration scenarios of
data collection architectures. In addition, effort savings also have to be proofed
quantitatively for such a scenario compared to manual programming.

3.2. Concept for Model-Driven Data Collection Architectures

In the following section, the proposed concept for an MDD of data collection architec-
tures is presented. Figure 1 summarizes the proposed workflow. Based on an existing or
intended CPSoS, an interdisciplinary expert team designs and models the CPSoS and the
associated data collection architecture using a graphical DSL (Section 3.2.1). The resulting
architecture description is made up of a human-readable graphical representation and a
computer-readable model containing modeled information. After incremental refinement
of the architecture description by the involved disciplines, a model-driven generation of the
communication part of the data collection architecture is carried out (pre-configured archi-
tecture, Section 3.2.3). Therefore, an M2T transformation transforms the architecture model
into code using templates from a library (Section 3.2.2). The pre-configured architecture is
then extended by the expert team with custom glue code that transforms, manipulates, or
stores data. After this step, the data collection architecture can be deployed to the field.

3.2.1. Graphical Notation and Metamodel of the DSL

The graphical notation presented by Trunzer et al. [12] serves as a basis for the pro-
posed DSL (RDSL). It contains all relevant model elements to describe data collection
architectures for CPSoS. In Figures 2 and 3, a short, annotated application example demon-
strating the modeling capabilities of the notation is given. For a full introduction to the
model elements of the graphical notation, the reader is referred to the original source.
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Figure 1. Workflow for the model-driven development of data collection architectures.

The notation includes two distinct viewpoints to model data collection architectures:
first, a system viewpoint (cf. Figure 2) to characterize the hardware of CPSoS, software
executed as part of it, and the locations where data are generated. Second, a data flow
viewpoint (cf. Figure 3) that reflects the flow of data through the systems and the role of
each subsystem. Both viewpoints are linked using a unique labeling system to identify all
related systems. Furthermore, the notation allows specifications of several properties and
requirements, including time characteristics, data properties, and architectural aspects.
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As the graphical notation only describes the DSL’s concrete syntax, it is supplemented
by a metamodel (abstract syntax). Modeled information is stored as an instance of the
metamodel (a model), with the metamodel describing the rules of how model elements
can be combined and linked. An overview of the metamodel is given in Figure 4 as an
excerpt of the whole metamodel. It is divided into four main Containers that are aggregated
to describe a SystemConfiguration:

• a SoftwareContainer for the description of data flows and software functions,
• a PhysicalContainer that reflects the hardware systems and components of the architecture,
• an AnnotationContainer that can carry additional information on properties and re-

quirements, as well as
• a RelationContainer to describe logical links.

Inside the SoftwareContainer, the actions carried out by software systems are differenti-
ated in communication functionalities (derived from IService) and the logic that works with
the data (glue code, e.g., data manipulation) as ApplicationSpecificLogic. IServices connect
various SoftwareFunctionalities over so-called DataFlows. Here, every DataFlow can transport
DataElements as a payload (see DataTransportRelation).

The PhysicalContainer contains a description of the hardware systems and components
that constitute the overall system. Complex systems, e.g., programmable logic controllers
(PLCs) can be composed of several hardware components, for instance IOTerminals or
NetworkInterfaces. To decouple the composition logic from the actual hardware components,
capabilities are introduced over the interface IHardwareCapability. This allows an easy
extension of the metamodel if new hardware components are needed and simplifies the
system description. Actual hardware signals (IOSignals) are aggregated by IOTerminals.
Following the graphical notation, these signals are differentiated by their type of signal
(digital/analog) and the component (sensor/actuator).

While Annotations from the AnnotationContainer can carry additional information as
seen in the application example, the RelationContainer (see a detailed view in Figure 5)
mainly links elements from the physical and the software containers. It is used to associate
hardware signals with the related variables in software or describe which software runs on
which hardware system.
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Figure 5. Mapping of software and hardware elements using the RelationContainer.

While the metamodel of the DSL is realized in the Eclipse Modeling Framework (EMF)
(https://www.eclipse.org/modeling/emf/, accessed 16 December 2020). As the de-facto
standard for MDD, the graphical notation is provided as stencils for Microsoft Visio (https:
//www.microsoft.com/de-de/microsoft-365/visio/flowchart-software, accessed 16 Decem-
ber 2020). An automatic link and synchronization between the graphical representation and
the model instance are currently not part of the implementation, but can be realized inside
the Eclipse ecosystem relatively easy with Graphiti (https://www.eclipse.org/graphiti/,
accessed 16 December 2020) or Sirius (https://www.eclipse.org/sirius/overview.html,
accessed 16 December 2020).

https://www.eclipse.org/modeling/emf/
https://www.microsoft.com/de-de/microsoft-365/visio/flowchart-software
https://www.microsoft.com/de-de/microsoft-365/visio/flowchart-software
https://www.eclipse.org/graphiti/
https://www.eclipse.org/sirius/overview.html
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3.2.2. Software Framework for IIoT-Protocol Support

A modular software framework with support for various IIoT communication pro-
tocols complements the approach. While the framework can be used independently of
the proposed MDD approach, it provides the necessary code templates for the model
transformation step.

The heart of the framework is the definition of standardized interfaces that abstract the
basic functionalities of the communication protocols, such as publishing data or subscrip-
tion to updates. On the application side, programmers use these generic functionalities
for sending and receiving data without the need to know the backing communication
technology. The related technology-specific functionality is then implemented as part of
the software framework and hidden behind the standard interfaces. In addition, due to the
modular design of the framework, additional communication protocols can be supported
via the interface’s implementation.

Legacy systems that do not support the software framework or the communication
protocols can be interfaced using so-called data adapters. These adapters are placed
between the legacy system and the data collection architecture and translate syntax and
semantics of the in- and outgoing data to ensure interoperability. While the communication
code on the data collection side can be generated automatically, not only the glue code that
translates the data but also the communication code for interaction with the legacy device
has to be coded manually. However, this offers the possibility to also interface exotic or
unsupported systems.

The software framework is realized in C# and .NET Core 3.1 (https://github.com/
dotnet/core, accessed 16 December 2020)—for cross-platform support, including Win-
dows, macOS, and Linux. As part of the software framework, several technology-specific
implementations are currently provided with support for the established IIoT protocols
AMQP, Apache Kafka, MQTT, and OPC UA (RProt). Furthermore, interoperability with
other programming languages and frameworks is established by providing a defined gRPC
(https://grpc.io/, accessed 16 December 2020) interface. gRPC is a high-performance
remote procedure call (RPC) framework from Google that is available for a multitude of
programming languages. For instance, the software framework features additional support
for the Beckhoff (Automation Device Specification) protocol using the gRPC interface, as
the necessary ADS libraries are not available for the .NET Core framework, but instead
only for the .NET Framework 4.0.

3.2.3. Model Transformation to Deployable Communication Code

In the last step, the instances of the DSL’s metamodel serve as a basis for the automatic
generation of the communication part of the data collection architecture via an M2T
transformation. Therefore, code templates with placeholders containing system-specific
information (e.g., communication protocol, IP addresses, ports, variables to be collected)
from the software framework are combined and filled based on the modeled information
(RCom). The glue code that handles the data are not part of the automatic generation. Still,
protected placeholder sections are generated, where programmers may add functionality
to the architecture. These custom code fragments are preserved in case of a regeneration of
the communication architecture. As the generated code is based on the software framework
with its standard interfaces, programmers do not need to worry about communication
technologies and can rely on the standard interface, therefore ensuring interoperability and
compatibility with any implemented communication technology of the software framework.
In addition, the transformation engine has a minimum set of rules to check the consistency
of the modeled information.

While the presented transformation relies on the software framework and C#, a model
based on the proposed DSL can theoretically be transformed to any other programming
language, leading to an independence of model and specific implementation.

https://github.com/dotnet/core
https://github.com/dotnet/core
https://grpc.io/


Sensors 2021, 21, 745 11 of 20

Acceleo (https://projects.eclipse.org/projects/modeling.m2t.acceleo, accessed 16 De-
cember 2020), as an implementation of the OMG’s MOF model to text transformation
language [35], is used for the model transformation step.

4. Evaluation of the Model-Driven Approach for Data Collection Architectures

The evaluation of the proposed approach for MDD of data collection architectures is
carried out in two case-studies: at first, a sufficiently complex lab-scale scenario is used
to compare implementation efforts for the implementation of data collection architectures
for CPSoS. Afterward, an extrapolation case study tries to generalize the assumed effort
savings as a function of the relevant boundary conditions and is complemented by a border
case analysis. Both case-studies try to assess the effort savings using the proposed approach
based on a worst-case assessment.

4.1. Lab-Scale Case-Study to Investigate Implementation Effort Savings

In the lab-scale case-study, a complex CPSoS with different hardware components
and support of communication protocols that is connected with superordinate IT systems
for data analysis, monitoring, and visualization is considered. Therefore, a data collection
architecture is needed to collect and forward the relevant information from the CPSoS to the
other systems. For the case-study, the AMQP protocol was chosen for the initial realization
of the data collection architecture. To compare the efforts of manual implementation
and the proposed MDD, the same architecture will be implemented twice: on the one
hand, the architecture is modeled using the proposed DSL and then transformed into code.
On the other hand, a minimal data collection architecture with the same base functionality
is implemented by hand. This evaluation will focus on the communication part of the data
collection architecture. It is assumed that the glue code for both cases is comparable and,
hence, of the same complexity.

4.1.1. Description of Use-Case Featuring a Heterogeneous CPSoS with
Superordinate Systems

An overview of the considered systems is given in Figure 6 as a UML deployment
diagram. The case-study encompasses three distinct and representative Cyber-physical
Production Systems (CPPS):

1. the legacy CPPS Festo Modular Production System (MPS) that is interfaced using
custom software that provides connectivity over a proprietary TCP protocol and
communicates with the plant over a serial RS232 connection;

2. the constantly evolving myJoghurt Industrie 4.0 demonstrator, with a state-of-the-art
Beckhoff PLC, connectivity over the proprietary Beckhoff ADS protocol as well as
standard OPC UA, and around a total of 500 variables (I/Os and internal variables); and

3. the Self-X material flow demonstrator [36] equipped with a Siemens S7-1500 PLC,
Munich, Germany, around 170 I/Os, and the support for the Siemens ISO-on-TCP
protocol [37].

While the MPS and the myJoghurt plant are directly connected to an internal Ethernet
network, the Self-X demonstrator is located in another Ethernet network with a Node-RED-
based (https://github.com/node-red/node-red, accessed 16 December 2020). gateway
that translates between the ISO-on-TCP protocol and standard MQTT.

In addition, several superordinate systems are part of the case-study, including data
analyzers, dashboards for visualization, a mocked-up Manufacturing Execution System
(MES), and data storage systems. The actual realization of the data collection architec-
ture will encompass additional systems that act as infrastructure components for data
transportation or transformation.

https://projects.eclipse.org/projects/modeling.m2t.acceleo
https://github.com/node-red/node-red
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Figure 6. Connected systems of the lab-scale case-study without gateways and infrastructure components as a UML
deployment diagram.

4.1.2. Model-Driven Generation of Communication Architecture

Using the graphical DSL, the data collection architecture was modeled. Additional
infrastructure components, e.g., data adapters and the AMQP message broker, were concep-
tualized and modeled to yield a complete model of the architecture. The case-study foresees
several interwoven data flows between systems to reflect complex scenarios. For instance,
data from the myJoghurt plant are analyzed together with order data to calculate perfor-
mance key performance indicators (KPIs). These are then forwarded together with the raw
data to the monitoring dashboard. The full graphical models of the case-study, including a
full description of all connected and infrastructure components, as well as all data flows,
and additional annotations can be found in the supplementary material.

For better comparability, the conceptualized architecture was modeled by three per-
sons after a short introduction to the DSL. Table 1 summarizes the time efforts for modeling
EMDD,Init. The measured values include the time for layout adjustments and consistency
checks. For the case-study, the worst modeling time of person 3 was chosen as a baseline to
assess the approach in a worst-case scenario (high modeling effort).

After the modeling step, the model-transformation was executed, generating an
AMQP-based data collection architecture. The generation includes the C# code with
placeholders for custom code, the project files for Visual Studio that include references
to required libraries, as well as configuration files for Docker and the RabbitMQ broker
(https://www.rabbitmq.com/, accessed 16 December 2020). In total, 4284 lines of C# code
were generated, as well as 616 lines of configuration and project files. In the next step, the
glue code was implemented manually, and the code was compiled and deployed to the
respective systems. The deployed data collection architecture was fully functional, and all
modeled data flows were working and transporting data correctly.

https://www.rabbitmq.com/
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Table 1. Modeling efforts EMDD,Init for modeling the lab-scale case-study of three persons and their
experience level with the notation and background in industrial automation.

Person Experience Level Total Effort for Modeling
of the Lab-Scale Setup

1
Well-experienced user, strong industrial
automation background 2 h 30 min
applied the graphical notation several times.

2
Semi-experienced user, medium industrial
automation 4 h 20 min
background, applied the notation occasionally.

2
Inexperienced user, strong industrial automation
background, 4 h 40 min
recently introduced to the notation.

4.1.3. Effort Metrics for Initial Deployment

In parallel, the data collection architecture was entirely implemented by hand using
C# and the same libraries to replicate the exact modeled functionality of data collection. As
the manually programmed code can focus on a minimal approach with lower modularity
and, therefore, code overhead, only 989 lines of code (LoCMan) were needed to realize the
data collection functionality. Afterward, glue code was implemented, and the architecture
was compiled and deployed, once again resulting in a working data collection architecture.

To compare the implementation efforts for the communication part of the data col-
lection architecture between the proposed model-driven and the manual programming
approaches, the programming effort needs to be quantified. Therefore, productivity met-
rics for experienced programmers were collected from the literature. While Cusumano
and Kemerer [38] report an average productivity pLoC of 436 lines of code (LoC) per pro-
grammer and month in Europe, Prechelt [39] reports a productivity of 36 LoC/h (approx.
6200 LoC/month) for the upper quartile using Java as programming language (very similar
to C#). The studies’ different scopes can explain the variations: While Cusumano and
Kemerer investigate 104 large-scale projects written in different programming languages
and including project-related tasks (e.g., testing, documentation), Prechelt focuses on
smaller projects executed by a single programmer. It can be concluded that LoC metrics for
programmer productivity deviate significantly and have to be treated with caution.

However, for a worst-case assessment of the proposed approach, in the following,
the exceptionally high productivity reported by Prechelt will be used to assess the worst-
case performance of the approach. Nonetheless, in future studies, more sophisticated
metrics, such as COCOMO II [40], should be employed to increase the accuracy of the
effort comparison.

With pLoC = 36 LoC/h, the programming effort for a manual, initial implementation
EMan equals

EMan =
LoCMan

pLoC
= 27.47 h. (1)

Therefore, the relative effort rE of the proposed model-driven approach compared to
manual software programming is

rE =
EMDD
EMan

= 16.96%. (2)

It can be concluded that, even under a worst-case scenario, the effort savings for an
initial deployment of the data collection are significant when using the proposed approach
(RInit). When assuming an average hourly cost of 50 US$ for a programmer, a total of
about 1140 US$ could be saved even saved for the relatively small lab-scale case-study.
In case of a migration, major parts of the manually programmed communication code
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would require significant refactoring. At the same time, changes for the model-driven
approach are limited to an update of the protocol annotations and subsequent repetition
of the model transformation step. In the following section, a generalized extrapolation
study is carried out with a special consideration and quantification of effort savings on
dependence of migrations.

4.2. Extrapolation Case-Study for a Generalization of Results

The extrapolation case-study aims to generalize the previous findings and also, in
contrast to the lab-scale case-study, take the effort for the development of the DSL and the
model-driven approach into account. Hence, it tries to answer the questions, how large a
data collection architecture (or several realizations using the same toolchain in sum) would
have to be in order to justify the development of the model-driven approach. Therefore, the
study considers the total effort as a function of the number of publisher/subscriber pairs
NPair and the average number of variables exchanged per pair NVar. In the following, the
relations between NPair, NVar, and the efforts EMan and EMDD, as well as the effort ratio rE,
are given, including a mathematical analysis. Afterwards, the break-even between both
approaches is investigated based on different scenarios.

4.2.1. General Analysis of the Relations

In general, both efforts Ei are functions of NPair and NVar. For the manual imple-
mentation, the implementation effort EMan depends on the total amount of code and the
programmer’s productivity if the efforts can be assumed as constant for each pair and
each variable

EMan =
LoCMan

pLoC
. (3)

The lines of code for a manual implementation can be calculated as

LoCMan = NPair · LoCPair + NPair · NVar · LoCVar, (4)

with LoCPair the lines of code for implementing of a publisher/subscriber pair and LoCVar
the additional lines of code for every exchanged variable in every pair.

In contrast, the total effort for the model-driven realization of a data collection archi-
tecture EMDD corresponds to

EMDD = EModel + EMDD,Init = EModel + (EFramework + EM2T + EDSL), (5)

with EModel is the effort to model the systems and EMDD,Init the initial effort for the creation
of the model-driven toolchain. EMDD,Init can be decomposed into the programming effort
for the creation of the software framework EFramework that provides the template for the M2T
step, the programming effort for the M2T transformation EM2T , as well as the development
effort for the DSL including full tool support EDSL.

Furthermore, the modeling effort can be expressed as

EModel = NPair · ePair + NPair · NVar · eVar, (6)

with ePair the time needed for the modeling of a publisher/subscriber pair and eVar the
time effort for modeling of a transported variable.

Therefore, the general effort ratio rE can be expressed as
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rE =
EMDD
EMan

=
NPair(ePair + NVar · eVar) + EMDD,Init

1
pLoC
· NPair(LoCPair + NVar · LoCVar)

.
(7)

In general, it can be stated that the set {r|r < 1} is a subset of the image of rE.
This allows for deducing the theoretical existence of a more efficient realization by the
model-driven approach. The effect of the system size on rE is further investigated to
provide generally valid statements on the effectiveness of the model-driven approach.
For this, the gradient of rE

∇rE
(

NPair, NVar
)
=

(
∂rE

∂NPair
∂rE

∂NVar

)
=


− EMDD,Init

N2
Pair · 1

pLoC
·(LoCPair+NVar ·LoCVar)

pLoC ·
eVar ·LoCPair−LoCVar ·

(
ePair+

EMDD,Init
NPair

)
(LoCPair+NVar ·LoCVar)

2

 (8)

is used. Moreover, it is assumed that the systems contain elements (NPair and NVar > 0)
and these elements require effort. Accordingly,

∂rE
∂NPair

< 0 (9)

is valid if EMDD,Init is considered. With these assumptions, the ratio function falls strictly
monotonously in the dimension NPair. By also considering the limit value of rE for increas-
ing NPair

lim
NPair→∞

rE =
ePair + NVar · eVar

1
pLoC

(
LoCPair + NVar · LoCVar

) (10)

and the strict monotony mentioned before, it can be concluded that a model-driven ap-
proach leads to savings in effort when increasing NPair if

(
ePair + NVar · eVar

)
<

1
pLoC

(
LoCPair + NVar · LoCVar

)
. (11)

4.2.2. Break-Even Analysis between Manual Implementation and the
Model-Driven Approach

After the derivation of the correlations in the previous section, a break-even anal-
ysis is carried out. Therefore, in the first step, representative LoC metrics for a pub-
lisher/subscriber pair as well as for a transported variable have to be determined. All
protocols supported by the software framework are analyzed and minimal, but modular
functional code samples are programmed. The respective LoC per protocol is determined
and decomposed in LoC per pair and variables. Afterward, the mean number of LoC across
all supported protocols is chosen as a representative metric. The minimal code samples
try to define reusable methods to decrease the number of LoC that need rework during
migrations from one protocol to another.

Table 2 summarizes the findings. Lines that include authentication details are not
counted as these also will have to be adjusted for the automatically generated code from the
MDD toolchain. Furthermore, for the calculation of the effort EMan, the productivity pLoC
of 36 LoC/h is assumed here as well. All code samples can be found in the supplementary
material, as well as in a public git repository (https://gitlab.lrz.de/TUMWAIS/public/
datacollectionarchitecture.modeldriven).

https://gitlab.lrz.de/TUMWAIS/public/datacollectionarchitecture.modeldriven
https://gitlab.lrz.de/TUMWAIS/public/datacollectionarchitecture.modeldriven
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Table 2. Manually programmed lines of code for a minimal producer and subscriber pair, as well as
every transported variable. The corresponding code listings can be found as supplementary material
and in a public git repository.

Protocol
Initial Deployment Migration

LoCPair LoCVar LoCPair LoCVar

AMQP 67 2 48 0

Beckhoff ADS 81 2 62 0

Apache Kafka 74 2 55 0

MQTT 51 2 32 0

OPC UA 114 2 95 0

MEAN 77.4 2 58.4 0

In the next step, the modeling effort and the effort to create the toolchain have to
be determined. Therefore, the minimal model that corresponds to the code samples is
modeled by hand. The specific efforts ei measured for an experienced engineer can be
found in Table 3.

Table 3. Specific modeling efforts ei per element measured for an experienced engineer. The corre-
sponding model can be found as supplementary material.

ePair eVar

Initial deployment 10 min 1 min

Migration 1 min 0

For the estimation of effort for the toolchain creation, the following figures have been
determined: the software framework encompasses a total of approx. 4000 LoC, which
yields with pLoC an effort EFramework of 111 h. The M2T transformation implemented in
Acceleo has a total of 1350 LoC. Under the assumption that pLoC is also valid for Acceleo
code, this corresponds to EM2T = 38 h. Finally, the effort for the development and tool
development of the DSL is estimated to a full person-year (EDSL = 2078 h).

With these parameters, the efforts Ei for both development approaches of data collec-
tion architectures can be calculated as functions of NPair and NVar. An example is depicted
in Figure 7 for the case of an initial deployment without any additional migration. As
can be seen, especially for small systems, the manual approach outperforms the model-
driven approach due to the additional effort for the toolchain creation. Nevertheless, the
model-driven effort increases significantly slower for both increasing NPair as well as NVar
in comparison with the manual approach. Therefore, for large systems or the realization of
several independent data collection architectures based on the same toolchain, a break-even
can be expected that justifies the development of the toolchain.

Figure 8 represents the relative efforts rE for two distinct scenarios: firstly, only an
initial deployment (cp. Figure 7); and, secondly, initial deployment and one subsequent
migration of the data collection architecture to another protocol. As expected, the architec-
ture’s manual programming is strongly to prefer compared to an MDD approach for small
systems. Here, the effort for the toolchain creation does not pay off. However, with an
increasing number of systems (pairs) and transported information (variables), rE decreases
strongly. For the case of the initial deployment (cp. Figure 8a), a break-even (rE = 1) can
be observed. For instance, for systems with 300 pairs and 140 variables each (on average),
the implementation efforts are the same (here, assuming the average hourly cost of a
programmer of 50 US$ relating to a total of approx. 165,000 US$ implementation costs).
After this, for even larger systems, the proposed approach strongly outperforms manual
programming (RInit).
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Figure 7. Comparison of implementation efforts for an initial deployment of a data collection architecture as a function of
the number of publisher/subscriber pairs and the average number of variables per pair. Scenarios encompass an initial
deployment and without a subsequent migration. (a) manual implementation; (b) MDD approach.

If migrations are considered (cp. Figure 8b), the relative efforts decrease, and MDD is
viable for even smaller systems. For instance, for a system with 300 pairs and 99 variables
per pair, rE of 1 is reached when an additional migration is included (relating to a total
implementation cost of 139,000 US$). The more migrations are planned (or, the more
different variants with support for different protocols have to be supported in parallel),
the better the proposed approach’s performance is in comparison to classical software
programming (RMig).

Figure 8. Relative effort rE between MDD of data collection architectures and classical, manual programming with
break-even (rE = 1) marked. Log-scale of colormap. (a) only initial; (b) initial + one migration

In summary, the conservative extrapolation case-study demonstrated the performance
of the proposed approach for the MDD of data collection architectures in general. While
for small systems, a classical software development approach is strongly preferred, for
larger projects, the proposed approach strongly outperforms classical programming. Since
the developed toolchain can be reused for several, independent realizations and the deter-
mined numbers are realistic regarding the sizes of the systems required for a break-even
for industrial scenarios, the proposed approach can represent a feasible alternative for
practical realizations.
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5. Conclusions and Outlook

Data collection from heterogeneous CPSoS is one of the main prerequisites for the
practical realization of I4.0 concepts. Only when data are widely available can they be
used to provide additional insights. However, the manual development of data collection
architectures for CPSoS is time-consuming and expensive due to the wide variety of
available protocols and legacy systems.

Therefore, this work contributed with an innovative and integrated, model-driven
approach for the automatic generation of the communication part of data collection ar-
chitectures. Based on a graphical DSL, complex data collection scenarios in CPSoS can
be described in collaboration with several involved disciplines. The models then serve as
the basis for the model transformation to yield a functional data collection architecture.
The proposed approach currently supports a multitude of established IIoT protocols. In a
lab-scale case-study, the approach proved its feasibility and demonstrated significant effort
savings compared to classical software programming. In a unique extrapolation study,
this contribution tries to address the research gap identified by Wortmann et al. [14] and
provides a general, quantitative evaluation of the approach. A significant saving of efforts
could also be proved for generalized use-cases. Furthermore, it could be demonstrated
that, for larger systems in the size of industrial systems, the development of the underlying
toolchain for the MDD of data collection architectures can be justified by the effort savings.

Future work is dedicated to several aspects: on the one hand, an extended extrap-
olation case-study using a sophisticated effort estimation model such as COCOMO II
instead of LoC metrics could increase the validity of the results. On the other hand, the
approach would benefit from better integration into the engineering process. As several
artifacts describe, for instance, bus configurations and signals are available in the respective
engineering tools, e.g., Siemens TIA, reusing this information would relieve the experts
from remodeling this information, remove redundancies, and further increase the expected
efforts savings compared to manual programming. A fully-integrated modeling environ-
ment with bi-directional synchronization between graphical representation and the model
instance is vital for industrial applications from a practical point of view. Nevertheless,
from a scientific point of view, this will not alter the achieved results. As always with
systems composed of various, heterogeneous systems, the trust between all participating
systems is a significant concern [41]. Malicious systems could, for instance, purposely send
incorrect data or try to disturb data transfer inside the network (e.g., (Distributed) Denial
of Service (DDoS) attacks). Including these aspects into the DSL and provide means to
monitor the correct operation of the CPSoS could be a valuable extension of the approach.

Besides trust, the extension of the approach for capturing the field level in more
detail would be very relevant. For instance, the metamodel of the DSL4hDNCS by Vogel-
Heuser et al. [25] has the same basis as the one contributed in this work. In addition, the
graphical notations are already fully aligned. By consolidating the modeling approaches
and their metamodels, a wide range of OT/IT-systems could be modeled, including control
aspects, data generation, and data collection. This could also provide valuable insights
into factors such as timing behavior of systems, the influence of different fieldbus or
network configurations (e.g., local area networks vs. remote computing over wide area
networks), and the deployment of software for data collection onto resource-constrained
control devices. The models could also be used to find feasible deployment alternatives
and optimize the overall configuration of the CPSoS. Furthermore, extending the approach
to also capture not only the dynamics of systems, but of data and its characteristics could
close the gap between collection and processing of data.

An additional interesting aspect is the transfer and application of the proposed con-
cepts for IoT environments. Here, distinct requirements, such as limited computational
power and communication links, as well as the interaction with low-level electronics will re-
quire modifications and extensions to the metamodel, as well as the model-transformation
step. Moreover, the provided code temples have to be replaced to support established
toolchains for embedded devices (e.g., provided as C-Code). Here, the heterogeneity
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in available controllers, their programming interfaces and interaction with registers, as
well the substantial limitations put on the communication libraries concerning available
memory, need special considerations. However, the proposed approach can also enable
significant effort savings in the realization of IoT scenarios and possibly easy integration
into IIoT environments.
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