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Abstract: Affordable and accurate weather monitoring systems are essential in low-income and
developing countries and, more recently, are needed in small-scale research such as precision agricul-
ture and urban climate studies. A variety of low-cost solutions are available on the market, but the
use of non-standard technologies raises concerns for data quality. Research-grade all-in-one weather
stations could present a reliable, cost effective solution while being robust and easy to use. This
study evaluates the performance of the commercially available ATMOS41 all-in-one weather station.
Three stations were deployed next to a high-performance reference station over a three-month period.
The ATMOS41 stations showed good performance compared to the reference, and close agreement
among the three stations for most standard weather variables. However, measured atmospheric
pressure showed uncertainties >0.6 hPa and solar radiation was underestimated by 3%, which could
be corrected with a locally obtained linear regression function. Furthermore, precipitation measure-
ments showed considerable variability, with observed differences of +7.5% compared to the reference
gauge, which suggests relatively high susceptibility to wind-induced errors. Overall, the station is
well suited for private user applications such as farming, while the use in research should consider
the limitations of the station, especially regarding precise precipitation measurements.

Keywords: ATMOS41; all-in-one; weather monitoring; low-cost; weather station comparison

1. Introduction

Weather monitoring plays a central role in the understanding of the hydrological cycle,
weather forecasting, risk assessment and management as well as agricultural planning, the
administration of natural resources, climate change studies and other public and private
interests. Despite the fact that modern automatic weather station networks are typically
well developed in high-income countries, data quality and station coverage are often
limited in low-income countries due to high instrumentation and maintenance costs [1-3].
Consequently, resources and trained personnel to set up and maintain a sufficient number
of stations are lacking to adequately cover the spatiotemporal variability of meteorological
variables [4,5]. Additionally, growing interest in microclimate monitoring for precision
agriculture [6-8] or urban climate and heat island studies [9,10] requires weather stations
that are inexpensive, efficient, and provide local and reliable data for modelling applications.
Ideally, the design of such weather stations meets the following criteria: (i) robustness to
reduce calibration frequency; (ii) compact design for ease of handling and to minimize
sensor damage; (iii) low maintenance; (iv) low power requirements; (v) low cost; (vi)
compatibility with different logger systems; (vii) wireless communication.

With the increasing use of wireless sensor networks [11], various non-standard
low-cost weather monitoring systems have been developed in the past few years us-
ing a wide range of sensor hardware and different microcontroller architectures, such
as Arduino [12-14] or Raspberry Pi [7,15,16]. These stations can be very cost effective,
with prices of several hundred Euros [3], but they often lack adequate calibration and
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testing, raising concerns about the accuracy, precision, and reliability of the collected
data [17]. However, information on data quality in terms of both the accuracy and re-
peatability of such low-cost weather stations is crucial for modelling applications and
decision-making [18,19]. Furthermore, designing these non-standard devices requires suffi-
cient knowledge of the associated hardware and software for installation and maintenance,
while the moving parts may be susceptible to failure. Commercial all-in-one weather
stations, e.g., [20-22], that incorporate multiple sensors in a single unit can be a viable
alternative as they are easily deployable, generally cheaper than standard weather stations
composed of individual sensors, and include manufacturer reported accuracy, precision,
and calibration details. On the downside, they are less flexible in terms of adding or
exchanging sensors and may suffer from interference between sensors due to their compact
architecture [23]. Nonetheless, their plug-and-play principle and the compact design are
clear advantages since they facilitate non-expert use and make them suitable for continuous
deployment in rural or remote areas.

This study focuses on the assessment of the ATMOS41 all-in-one weather station that
holds 12 embedded sensors, developed and produced by METER Group, Inc. The station
is currently used in sub-Saharan Africa to improve crop production of maize [24] and
to build the Trans-African Hydro-Meteorological Observatory (TAHMO) network [25].
TAHMO aims at installing 20,000 hydro-meteorological stations across sub-Saharan Africa
and collected data will be used for educational purposes at local schools as well as aid
in scientific modelling, early warning systems, and the analysis of water availability [26].
Furthermore, the ATMOS41 has recently found applications in crop research and private
sector sensor networks of various industrialized countries. In Portugal, the station is being
used in the development of a forest monitoring system for fire detection [27] and in the
field of smart agriculture to improve vineyard management practices [28]. In addition,
the ATMOS41 is part of the Montana Mesonet monitoring stations in the Upper Missouri
River Basin, where collected data are used for drought detection and natural resource
management, amongst others [29]. Further applications include the investigation of crop
water stress in apple orchards at Washington State University [30] and the estimation of
the plant growth status of paddy rice in Japan [31].

METER and partners provide reports of calibration and sensor performance tests
for the complete weather station or for individual components performed in the lab or
in outdoor testbeds of the METER Pullman campus [32]. Furthermore, [33] conducted a
first-order performance analysis of the early version of the station. The study compared
6 months of data recorded in 2017/2018 by the ATMOS41 station against a weather station
of the Institute of Atmospheric and Climate Science (IAC) of ETH Zurich and a Swiss-
MetNet solar radiation station located at 2.5 km distance from the test site. Overall, the
ATMOS41 showed similar performance to the IAC station, but the authors suggested that
further tests are needed.

Since its first release in 2017, several improvements of the ATMOS41 station were
developed, some of which directly affect the measurement of certain variables and the
overall performance of the station [34]. These changes include: (i) improved sensor geome-
try to avoid adverse effects on wind measurements caused by heavy rain, (ii) improved
sensor firmware and wind sensing algorithm, (iii) upgraded sensors and the addition of a
secondary calibration for relative humidity and atmospheric pressure.

Considering the wide use of the ATMOS41 weather station for small- and large-scale
weather monitoring in sub-Saharan Africa [24-26] as well as industrialized countries [27-31],
independent testing under “out of the lab” conditions can provide further insight and
eventually identify possible limitations of the ATMOS41 station. In this way, a thorough per-
formance assessment can inform private costumers and research organizations regarding
the potential fields of application and provide impulses for further hardware or software
developments. Therefore, the aim of this study is to carry out such in-depth assessment
through direct comparison to an independent, high-performance weather station as well
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as the inter-comparison of multiple ATMOS41 stations. Within this context, the following
questions will be addressed:

e  What is the quality of weather data from the ATMOS41 weather station?

e  What systematic or random errors affect the ATMOS41 station?

e How well does the ATMOS41 station perform compared to a high precision, high
quality weather station?

e  What are the limitations of the ATMOS41 station?

2. Materials and Methods
2.1. ATMOS41 All-in-One Weather Station

The ATMOS41 is an all-in-one weather station developed by METER Group, Inc.
(Pullman, WA, USA). The device is rather inexpensive for developed countries (below EUR
2000), has a compact design with no moving parts, and can be mounted with minimal
effort to ensure easy deployment in a variety of terrains and locations. The station has
12 embedded sensors that measure standard weather variables, namely solar radiation,
precipitation, air temperature, relative humidity, atmospheric pressure, wind speed and
direction, plus additional parameters such as lightning strike count or compass heading.
Further characteristics of the station are summarized in Table 1.

Table 1. Characteristics of the ATMOS41 all-in-one weather station.

Characteristic ATMOS41
Manufacturer METER Group, Inc.
Cost EUR 1750
Dimensions Height: 34 cm, @ =10 cm
Warranty 1 year

Mount on pole, stand, or tripod; orient to true North; level the
weather station
Recalibration: every 2 years;
Cleaning: check for bird droppings and insect debris
Supply Voltage: 3.6 to 15V
Current draw: 8.0 mA during measurement, 0.3 mA while asleep
Operating temperature —40 to +50 °C
Communication protocol SDI-12
Pole, stand or tripod and a data logger (third party loggers are
compatible too)

Installation
Maintenance

Power requirements

Additional equipment

2.2. Reference Weather Station

The performance of the ATMOS41 weather station was evaluated through a compari-
son with measurements from a meteorological station that serves as a backup station for
the official Selhausen (C1) measurement site [35], which is part of the Integrated Carbon
Observation System (ICOS) [36]. The backup station, hereafter referred to as ICOS-bkp,
consists of individual, high-quality sensors that fully comply with the ICOS standard.
This standard specifies minimum requirements for sensor selection as recommended by
the World Meteorological Organization (WMO) [37] and includes detailed descriptions
for measurement and calibration processes as well as regular maintenance [38]. ICOS
measurement uncertainty requirements are based on the “achievable uncertainty” that can
be expected in operational practice, as specified in the WMO Guide No. 8 [37]. The total
equipment costs for an ICOS level one station are estimated at EUR 10,000 [39], including
the costs of logger and tripod (ca. EUR 1800 for the Selhausen station). The cost of weather
sensors used at an ICOS station is hence more than four times the cost of an ATMOS41
device. The ICOS-bkp station records instantaneous values for solar radiation, temperature,
and relative humidity at an interval of 20 s and an installation height of 2.5 m. Precipitation
is recorded at a height of 1 m above ground, and a 10 min accumulated value recorded at a
separate data logger was used for the comparison with the ATMOS41 stations.
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Atmospheric pressure, wind speed, and wind direction are only recorded at the main
ICOS station but are not recorded at the backup station. For the comparison of wind
speed and direction, data recorded by a Vaisala WXT520 weather transmitter (Vaisala
Corporation, Helsinki, Finland) were used. This instrument is installed at a height of 2 m
above ground next to the ICOS-bkp station and records data for the SE_BDK_002 station of
the Terrestrial Environmental Observatories network (TERENO) [40] at a 10 min interval.
The Vaisala WXT520 meets the high accuracy and precision standards specified by ICOS for
wind speed and direction but has a measurement uncertainty of £0.5 hPa for atmospheric
pressure instead of the £0.3 hPa required by ICOS standards. Therefore, the atmospheric
pressure sensor at the main ICOS was used as a reference to the ATMOS41 stations.

2.3. Experimental Setup

Data were collected from 23 April to 5 July 2020 (73 days) in Selhausen, Germany
(50.87 N 6.45 E) at an altitude of 103 m.a.s.l. The area is characterized by a temperate
maritime climate with a mean annual air temperature of 10 °C and annual precipitation of
700 mm. The site is located in an agricultural area with the dominant crops being sugar
beet, winter wheat, and winter barley [36].

Three ATMOS41 weather stations (hereafter referred to as Atmosl, Atmos2 and At-
mos3) were set up next to the Vaisala and ICOS-bkp stations. Atmosl is the first generation
of the station, purchased in 2017, and was previously deployed for a period of less than
6 months. Atmos2 and Atmos3 are the latest versions of the station, purchased in 2020, and
used for the first time in this study. All three ATMOS41 stations were mounted in a row
and installed at 2 m above ground (Figure 1). The stations were oriented north and levelled
according to the user manual [41] to ensure accurate measurements of wind direction,
precipitation, and solar radiation. Cumulative or instantaneous data were recorded at
a 10 min interval for precipitation and all other variables, respectively. The ATMOS41
stations were connected to a CR1000X data logger (Campbell Scientific Ltd., Logan, UT,
USA) which was powered via a 12 V battery connected to a battery charger.

Vaisala
ATMOS411€0S-bkp

Selhausen

9 .

ICOS-bkp

Figure 1. Experimental site with the three ATMOS41 stations, the Vaisala weather transmitter and
the ICOS-bkp station.
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Details on the sensors that measured each variable for the ATMOS41 and for the
ICOS-bkp, ICOS or Vaisala stations, including approximate costs for individual sensors
used at the reference stations, are listed in Table 2. The accuracy of most weather sensors
used in the ATMOS41 station, as stated by the manufacturer, is compliant with the “achiev-
able uncertainty” standard used by ICOS, with the exception of the air temperature and
atmospheric pressure sensor (ICOS standard of 0.1 °C and £0.3 hPa, respectively).

Table 2. Sensor details for the ATMOS41 weather station as well as the ICOS-bkp, Integrated Carbon Observation System
(ICOS) or Vaisala station.

Parameter ATMOS41 ICOS-bkp, ICOS or Vaisala

Pyranometer with permanent

Miniature pyranometer with silicon-cell ventilation/heating (CMP21, Kipp & Zonen,

Radiation (Apoge;lns{ntl.m e.nis{/\l; ;)gz;n, USA) Delft, Netherlands; EUR 900)
eigcltizgr 150 /jn Resolution: 1 W/m?
' Accuracy: £1%
. . . . 2
Optical sensor rain gauge with 68 cm? catch area We1gh1r21g rain gauge with 200 cm™ catch area‘
o (METER Group Inc., Pullman, USA) (Pluvio?, Ott HydroMet, Kempten, Germany;
Precipitation Resolution: EUR 5000)
esolution: 0.017 mm . i1
Accuracy: 5% (up to 50 mm/h) Resolution: 0.05 mm within an hour
Accuracy: £1 mm
Thermistor, non-aspirated Resistance thermometer PT100 1/3 Class B
(METER Group ,Inc Pullman, USA) (HC2S3, Rotronic, Bassersdorf, Germany;
Temperature Resoluti i 0.1°C ! EUR 900)
esolution: 0. . R
Accuracy: 0.6 °C Resolution: 0.01 °C
Accuracy: £0.1 °C
(METER Group Inc., Pullman, USA) ROTRONIC® Hygromer IN-1 (HC2S3,
Relative humidity Resolution: 0.1% Rotronic, Bassersdorf, Germany)
Accuracy: +3% (varies with temperature Resolution: 0.02%
and humidity) Accuracy: £0.8%
Barometric pressure sensor BAROCAP® sensor (PTB110, Vaisala Inc.,
Pressure (METER Group Inc., Pullman, USA) Helsinki, Finland; EUR 730)
Resolution: 0.1 hPa Resolution: 0.1 hPa
Accuracy: 1.0 hPa Accuracy: £0.3 hPa (at +20 °C)
(MET]:}jlilt(giso(Lr;CIriseIIl’flrlnnii USA) WINDCAP® ultrasonic transducer (WXT520,
Wind speed Resolution: (’).01 m/s ’ Vaisala Inc., Helsieri, Finland; EUR 2350)
Accuracy: the greater of 0.3 m/s Resolutlon(:) 0.1m/s
or 3% Accuracy: 3% at 10 m/s
Ultrasonic anemometer WINDCAP® ultrasonic transducer (WXT520,
Wind direction (METER Group Inc., Pullman, USA) Vaisala Inc., Helsinki, Finland)
Resolution: 1° Resolution: 1°
Accuracy: +5° Accuracy: +3°

2.4. Performance Analysis

Python software (version 3.7.6, Python Software Foundation) was used for the graphi-
cal and statistical evaluation of the data quality and performance of the ATMOS41 weather
station. Data were checked for consistency and erroneous measurements were removed
manually. Wind speed and relative humidity were computed according to the procedure
described in the ATMOS41 user manual [41]. Data from the ICOS-bkp and ICOS station
were resampled to 10 min instantaneous data for comparison to the ATMOS41 data. Mea-
sured atmospheric pressure was corrected for the difference of 3.7 m in observation height
(combination of elevation and sensor installation height) between the instrument locations
using the barometric formula, while the effect of the distance of 350 m between the stations
was considered negligible. Graphical evaluation included time series plots and scatterplots
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for each parameter. Additionally, residual plots and correlation matrices were obtained and
analysed. Residuals were calculated by subtracting the value obtained at the ATMOS41
stations from the value measured at the reference station using hourly mean values (hourly
sums for precipitation).

The statistical analysis of solar radiation only considered daytime values as measured
nighttime solar radiation was zero. For the evaluation of measured precipitation, all time
steps without precipitation were discarded. Statistical analysis of precipitation additionally
included an event-based approach using a minimum rainfall amount of > 0.2 mm/event
and a minimum inter-event time of 1 h.

For statistical comparison, the Arithmetic Mean () of the measured variables was
calculated. Other metrics included the Coefficient of Determination (R?, Equation (1)) as a
measure of agreement between two stations. The Root Mean Square Error (RMSE, Equation
(2)) was used as a measure of the difference between two stations. The RMSE is sensible
to outliers since higher weights are given to larger deviations between two stations [42].
The Mean Bias Error (MBE, Equation (3)) was used as a measure of the average error
between a station and the reference, with positive values indicating an overestimation and
negative values indicating an underestimation. The MBE should be used in combination
with other metrics as it is subject to cancellation errors since the sum of positive and
negative values may result in a smaller MBE [43]. Lastly, the Mean Absolute Error (MAE,
Equation (4)) was used as a measure of the absolute difference of a measurement compared
to the reference measurement. It is not subject to cancellation errors and is less sensitive to
outliers compared to the RMSE [42].

RZ=1 @
RMSE = )
MBE = (3)
1 N
MAE = < ) [vi = §il C)
i=1

where y is the reference value, § is the measured value, i is the mean of the reference value,
and N is the number of measurements.

3. Results and Discussion
3.1. ATMOS41 Inter-Sensor Variability

Instrument orientation data were recorded in the X- and Y-orientation for all three
ATMOS541 stations to identify undesired rotation or tilt. Orientation data (Figure 2) showed
that all stations remained stable within -2 degrees of dead level in X- and Y-direction
as recommended for accurate measurements in the user manual [41]. A few larger tilts
that exceed the 2 degrees mark are observed in Figure 2, which mostly coincide with
wind speeds >6 m/s (data not shown). However, only ~0.3% of measurements were
affected for Atmos2 and Atmos3 and large tilts were never sustained for more than a few
measured time steps. For Atmosl, a larger 2.6% of measurements were affected due to a
small, temporary change in orientation between 24 and 29 April 2020, which was likely
caused by a movement of the whole mounting structure. In addition, Atmos1 showed a
slight misalignment of 0.5 to 1.0 degrees compared to Atmos2 and Atmos3, which was not
considered significant.
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X-orientation [°]

Y-orientation [°]

Atmosl Atmos2 —— Atmos3

T T T T T
2020-05-01 2020-05-15 2020-06-01 2020-06-15 2020-07-01

Figure 2. X- and Y-orientation for the three ATMOS41 weather stations. The red dotted line indicates 2 degrees from

dead level.

The inter-sensor variability of the three ATMOS41 stations was analysed for the entire
observation period (23 April to 5 July 2020) for all standard weather variables by examining
10 min instantaneous data. Figure 3 shows a pairwise comparison of the three stations using
scatterplots, histograms with probability density functions, and the R? value arranged in
a matrix. The scatterplots show good agreement and no apparent bias between stations,
with most of the data points lying in the proximity of the identity line. Some scattering
effect can be observed for solar radiation (Figure 3a), which may have been caused by
temporal shading of a single sensor or differences in response time to changing radiation.
Relatively strong scatter can be observed in the wind speed measurements (Figure 3f),
which was likely caused by other external effects such as small-scale turbulences around the
stations. This scatter is reduced considerably when the data are aggregated to a larger time
step (data not shown). The histograms and probability density functions of all measured
variables generally show very similar distributions. Only in the case of relative humidity
(Figure 3e) does Atmosl show small differences in the distribution of values compared to
the histograms of Atmos2 and Atmos3.

The comparison of all variables shows an R2 > 0.96 except for wind speed, for which
the R? ranges between 0.72 and 0.74. R? values increase when hourly averages are consid-
ered (data not shown), especially in the case of wind speed (R? increases to 0.91 for Atmos1
vs. Atmos2, 0.92 for Atmosl vs. Atmos3, and 0.90 for Atmos2 vs. Atmos3). Despite most
comparisons being rather satisfactory, there is slightly better agreement between Atmos2
and Atmos3 when compared to Atmos1 for solar radiation, atmospheric pressure, and
relative humidity.

A statistical summary with a pairwise assessment of all three ATMOS41 stations
is given in Table 3. There is generally close agreement between all stations for most
parameters with low RMSE and small MBE. Larger variability within the three stations
was observed for wind speed and precipitation measurements. RMSE for wind speed is
~0.76 m/s at an average wind speed between 2.02 and 2.11 m/s. Atmosl and Atmos2
measured on average slightly higher wind speed compared to Atmos3 as shown by the
mean and MBE. Precipitation measurements show a RMSE of ~0.06 mm at an average
precipitation between 0.17 and 0.20 mm. The variability in precipitation measurements
becomes more apparent when comparing the total precipitation amounts, which were
unusually low for the observed months from late April to early July. The total amounts
are 82.21 mm (Atmosl), 75.92 mm (Atmos2), and 70.79 mm (Atmos3), while long-term
monthly means (1981-2010) are between 47 and 77 mm for the same months [44]. The
difference between the three stations is considerable given the relatively short observation
period and low total rainfall and stands in contrast to the test measurements performed
by METER, where a difference of <20 mm was observed within three ATMOS41 stations
for a total of ~800 mm of rainfall over a period of 4 months [32]. The results suggest that
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wind-induced random errors such as the deflection of air flow and the formation of eddies
and turbulences around the gauges [45] had an important effect on the measurements.
Atmosl was positioned west-southwest of the other two stations, which was identified
as the prominent wind direction during rainfall (data not shown). The three stations may
have perturbed each other due to their alignment with respect to the wind direction and the
relatively small distance between the stations, thus increasing the above-mentioned wind
effects for Atmos2 and even more for Atmos3. This could explain the consistently lower
amounts of rainfall measured by Atmos2 and Atmos3 compared to Atmosl. Low rainfall
rates, as observed for most of the measurement period, show a high volumetric fraction of
smaller drops (diameter < 1 mm), which are particularly prone to wind induced errors [46].
This may have caused the large observed variability despite the relatively low wind speeds
observed during rainfall events and throughout the measurement period (~2 m/s).

0.75 0.75
0.50 0.50
0.25 M 0.25

Atmosl
Atmosl

o 1000 o
=] . ] g 20
£ ? 5 M E
<< 0 1 < 0
© vt @
< 1000 R Ll é 20
E o 7 M 2
04 4 ; 14 . ! 014 . < . ; I
0 1000 0 1000 0 1000 0 25 0 25 0 25
Atmosl Atmos2 Atmos3 Atmosl Atmos2 Atmos3
(a) Solar radiation (W/m?) (b) Air temperature (°C)

= 075 = 075
g 050 . £ 050
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G 25 e P ]
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< 00 f i <
. i o ., 1025 1
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=} - .
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(e) Relative humidity (%) (f) Wind speed (m/s)

Figure 3. (a—f) Correlation matrices for all weather variables measured by the three ATMOS41
stations. Subplots in the lower left show scatterplots of station pairs with the dashed line indicating
the 1:1 identity line, the diagonal shows histograms of measured values with probability density
functions, upper right shows the coefficient of determination R?.
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Table 3. Statistical summary of the inter-sensor comparison for all standard weather variables measured by three ATMOS41

weather stations. Colours give an evaluation of the comparison, with red indicating the lowest and green the highest

performance.
R RMSE MBE
Station °N 1 2 3 1vs.2 1vs. 3 2vs. 3 1vs.2 1vs. 3 2vs. 3
Parameter
Solar radiation [W/mz] 320.26 345.21 345.6 38.34 47.37 32.76 —24.96 —25.35 —0.39
Precipitation [mm] 0-20 0.18 0.17 0.06 0.08 0.05 0.015 0.027 0.012

(82.21)*  (75.92)*  (70.79)*

Air temperature [°C] 15.05 15.11 15.26 0.22 0.38 0.34 —0.07 —0.22 —0.15
Atmospheric pressure [hPa] 1004.92 1004.70 1004.53 0.42 0.51 0.23 0.22 0.39 0.17
Relative Humidity [%] 67.35 66.18 65.56 3.26 3.49 1.38 117 1.79 0.62
Wind speed [m/s] 2.1 2.11 2.02 0.77 0.75 0.76 —0.009 0.089 0.098

* values in parentheses refer to the total precipitation amount during the observation period.

Generally, somewhat lower RMSE and MBE were observed between Atmos2 and
Atmos3 as opposed to Atmosl for solar radiation, atmospheric pressure, and relative
humidity. The greater similarity between the newer ATMOS41 variants with regard to the
latter two variables is most likely a result of the sensor improvements implemented after
2017, as mentioned above. However, the most pronounced difference was observed for
solar radiation, where a bias of ~—25 W/m? was found between the older Atmosl (2017
version) and the newer ATMOS41 stations. In comparison, the bias between Atmos2 and
Atmos3 was only —0.39 W/ m? (Table 3).

At first, the ageing of the pyranometer was considered as a possible explanation for
the better agreement between the two newer ATMOS41 stations. This assumption was
tested using previous data from the older Atmosl (2017 version). Between 12 December
2017 and 24 May 2018 (164 days), the station was set up next to the ICOS site in Selhausen,
350 m from the ICOS-bkp station (Figure 1). Graphical and statistical analysis showed
minor differences in the performance of the station between the two periods (data not
shown), which is more likely a result of the different seasons and lengths of the two
observation periods. The results suggest a stable performance of the Atmos1 over the 3-year
period, even though calibration or maintenance were not performed. However, Atmosl
did not operate continuously throughout this period and hence it was not exposed to
adverse weather conditions, such as strong solar radiation or heavy wind and precipitation.
Therefore, sensor ageing or deterioration should be further studied, especially when
continuous deployment of the station as part of a large monitoring network such as
TAHMO is intended. A long-term assessment could include field visits, calibration checks
and the establishment of statistical validation procedures as proposed in [47] or, if possible,
comparison with a nearby reference station over an extended period.

Communication with the manufacturer allowed us to identify another possible issue
related to the pyranometer provided by Apogee Instruments. A problem in the production
of the early pyranometers was identified, which affected some of the earlier weather
stations and was solved at a later stage. This most likely explains the observed difference
in performance between the older Atmos1 (2017 version) and the more recent Atmos2 and
Atmos3 stations.

3.2. Comparison of ATMOS41 with ICOS Backup Station

In the following, data collected over the 73-day period that includes late spring and
early summer months with a small data gap of two days in mid-June are compared. The
first three weeks of radiation data for Atmos3 were missing due to a defect funnel that was
later replaced. To better visualize the comparison of the different stations, only a period
of eight days from 30 May to 6 June (23 April to 5 July for precipitation) is shown in this
section. The full time series can be found in the appendix (Appendix A).
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Table 4 shows a summary of the statistical performance analysis of the three ATMOS41
stations compared to the reference station. Overall, R?>0.90 and relatively low RMSE, MBE
and MAE were found for most variables except precipitation, wind speed, atmospheric
pressure and solar radiation (only Atmos1). In the following, each variable is assessed in
more detail.

Table 4. Statistical summary of the performance of three ATMOS41 stations compared to the ICOS-bkp or Vaisala reference

station. Colours give an evaluation of the comparison, with red indicating the lowest and green the highest performance.

R? RMSE MBE MAE
Station °N 1 2 3 1 2 3 1 2 3 1 2 3
Variable
Solar radiation (W/m?) 0.96 099 099 5646  31.88 3228 | —3522 903 1006 | 3814 1840 17.14
Precipitation 0.92 093 093 0.13 0.13 0.13 0.02 —0.01  —0.02 0.08 0.09 0.08
(mm/10min)
Precipitation 099 099 099  0.19 024 030 006 —005 —017 011 015 021
(mm/event)
Tem?,ecr;‘t“re 0.99 099 099 0.53 0.49 045 -037 —031 —0.16 0.42 0.38 0.33
Atmospheric Pressure
(hP3) 0.98 099  1.00 117 0.89 0.75 1.01 0.79 0.63 1.02 080  0.64
Relative Humidity (%) 0.95 097 097 433 3.36 3.39 137 0.25 —0.36 347 250 255
W“(‘ijl;)ee‘i 0.62 058  0.63 0.84 0.88 0.82 0.17 0.18 0.09 0.55 0.59 0.55

3.2.1. Solar Radiation

Figure 4a shows an 8-day period of solar radiation as measured by the four weather
stations. The timing and variability of radiation during the day are well captured by the
ATMOS41 stations. However, the maximum measured solar radiation is slightly lower
than that of the reference station, especially for Atmosl. On a clear day, Atmos3 shows
a recurring small drop in solar radiation in the early morning, suggesting a shadow cast
from a surrounding sensor. On overcast days such as 4 June, the four stations show almost
identical measurements.

The scatterplots of the ATMOS41 station vs. the ICOS-bkp (Figure 4b—d) confirm the
overall good agreement of the stations, with an R? between 0.96 and 0.99 (Table 4). The
plots show little scatter and RMSE is ~32 W /m? for Atmos2 and Atmos3 and somewhat
higher for Atmos1 (56.46 W/m?) (Table 4). Solar radiation values >400 W/m? show a small
underestimation by the ATMOS41 (Figure 4b—d).

Figure 4e depicts the deviation between the three ATMOS41 stations and the ICOS-
bkp station through a probability density plot of the residuals from hourly average data,
which considers only daytime solar radiation. The peaks of the distributions show a
small tendency of the ATMOS41 stations to measure higher values (negative residuals),
which occurs at lower solar radiation as suggested by the scatterplots (Figure 4b—d). The
underestimation of high solar radiation is represented in the right tail of the distribution
(positive residuals), with a mean bias of —35.22 W/m? for Atmos1 and mean biases of
—9.03 and —10.06 W/m? for Atmos2 and Atmos3, respectively (Table 4).

The presented results for the Atmos1 generally agree well with the analysis by [33],
which compared the 2017 version of the ATMOS41 station with a SwissMetNet station. In
their study, a lower bias of 8.9% was found compared to the one in this comparison (9.9%).
This may be attributed to the overall lower radiation during the winter period studied
by [33] as opposed to the early summer period of this study that included many sunny
days. Despite the 2 km distance between pyranometers, the authors observed a lower MAE
and RMSE (13.57 and 39.40 W/m?) than what was found in this study, which may again be
related to the characteristics of the observation period since the ATMOS41 measures more
accurately in the lower radiation range.
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Figure 4. (a) A short time series of solar radiation measured by three ATMOS41 weather stations and
the ICOS-bkp station from 30 May to 6 June 2020. (b—d) Scatterplots of 10 min solar radiation for the
three ATMOS41 stations vs. the reference station. (e) Probability density functions of the residual
mean hourly solar radiation. Dashed lines show the mean of residuals ().

Despite the small systematic deviation from the reference ICOS-bkp station, the
quality of the radiation measurements provided by the ATMOS41 was satisfactory. The
newer stations show considerable improvement compared to the 2017 version of the
station (Atmos1) and confirm the comparison test performed by the manufacturer, where a
linear regression (y = 1.0323x) showed ~3% underestimation [32]. Linear regressions for
Atmos2 (y = 1.0372x) and Atmos3 (y = 1.0336) were similar to the one found by METER
(Appendix A). Granting that this bias persists in other climates and locations and compared
to other high-performance pyranometers, a simple linear correction function may be
developed and used to adjust the measurements.

3.2.2. Precipitation

Figure 5a shows an 8-day period with several precipitation events between 28 April
and 4 May. The timing of the events agrees well for all four stations, but there are some
differences in magnitude and the effect of the different measurement resolutions (0.017 mm
for the ATMOS41 and 0.05 mm within an hour for the Pluvio? that is used at the ICOS-bkp
station) is visible. A direct comparison of the rainfall measured by the two gauges is
complicated given the difference in measurement resolution, gauge size and shape, and
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installation height, as well as the use of a windshield with the Pluvio?. The difference
in resolution caused a greater scatter for small rainfall amounts in the 10 min time series
(Figure 5b), with an R2 ~0.9, RMSE ~0.15, and MAE ~0.10 mm for the three stations. The
event-based analysis compared 46 rainfall events with rainfall amounts ranging between
0.2 and 19.5 mm and showed more coherent results with R? ~0.99 (Figure 5c). On average,
Atmosl measured higher precipitation, Atmos3 measured somewhat lower precipitation,
while Atmos2 showed the least bias compared to the reference station (Table 4).
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Figure 5. (a) A short time series of precipitation measured by three ATMOS41 weather stations and
the ICOS-bkp station from 28 April to 4 May 2020. (b,c) Scatterplots of 10 min precipitation and event-
based precipitation sum for the three ATMOS41 stations vs. the reference station. (d) Cumulative
precipitation measured by the three ATMOS41 weather stations and the reference station for the
whole time series (numbers in parentheses refer to total precipitation amount). (e) Probability density
functions of the residual hourly precipitation sum. Dashed lines show the mean of residuals ().

Differences between the stations are more apparent when the cumulative precipitation
for the observation period is analysed (Figure 5d). Total differences in precipitation com-
pared to the reference are 5.78 mm (7.56%), —0.51 mm (—0.67%), and —5.64 mm (—7.38%)
for Atmos1, Atmos2, and Atmos3. The difference to the reference rain gauge and between
the ATMOS41 stations (as discussed in Section 3.1) is considerable and shows higher dis-
crepancies than what is reported by the manufacturer (within 3% of the average of three
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tipping-spoon rain gauges) [32]. Surprisingly, [33] found an underestimation of only 8.7%,
even though their observation period included the entire winter season with several snow-
fall events. Since the ATMOS41 rain gauge is not heated and solid precipitation first needs
to melt before it can be measured, higher errors could be expected during that period. This
could not be further investigated, since snow was not observed during the measurement
period of the present study. However, many applications such as agricultural monitoring
or the use of the station in snow free climates do not rely on accurate measurements of the
volume of solid precipitation.

As previously discussed in Section 3.1, wind-induced errors have likely played an
important role in the measurement of rainfall, leading to significant errors considering the
relatively small total precipitation amount and low rainfall intensities that were characteris-
tic for the observed period. Additionally, gauge size and shape influence the deformation of
the wind field at the gauge and minor changes in installation height can cause differences of
up to 10% in precipitation measurements, as comparison studies of different rainfall gauges
have shown [46,48]. A higher wind-induced under catch could therefore be expected for
the ATMOGS41 stations that were installed at an approximate height of 2 m compared to the
Pluvio? that is installed at a height of 1 m and uses an Alter windshield which has shown to
improve the performance of the gauge [49,50]. The higher precipitation amount measured
by the Atmos1 could be a result of the frequent detection of very small rainfall amounts,
since the Pluvio? does not measure fine precipitation below a threshold of 0.05 mm within
an hour.

Rainfall intensity during the observation period rarely exceeded 10 mm/h, a com-
monly used threshold for heavy rainfall [51]. Those events did not show lower accuracy of
the ATMOS41 station, but a longer observation period with higher rainfall intensities is
needed to accurately assess the performance of the station during extreme events.

3.2.3. Air Temperature

Figure 6a shows air temperature data of the four stations during an 8-day period. Tem-
perature dynamics are well captured by all ATMOS41 stations. However, daily maximum
temperature and temperature during rainfall (5 June) are slightly lower and show a higher
noise level for the ATMOS41 stations. The latter could be a result of a wet, exposed temper-
ature sensor or its immediate surroundings, making it more prone to evaporative cooling
compared to the shielded ICOS-bkp sensor. In comparison, [33] found that night-time lows
measured by the ATMOS41 were generally lower compared to the IAC instrument, while
showing high relative humidity. The authors observed temperatures ranging from —13 to
23 °C with a mean temperature of 4.5 °C, as opposed to the mean temperature of 15 °C
measured during the present study. The scatterplots (Figure 6b—d) and statistical analysis
(Table 4) show very good performance of the ATMOS41 with values close to the identity
line, little scatter, and R? close to 1. RMSE and MAE are between 0.33 and 0.53 °C for all
stations, nearly 50% lower than the RMSE and MAE reported in [33].

Similar to the findings of [33], there is a small mean bias towards lower temperature
measured by the ATMOS41 (MBE between —0.16 and —0.37 °C), as also reflected in the
probability density plot of the hourly residuals (Figure 6e). The temperature sensor of the
ATMOS41 is exposed to solar heating, which is why an energy balance correction is used
to calculate the actual temperature. The correction factor is proportional to solar radiation
and inversely proportional to wind speed. Since errors in the measurement of those two
variables may propagate to the temperature measurement, the overestimation of wind
speed may explain the small bias in the measurement (Table 4). However, most values lie
within 0.5 °C difference. Additionally, no tendency to lower accuracy with temperatures
>30 °C was identified, which suggests that the ATMOS41 measurements are reliable within
the observed range of —1.1 to 32.2 °C. Even though the accuracy of 0.6 °C, as stated by
the manufacturer, does not meet the “achievable uncertainty” standard of £0.2 °C used by
ICOS, air temperature measurements with the ATMOS41 were reliable and consistent.
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Figure 6. (a) A short time series of air temperature measured by three ATMOS41 weather stations
and the ICOS-bkp station from 30 May to 6 June 2020. (b—d) Scatterplots of 10 min air temperature
for the three ATMOS41 stations vs. the reference station. (e) Probability density functions of the
residual mean hourly air temperature. Dashed lines show the mean of residuals (y).

3.2.4. Atmospheric Pressure

Figure 7a shows atmospheric pressure measured by the four stations during an 8-day
period. The ATMOS41 stations closely follow the reference station with small differences
that are consistently found during daily peaks and at lower pressures, which generally
coincide with rainfall. The high R? > 0.97 indicates good agreement of the measurements.
However, RMSE and MAE are relatively large, ranging between 0.75 and 1.17 hPa and
0.64 and 1.02 hPa, respectively. In agreement with [33], the scatterplots (Figure 7b-d)
and the probability density plot (Figure 7e) show a small bias towards higher values
measured by the ATMOS41 compared to the reference station (MBE between 0.63 and
1.01 hPa). Atmosl shows slightly lower overall performance, which was likely improved
as a consequence of the secondary calibration added for the newer stations (see Section 1).
While the ATMOS41 performs satisfactorily within the manufacturer stated accuracy of
£1 hPa, the pressure sensor does not meet the “achievable uncertainty” requirement of
0.3 hPa as commissioned by the WMO [37]. Therefore, the ATMOS41 shows only moderate
performance in measuring atmospheric pressure compared to the reference station.
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Figure 7. (a) A short time series of atmospheric pressure measured by three ATMOS41 weather sta-
tions and the ICOS-bkp station from 30 May to 6 June 2020. (b—d) Scatterplots of 10 min atmospheric
pressure for the three ATMOS41 stations vs. the reference station. (e) Probability density functions of
the residual mean hourly atmospheric pressure. Dashed lines show the mean of residuals ().

3.2.5. Relative Humidity

Figure 8a shows relative humidity as measured by all four stations during an 8-day
period of the measured time series. Relative humidity is captured well by the ATMOS41,
with slightly higher humidity measured only during rain events such as 5 June for all
ATMOS41 stations. This matches the observed small underestimation of temperature
during rain events, as discussed in Section 3.2.3. Atmos1 additionally shows higher values
during the daytime minimum humidity. The statistical summary (Table 4) shows R? > 0.95
for all stations and RMSE and MAE range from 3.4 to 4.3% and 2.5 to 3.5%, respectively,
with Atmos] showing slightly poorer performance than Atmos2 and Atmos3.
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Figure 8. (a) A short time series of relative humidity measured by three ATMOS41 weather stations
and the ICOS-bkp station from 30 May to 6 June 2020. (b—d) Scatterplots of 10 min relative humidity
for the three ATMOS41 stations vs. the reference station. (e) Probability density functions of the
residual mean hourly relative humidity. Dashed lines show the mean of residuals (j).

The scatterplot for Atmos1 (Figure 8b) confirms a small bias towards higher values for
lower relative humidity and towards lower values when humidity is high. As a result, the
Atmosl shows a relatively higher MBE of 1.37% compared to Atmos2 and Atmos3 (MBE of
0.25 and —0.36%, respectively). This indicates that the manufacturer’s adaptation of the
calibration function (see Section 3.1) for the newer stations resulted in an improvement
compared to the older Atmosl (2017 version). The probability density plot of the residuals
(Figure 8e) confirms the improved performance of the newer stations.

The ATMOS41 stations tend to saturate at 100% relative humidity more frequently
than the reference station, which seems to verify the observation of [33] and which may
also be related to the underestimation of air temperature, as discussed in Section 3.2.3.

3.2.6. Wind Speed and Direction

Figure 9a shows wind speed measured by the four stations during an 8-day period.
Daily wind dynamics measured by the three ATMOS41 stations match well with the
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measurements of the Vaisala station. However, measurements by the ATMOS41 show
higher peak values and a larger variability compared to the Vaisala station, which can be
explained by the finer resolution of the anemometer of the ATMOS41.
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Figure 9. (a) A short time series of wind speed measured by three ATMOS41 weather stations and
the ICOS-bkp station from 30 May to 6 June 2020. (b—d) Scatterplots of 10 min wind speed for the
three ATMOS41 stations vs. the reference station. (e) Probability density functions of the residual
mean hourly wind speed. Dashed lines show the mean of residuals (y).

The scatterplots (Figure 9b—d) show relatively large scatter around the identity line,
with an R? between 0.58 and 0.63. The wide spread in wind measurements is likely a result
of small-scale turbulence caused by surrounding instruments, as discussed in the context
of the precipitation measurements in Section 3.2.2 and which are captured due to the rapid
response of ultrasonic anemometers to sudden changes in wind speed [52]. R? increases
up to 0.89 when hourly averages are considered, suggesting that the scatter can be reduced
when small-scale differences average out over larger periods. RMSE and MAE are ~0.9 and
~0.6 m/s, respectively (Table 4). The probability density plot of the residuals (Figure 9¢)
shows a small mean overestimation of wind speed (negative residuals) with MBE between
0.09 and 0.18 m/s, with Atmos3 showing the best performance. Both station types used in
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this comparison use ultrasonic anemometers, which can measure very low wind speeds.
Therefore, the agreement found in this comparison was higher than that of [33], where
the ATMOS41 was compared to a cup anemometer that records zero wind speed values
more frequently.

Wind direction was compared by drawing wind roses for each station (Figure 10a-d),
where the length of the bins represents the frequency of the observed direction in percent,
while colours indicate the magnitude of wind speed. West to South-West and East are
dominant wind directions that occur, in total, ~40% of the time with a top frequency of
around 7.5% for West/South-West, while wind from the North is observed in total ~13%
of the time. The measurements from the Vaisala station agree well with the commonly
observed wind direction at the Selhausen site [35]. Strong winds were mainly observed
from West and South-West and sometimes from the North, while East winds were consid-
erably weaker. Wind roses from the ATMOS41 stations agree in the main wind directions
and speed with the reference station. Atmos1 more frequently recorded northerly winds
with a top frequency of ~7%, while Atmos2 and Atmos3 recorded West/South-West winds
with a higher frequency of ~10% as compared to the reference station. Wind roses for the
newer ATMOS41 stations differ somewhat from that of Atmos1 likely due to adjustments
made by the manufacturer (Section 3.1). Although our results do not show a significant
improvement of the measurement from the older Atmosl (2017 version) to the newer
ATMOG541 stations, wind direction is still measured reasonably well by the ATMOS41.

Il calm BN 6-8m/s
N 0-2m/s 8-10 m/s

N N 2-4m/s 10-12 m/s N
B 4-6m/s

SW SE
S S
(a) Vaisala (b) Atmosl
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s s
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Figure 10. Wind roses showing the frequency of observed wind direction at a 10 min interval

measured by (a) the Vaisala reference station. (b—d) the three ATMOS41 weather stations, for the
period from 23 April to 5 July 2020.
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4. Conclusions

This study evaluated the performance of the ATMOS41 all-in-one weather station
over a period of 73 days by assessing the inter-sensor variability of three stations and by
comparison against high quality, highly standardized reference meteorological stations.
Inter-sensor comparison of the three ATMOS41 stations showed overall close agreement
for most variables, while the newer Atmos2 and Atmos3 stations performed better in
measuring atmospheric pressure, relative humidity and solar radiation compared to the
older Atmos1 (2017 version). Solar radiation showed the greatest improvement, where
the bias was reduced from 35.22 W/m? to ~9.55 W/m?. Generally good agreement with
R? > 0.95 and small biases were observed for most of the examined weather variables when
compared to the reference station. If reference solar radiation data are locally available,
a simple linear correction function was proposed to account for the 3% systematic bias
that remained in solar radiation measured by the ATMOS41. The atmospheric pressure
sensor of the ATMOS41 showed only moderate performance compared to the ICOS station,
showing greater uncertainty in the measurements than recommended by the “achievable
uncertainty” standard commissioned by the WMO. The measurement of wind speed by
the ATMOS41 was slightly overestimated and showed relatively large scatter. Better results
are achieved with hourly or half-hourly averages, which are suitable for most modelling
applications. The largest variability between the stations was found in the measurement
of precipitation, where total precipitation measured by the ATMOS41 showed differences
around £7.5% compared to the reference. This was attributed mainly to wind-induced
errors that may have been exacerbated due to the close proximity of the three ATMOS541
stations as well as differences in the measurement resolution and architecture of the
compared rain gauges.

The results of this study showed similar or improved performance of the ATMOS41
compared to the early performance test, but also revealed its limitations. Further work
should focus on the performance assessment of the ATMOS41 during extreme precipitation
and wind speed as well as the long-term durability and accuracy of the station. The station
seems to be well suited for private users. In particular, farmers in high-income countries
can benefit from its compact design and limited maintenance requirements. Developing
countries may similarly benefit from the ATMOS41 station when costs are jointly carried
by multiple actors that use the collected data to market data products to private and
governmental institutions. This strategy is applied within the TAHMO project. Due to the
higher uncertainty related to atmospheric pressure and precipitation measurements, and
the non-heated gauge, the use of the ATMOS41 station in research appears to be better
suited for studies where the amount of solid precipitation is not relevant, where precise
rainfall or atmospheric pressure is not a key parameter or when multiple gauges can be
deployed to calculate average values for a given location. Overall, the ATMOS41 is a
good compromise between measurement accuracy and cost effectiveness, making it an
attractive component of wireless sensor networks as well as an expansion tool for weather
monitoring networks in remote areas or under limited financial resources.
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Figure A1. Full time series for all standard weather variables measured by three ATMOS41 weather stations and the
reference ICOS-bkp, ICOS or Vaisala weather station.
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