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Abstract: Autonomous vehicles enable the development of smart warehouses and smart factories
with an increased visibility, flexibility and efficiency. Thus, effective and affordable localisation
methods for indoor vehicles are attracting interest to implement real-time applications. This paper
presents an Extended Kalman Smoother design to both localise a mobile agent and reconstruct its
entire trajectory through a sensor-fusion employing the UHF-RFID passive technology. Extensive
simulations are carried out by considering the smoother optimal-window length and the effect of
missing measurements from reference tags. Monte Carlo simulations are conducted for different
vehicle trajectories and for different linear and angular velocities to evaluate the method accuracy.
Then, an experimental analysis with a unicycle wheeled robot is performed in real indoor scenario,
showing a position and orientation root mean square errors of 15 cm, and 0.2 rad, respectively.

Keywords: Radio Frequency IDentification; Kalman smoother; robot localisation

1. Introduction

The growth of Industry 4.0 applications lays the groundwork for the development of
new services and solutions [1]. In this scenario, the lion’s share is likely to be taken by a
new generation of autonomous vehicles, capable of operating in complex and dynamic in-
dustrial scenario with high flexibility and reliability. One of the most critical functionalities
needed to enable these new services is the so-called localisation, defined as the ability to
maintain an accurate estimate of each robot pose in time [2].

Since the large majority of production plants are actually indoor, localisation is almost
entirely intended as indoor localisation [3,4]. Given the absence of a reliable Global
Position System inside a plant or an indoor logistic area, several technologies have been
proposed to deliver a reliable localisation service. Laser Imaging Detection and Ranging
(LiDAR) [5], cameras [6,7], ultrasounds [8] or Radio Frequency (RF) systems [9] are available
options used in the past. In the last category, particularly fall solutions with different
performance and costs such as Wi-Fi [10], Bluetooth [11], Ultra Wide Band (UWB) [12,13]
or RF Identification (RFID) [14,15] technologies. The ultra-high-frequency (UHF) RFID
technology is gaining traction due to its being multipurpose (a RFID tag can be used
both to identify a pallet and to localise it), to its low-cost, and to its easy installation and
maintenance. The system operates with radio-waves in the band between 860 MHz to
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960 MHz, which can penetrate through many materials without significant alterations. This
feature provides the system with an intrinsic level of robustness, and marks a remarkable
difference with respect to technologies operating at higher frequencies or adopting line-
of-sight equipments, such as LiDARs. As an additional remark, the use of RFID makes
the system immune from any type of privacy concerns, which could be present in camera-
based systems.

Two types of solutions have been conceived in RFID-based vehicle localisation. The
first category exploits an infrastructure of fixed reader antennas, with the robot being
equipped with an RFID tag [16]. The second one, on the contrary, is based on having the
vehicle equipped with a reader connected to one or more antennas, while a grid of RFID
tags is deployed in the surrounding scenario at known locations [17]. In case of unknown
reference tag positions, simultaneous localisation and mapping (SLAM) systems has been
also designed [18]. For sure, the second class of solutions is arguably more appealing to a
possible implementer since the passive UHF-RFID tags do not require direct power supply
(contrary to the UWB nodes).

The data association can be easily performed thanks to the tag unique identifier (Elec-
tronic Product Code, EPC). Moreover, UHF-RFID tags can be easily installed at the floor
side [19], at the ceiling [18] or in almost any other place in the considered environment [20].
In harsh industrial scenarios with lots of metallic structures, Commercial-Off-The-Shelf
(COTS) on metal tags can be employed. Finally, when the vehicle is natively equipped
with COTS RFID hardware, e.g., the RFID-robot employed for inventory tasks [21], the
implementation of the RFID-based localisation infrastructure amounts just to reference
tag deployment.

A detailed survey of solutions based on the RFID technology for vehicle localisation
has been presented by Motroni et al. in [22]. At the state-of-the-art, systems rely only
on the employment of an RFID infrastructure or on sensor-fusion solutions employing
both RFID technology with proprioceptive sensors [17] or both RFID systems with other
exteroceptive sensors [23]. Measured data are typically combined through dynamic es-
timation algorithms based for example on Kalman filters or Particle filters. The most
representative and investigated category is based on UHF-RFID systems combined with
proprioceptive sensors, e.g., encoders, Inertial Measurement Units (IMUs) or optical flow
sensors. Generally speaking, a sensor-fusion approach increases the localisation accuracy
and reduces the reference tags density in the infrastructure [20].

In this paper, we propose the employment of a Rauch-Tung-Striebel (RTS) smoother
based on an Extended Kalman Filter (EKF) to determine the best possible estimate of the
whole trajectory followed by an agent inside a plant. This issue stems from an actual
industrial application where the estimate of the set of trajectories followed by the available
moving agents is of major relevance (either if they are autonomous or actually controlled
by human workers). This knowledge is extremely important to the plant manager to detect
points of failure or of possible collisions as well as to optimise the team trajectories as
a whole. The method first proposed in [24] is here retrieved and deeply characterised
through both a numerical analysis and an experimental validation with a real mobile
robot in an indoor scenario. The solution robustness is discussed when measurements are
missing, important feature which is hardly mentioned in the literature, showing accurate
localisation of the proposed smoother with respect to filter-based approaches. After a
description of the related work in Section 2, the smoother design is described in Section 3
together with the experimental setup. Then in Section 4, we discuss and report on a new set
of experimental results that proves the applicability and the effectiveness of the proposed
approach on an current set-up.

2. Related Work

To estimate the agent position assuming the knowledge of the passive tag locations in
a reference frame, both amplitude and phase of the signal backscattered by the tags and
received at the reader side can be profitably used [19,25]. Several techniques based on the
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Received Signal Strength Indicator (RSSI) have been proposed, being the more widespread
parameter available in commercial readers [19,26,27].

In [27], a UHF-RFID system was presented to navigate a robot through a guided path.
The robot pose was estimated through a Particle Swarm Optimisation (PSO) algorithm
applied to the RSSI data, and the navigation was conducted through a Fuzzy Logic Con-
troller (FLC). A numerical analysis showed that the proposed method is affected by a
RMSE of 6 cm when the robot moves in a 36 m2 room with two reference tags. In [19],
the localisation of a mobile robot equipped with two reading antennas is proposed. The
method is based on the principle that if an RFID tag is located at the same distance between
the two antennas, the correspondent RSSI measurements should ideally be identical. The
method shows a centimetre order localisation error for a robot travelling at different speeds
in a real indoor scenario of 5× 10 m2 and exploiting 578 reference tags.

However, the signal phase is by far more robust and effective for localisation purposes
especially in indoor scenarios [21]. The main challenge to be solved is the ambiguity of
phase measurements due to the 2π-periodicity [28], and the knowledge of the phase offset
term. The latter is typically solved through the employment of the Phase Difference of
Arrival (PDoA) [29]. Indeed, unwrapping techniques [30] or phasor use [31] can face and
solve the phase ambiguity issue.

In [32], the robot localisation was solved through a Multi-Hypothesis Extended
Kalman Filter that combines data acquired from two rotary encoders and RFID phase
data gathered by a set of reference tags placed in known locations at the ceiling. Tags
were designed with an ad hoc radiation pattern. The method requires for a pre-calibration
procedure to estimate the offset term typically affecting the phase measurements. Such
calibration procedure is then avoided thanks to the method extension proposed by the
same authors in [33], where the RSSI data are employed as additional input parameters.
Moreover, such a modification allows reducing the accuracy required for the knowledge
of the reference tag positions. According to the experimental results, an average locali-
sation error of centimetre order was obtained within a 4× 3 m2 room by employing two
reference tags.

In [20], a novel phase-based sensor-fusion tracking method for moving agents was
presented after the European patent application [34]. The robot localisation is achieved
through a Synthetic Aperture Radar (SAR) approach [29] by collecting consecutive phase
measurements along the agent trajectory with respect to the reference tags. Such an
approach allows reducing the density of the reference-tag infrastructure, which can be
installed at any position within the indoor scenario. Then, the phase data are combined
with the kinematic data collected by odometers, through a sensor-fusion technique. The
obtained average localisation error is around 11 cm for a 4 m long trajectory in an indoor
office environment by employing two reference tags. The method capability has been
validated when odometry measurements are available, but it can be adapted to work with
any kind of proprioceptive sensors. Furthermore, it works with COTS devices, and does
not require for a calibration procedure.

In [35], a particle filter was presented to track a mobile robot equipped with two rotary
encoders and two RFID antennas facing to the floor. The algorithm exploits the PDoA
gathered by an infrastructure of reference tags deployed on the floor. Experiments were
conducted in a 5× 5 m2 office environment with the presence of metallic objects, with
42 tags deployed on the floor and arranged as a grid with spacing of 60 cm. The obtained
median position error was about 6 cm.

It is worth mentioning the work presented in [18], where an indoor simultaneous
localisation and mapping (SLAM) problem is considered. A set of passive tags was
deployed at the ceiling in unknown locations. RFID phase measurements are fused with
the robot odometry to determine both the robot pose and the tag coordinates through a Rao-
Blackwellized Particle Filtering approach. Experimental results show a global mapping
error of a few centimetres in a 3.5× 2 m2 laboratory environment with six tags.
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In [36], Magnago et al. showed that the localisation problem can be theoretically solved
locally, i.e., the a priori starting position estimate is closer to the initial actual position of the
agent, and considering unicycle-like robots, which are a commonplace in industrial environ-
ments for warehouse management or for transportation in production lines. Successively,
it has been shown that the problem can be actually solved also globally [37], provided
that some mild assumptions on the uncertainties are satisfied. Given that the localisation
problem is well-posed when RFID tags are used and fused with odometry for unicycle-like
vehicles [37], the authors of this paper recently proposed in [24] a solution for industrial
IoT applications based on an Extended Kalman Filter. The method has been conceived
for industrial scenarios and account for specific position constraints. As an example, the
issue related to pallet handling in warehouse applications [38] requires a pallet-placing
uncertainty in the order of a few centimetres with a high level of confidence [39]. Hence,
the main objective of the proposed approach is to robustly reduce to the maximum extent
the localisation uncertainty and the vehicle trajectory estimation uncertainty to meet the
industrial requirements.

3. Materials and Methods

A configuration of a unicycle robot with a state vector s = [x, y, θ]T has the follow-
ing form:

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω,

(1)

where θ is the orientation with respect to the Xw axis of the reference frame 〈W〉, while
v (the forward velocity) and ω (the angular velocity) are the input variables. Assuming
that the RFID readings are measured with period Ts and that the command variable v and
ω are approximately constant throughout the sampling period, it is possible to find the
following discrete time Zero-order-Hold equivalent dynamics [40]

xk+1 =

{
xk + vkTs cos θk if ωk = 0,
xk + 2 vk

ωk
sin
(ωk

2 Ts
)

cos
(
θk +

ωk
2 Ts

)
otherwise,

yk+1 =

{
yk + vkTs sin θk if ωk = 0,
yk + 2 vk

ωk
sin
(ωk

2 Ts
)

sin
(
θk +

ωk
2 Ts

)
otherwise,

θk+1 = θk + ωkTs.

(2)

where we made use of the simplified notation xk+1 = x((k + 1)Ts) (i.e., sk+1 = [xk+1, yk+1,
θk+1]

T).

3.1. Signal Model

RFID-based localisation systems comprise a set of RFID tags deployed at known loca-
tions inside a certain environment and an RFID reader that is able to read the backscattered
signal. The phase delay of the RFID signal with 2π-radian period can be stated as

φi =
4πdi

λ
+ δ

φ
i = φ′i + 2πN + δ

φ
i , (3)

where λ is the wavelength, di is the actual distance between the tag and the reader, and
δ

φ
i is an offset due mainly to cables, reader and antenna components and transponder

backscattering [28]. Moreover, φ′i = mod(φi, 2π) where N is the integer number of half-
wavelengths within the distance di .In practice, the unwrapped absolute phase φi cannot be
measured directly. Therefore, N is unknowable and the phased-based measured distance
dm

i is inherently ambiguous, i.e.,
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dm
i = di + δd

i =
φ′i
4π

λ + δd
i , (4)

where the uncertainty term δd
i = N λ

2 + λ
4π δ

φ
i in general can be very large, but it is also

approximately constant for distance variations smaller than half wavelength. Therefore,
since δ̇d

i ≈ 0 the variation in time of the relative distance between the RFID reader and the
i-th tag tends to be insensitive to phase ambiguity and offset, and it can be written as

ḋi = ḋm
i ≈

λ

4π
φ̇i, (5)

We denote the actual distance of the i-th tag at time kTs, where Ts is the sampling
period of the RFID reader, as di,k, i.e.,

di,k =
√
(Xi − xk)2 + (Yi − yk)2, (6)

where (Xi, Yi) are the Cartesian coordinates of the RFID tag. Thus, the time derivative of
the distance function (6) and using (4) is

ḋi,k = ḋm
i,k = vk

[
(xk − Xi) cos(θk) + (yk −Yi) sin(θk)

di

]
, (7)

which is the instantaneous variation of the distance at time kTs. Albeit (7) is inherently
robust to the phase ambiguity, its validity is useful for localisation only locally, i.e., for
displacements taking place in a neighbourhood of a known initial location [36]. The adop-
tion of the EKF-RTS smoother proposed in this paper alleviates this issue by incorporating
two consecutive robot positions, i.e., sk and sk−1, in the filter state, as better shown later.
As a consequence of this choice, the output function adopted is a straightforward discrete
approximation of (7), i.e., a finite difference of the measured distances (4). More precisely,
by denoting with dm

i,k and di,k the measured and actual distances at time kTs from the i-th
tag, respectively, we have that the adopted output function for the i-th tag is

hi(sk, sk−1) = dm
i,k − dm

i,k−1 = di,k − di,k−1. (8)

3.2. Filter Design

We are interested in determining an estimate of the state of an unicycle-like vehicle
(very common in, e.g., industrial autonomous warehouses) ŝk at time kTs fusing the sensor
readings coming from the wheel encoders and the RFID tag ranging. The odometry
measurements are related to the linear and angular velocities increment of the vehicle
vkTs and ωkTs, respectively, and detailed in (2). The UHF-RFID tag sensed quantities are
described in (4) and denoted with dm

i,k, which are assumed to be collected up to time kTs.
Moreover, we are interested in having an effective estimate of the overall trajectory

ŝ0,...,k from time 0 to kTs using all the measurements up to time kTs, i.e., full-length smoother
named SEKF2, or the measurements in the interval [(k − n)Ts, kTs], where n > 0 is the
length of a fixed-lag in the fixed-lag smoother (SEKF) and represents a tuning parameter
that should be optimally determined.

In particular, we will focus on an EKF-RTS Smoother estimator for robot positioning
through globally observable bended trajectories, i.e., trajectories having ωk 6= 0 for a
sufficiently long time as derived in [37]. The robot moves in an indoor scenario instru-
mented with several M ≥ 3 RFID tags in known positions. At each time step kTs, the
vehicle receives a measurement (3), with an unknown offset. The offset-free RFID phase
measurement (8) described in Section 3 are organised in a vector of finite difference of
measurements, i.e.,
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h(sk, sk−1) =


h1(sk, sk−1)
h2(sk, sk−1)

. . .
hM(sk, sk−1)

 =


d1, k − d1, k−1
d2, k − d2, k−1

. . .
dM, k − dM, k−1

. (9)

Due to (9), the state space of the filter is represented by

q̂k = [ŝk, ŝk−1]
T = [x̂k, ŷk, θ̂k, x̂k−1, ŷk−1, θ̂k−1]

T ,

whose dynamic is given by

q̂k+1 = f (q̂k, uk, γk) =



f1(ŝk, uk, γk)
f2(ŝk, uk, γk)
f3(ŝk, uk, γk)

x̂k
ŷk
θ̂k

 (10)

where uk = [vk, ωk]
T is the vector of the model velocities, while γk = [γvk , γωk ]

T are the
noises affecting the model velocities estimate given the odometry and assumed zero-mean,
white and normally distributed with diagonal covariance matrix Qk. Finally, fi(ŝk, uk, γk)
are the system model dynamic expressed in (2). In a standard EKF, the predicted model
uncertainty will be given by the respective Jacobians, i.e.,

P−k+1 = AkPk AT
k + BkQkBT

k , (11)

with

Ak =



1 0 ∂ f1
∂θk

0 0 0

0 1 ∂ f2
∂θk

0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


and Bk =



∂ f1
∂vk

∂ f1
∂ωk

∂ f2
∂vk

∂ f2
∂ωk

0 Ts
0 0
0 0
0 0


,

where the superscript ·− notation is used to denote the predicted estimates given the model.
Of course, the initial value for the state is q0, while the initial covariance is P0.

Since the measurement function is modelled as (9), we have in the filter

zk = h(ŝk, ŝk−1) + εk = h(q̂k) + εk, (12)

where εk is the measurement uncertainty, modelled as a zero-mean, white and normally dis-
tributed sequence with covariance Rk. Hence, the EKF equations for the estimates updates

Kk = P−k HT
k (HkP−k HT

k + Rk)
−1,

q̂k = q̂−k + Kk(zk − h(q̂−k )),

Pk = (I − Kk Hk)P−k ,

(13)

where Kk is the Kalman gain, Hk ∈ RM×6 is the Jacobian of the measurement func-
tion (9), i.e.,

Hk =
dh(q̂k)

dq̂k
=


∂d1, k
∂sk

− ∂d1, k−1
∂sk−1

∂d2, k
∂sk

− ∂d2, k−1
∂sk−1

...
...

∂dM, k
∂sk

− ∂dM, k−1
∂sk−1

. (14)
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EKF Smoother

The EKF is a filter, hence it is able to retrieve the state ŝk using the measurements up to
time kTs, i.e., the first part of the problem defined in Section 3.2. For the second, we make
use of the RTS smoother [41], which builds up a backward recursion for vehicle trajectory
estimate, as detailed next:

q̂−k+1 = Akqk,

P−k+1 = AkPk AT
k + BkQkBT

k ,

Gk = Pk AT
k [P
−
k+1]

−1,

q̂s
k = q̂k + Gk[q̂s

k+1 − q̂−k+1],

Ps
k = Pk + Gk[Ps

k+1 − P−k+1]G
T
k ,

(15)

where Gk is the smoother gain and where we used the superscript s to denote the smoothed
quantities.

Furthermore, we have implemented two different types of smoother. As depicted in
Figure 1, the forward filter is responsible for processing the RFID phase samples sequen-
tially, and the backward filter augment the sample estimation reversely to compensate
for the estimation error of the EKF. In the fixed-lag smoother (see Figure 1, bottom), for
estimating the smoothed value at time step k, only the measurements between k + 1 and
k + n + 1 are used, where n is a fixed-lag (i.e., a fixed number of phase samples to be
smoothed). Therefore, for each smoothed estimate q̂s

k, an adaptive window of n RFID
phase measurements is considered. Thus, the smoothed values for all time steps can be
achieved using a sliding window of size n in near real-time [42]. Another approach instead
considers all the values, thus letting n be the sequence of all the available measurements
(see Figure 1, top). Obviously this strategy is much more computationally demanding
compared to fixed-lag smoother, and might not be affordable in real time.

 

k+1   k
 

k+n+1 k+n k+2
 

Ŝ
k 

Ŝ
k+1 

Ŝ
k+2 Ŝ

n-1 
Ŝ

n Forward 
pass 

Backward 

pass 

k+1
 

  k
 

n
 

n-1
 k+2

 

Ŝ
k 

Ŝ
k+1 Ŝ

k+2 Ŝ
n-1 

Ŝ
n 

Sliding Window of Size n 

EKF-Smoother (Full- length) 

EKF-Smoother (fixed-lag) 

Forward 
pass 

Backward 

pass 

Figure 1. The process of the (Top) EKF-Smoother fixed-lag and (Bottom) EKF-Smoother Full-length
algorithms.
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3.3. Experimental Setup

For the experimental campaign, we used a self-made unicycle wheeled mobile robot
with a differential front-drive kinematics as the one reported in (2), depicted in Figure 2a
and built by the Italian Company AITRONIK srl.

LIDAR

PC

Driving

wheels

RFID 

reader

RFID 

antenna

(a)

x

y
x’

y’

𝝑

Left wheel

Right wheel

#1#2

#3

#4

(b)

Figure 2. (a) Robot used for the experimental campaign with its different components. (b) Schematic
representation of the robot (top view). The robot antennas are denoted with the symbols #1, #2, #3,
and #4.

The robot axle length is equal to la = 0.53 m and the height is h = 0.68 m. The robot
is equipped with two commercial rotary encoders belonging to the Parallax Arlo Robot
kit. The encoders operate with 144 pulses for a full tire revolution and 100 Hz acquisition
frequency. Since the robot tires have a diameter of 152 mm, the induced quantisation
step on the linear displacement is around 3.3 mm. The robot is also equipped with an
Impinj Speedway R420 UHF-RFID reader configured to transmit a signal with a frequency
f0 = 865.7 MHz (ETSI channel #4). It is connected with four Time-7 Compact Outdoor
RAIN RFID circularly polarised (CP) antennas with HPBW = 115◦ and Gain = 5 dBiC,
where “dBiC” stands for the decibel above the gain of a CP isotropic antenna. Each antenna
faces a different area as shown from the top view in Figure 2b. All of them are placed at a
height of 0.58 m from the ground, except antenna #4 which is placed at a height 0.68 m.
The robot adopted in the experiments can be driven manually through a remote control,
i.e., a joystick. Since we are interested in actual industrial applications, where the estimate
of the set of trajectories followed by the available moving robots is of major relevance
either if they are autonomous or actually controlled by human workers, and just focused
on the trajectory estimation (how the localisation uncertainty acts on the robot control law
can be found, e.g., in [43,44]), we decided to steer the robot in the environment using the
remote controller.

To validate the method performance, the ground truth data of the vehicle trajectory
are computed through a state-of-the-art SLAM algorithm by acquiring data from a Slamtec
RP LIDAR A34 Laser Range Finder (LRF). All the payload-sensors are power supplied with
two batteries and properly synchronised in time, and a small on-board PC is employed to
gather and transmit all the data to an external laptop PC via a Wi-Fi connection.

The test area consists of a single-room office-like environment with a total size of
around 26 m, divided in two areas of 3.85 × 4.10 m2 and 3.90 × 2.60 m2, respectively,
as shown in Figure 3a.

47 EasyRFID Bone reference tags with Monza R6 chip are placed according to a not
regular spacing along the room walls (Figure 3b) at a height of 0.70 m from the floor. The
average tag spacing on the x-direction is 0.53 m, whereas the tag spacing on the y-direction
is 0.35 m (see Figure 3b). The tags were placed both with vertical and horizontal orientations
with respect to the ground plane to reduce the mutual electromagnetic coupling among
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them (tags are represented with triangular and squared markers in Figure 3b). During
the experiments only antenna #1 (indicating in Figure 2a) is on. With respect to the robot
local reference frame, the antenna #1 points the negative direction of the y-axis (the right
side, see Figure 2b), and its displacement with respect to the robot rotation centre is
∆#1 = [−0.31,−0.11]T m.

(a)

x
y

z
RFID Tags

(b)

Figure 3. Experimental setup. (a) Room map, with the two areas. Vertical tags are depicted as blue triangular markers,
Horizontal tags are depicted as red square markers. (b) A picture of the robot taken during the experimental campaign.

4. Results

Firstly, the performance of the proposed EKF-RTS for localisation in indoor industrial
environments is investigated and compared with the classical EKF through a series of
simulations. In particular, extended simulations and tests in a variety of scenarios and
conditions have been carried out to highlight the behaviour and the sensitivity of the
proposed solution in different operating conditions. Then, extensive experiments on an
actual deployment and with an actual vehicle have been shown to certify the applicability
and the effectiveness of the solution.

4.1. Simulation Results

In order to validate the accuracy of the proposed strategy, in the first simulation
scenario, we carried out Monte Carlo simulations with 10,000 trials, i.e., 100 trials over
10 different trajectories and under 10 random deployment of the M RFID tags and assuming
no constraints on the tag placement. The different trajectories are synthesised automatically
using sequences of randomly generated via-points. All of the simulations are conducted in a
simulated warehouse environment using Robotics System Toolbox in Matlab (see Figure 4).

(a) (b)

Figure 4. Trajectory samples generated by different velocities for the same path in a realistic warehouse scenario. (a) Ground
truth trajectories, (b) estimated trajectories by the SEKF. A possible configuration of the four RFID is reported with red circle
markers and denoted with numbers.
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In all the trials, four RFID tags, with random locations (see an example in Figure 4) are
considered. The system evolution along each trajectory is simulated with a sampling time
Ts = 200 ms. In each trajectory, the desired linear velocity vk and the maximum angular
velocity ωk of the mobile platform moving on the plane (and explicitly reported in (2)) are
set equal to 2.8 m/s while the controlled angular velocity depends on the shape of the
trajectory and ranges in the set (−0.5, 0.5) rad/s. All the uncertainties (i.e., γk acting on
the vehicle velocities in (10), and εk acting on the offset-affected RFID ranges in (12)) are
assumed normally distributed, zero-mean and white. Therefore, γk ∼ N (0, Qk), where
Qk = diag(σ2

v , σ2
ω) and σv = 0.08 m/s and σω = 0.09 rad/s, which are a conservative

assumption with respect to an actual industrial vehicle. Similarly, εk ∼ N (0, Rk), where
Rk = 2σ2

r IM and, hence, σr = 0.1 m is the range reading uncertainty. We assume here that
IM is the identity matrix of dimension M (i.e., of the same dimension of the number of
available RFID tags). As reported in (2), the vehicle state is identified with its Cartesian
coordinates (xk, yk) and its orientation θk. Therefore, the covariance matrix expressing the
vehicle initial location uncertainty is P0 = diag(0.12 m2, 0.12 m2, 0.12 rad2. By denoting
with sk = [xk, yk, θk]

T the vehicle state at time kTs, the initial state estimate is assumed to be
ŝ0 = s0 + η, where η ∼ N (0, P0). Notice that we denote with the hat ·̂ the quantities that
are estimated.

4.1.1. Optimal Window Length

Since the length of the fixed lag (i.e., the measurement window size) of the SEKF
can be tuned and affects its performance, we first need to figure out if there is a way to
optimally determine such a window size, which asks for the determination of a quantitative
cost index. Since the performance are related to the estimation error that can be obtained,
we choose the Root Mean Squared Error (RMSE) for position and orientation as a figure of
merit, i.e.,

ei
p =

√
∑Ni

k=1(x̂k − xk)2 + (ŷk − yk)2

Ni
,

and

ei
θ =

√
∑Ni

k=1(θ̂k − θk)2

Ni
,

where Ni is the number of samples for the i-th Monte Carlo execution. Therefore, we
first analyse the effect of the window size by computing thebox-and-whiskers of Figure 5
for the different trajectories with different window lengths (from 2 to 180 samples) and
assumingthe detection of four RFID tags.

 

(a)
 

(b)

Figure 5. The RMSE for position (a) and orientation (b) of the SEKF with different window sizes.

Of course, while the window length is inversely proportional to the uncertainty, it is
actually directly proportional to the computational burden. In particular, Figure 6 reports
the computation time of the SEKF as a function of the window length.

These results are collected using a 1.70-GHz Intel Core i3 microprocessor endowed
with 8 GB RAM. It is now evident from Figures 5 and 6 that the higher is the computation
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time, the lower is the localisation error (up to 100 samples). To select the window size,
we consider the sampling time Ts = 200 ms selected at the beginning of this section as
a threshold for a real-time execution of the algorithm (i.e., the computation should end
before the next data arrives), hence the window length has been fixed to n = 55 samples.

 

Figure 6. Computation time for different window sizes of the SEKF. The horizontal dashed line is the
available sampling time.

4.1.2. Comparative Analysis

We present now a comparative analysis between a standard EKF, the SEKF and the
SEKF2 reported using four RFID tags only. As stated above, the fixed-lag SEKF window has
been fixed to n = 55 samples. The length of the trajectories (i.e., the number of available
measurements) used are different and range from 180 to 270 samples, i.e., about 36 to 54 s.
A qualitative analysis using one actual trajectory is proposed in Figure 7.

 

(a)
 

(b)
 

(c)

Figure 7. Sampled estimated trajectories by (a) EKF, (b) SEKF and (c) SEKF2 based on the four RFID tags reported in the
figure with star markers.

It has to be noted how visually the SEKF and SEKF2 performs better than the EKF,
as expected, while mild differences exist among them. This fact is further substantiated by
the RMSE quantitive comparisons among the three different algorithms reported in terms
of the box-and-whiskers plot in Figure 8.

It is now quantitatively evident how the smoother (either SEKF or SEKF2) ensures a
lower error for the trajectory estimates. As reported in Figure 6, being the SEKF2 unfeasible
in real time but yielding de facto the same uncertainties of SEKF, the rest of the results
report the latter only.
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(a)
 

(b)

Figure 8. (a) Position and (b) orientation RMSE box-and-whiskers for EKF, SEKF and SEKF2, respectively.

4.1.3. Filter Robustness

We investigate here the impact of the availability of the measurements for the pose
estimation by considering a variable percentage of the received information at each time
step through Monte Carlo analysis with 1200 trials. Using four RFID tags, the minimum and
the maximum number of available observations at each time step kTs is 0 and 4, respectively.
Again, the optimal window size of n = 55 samples is considered. As expected and shown
in Figure 9, reporting the usual RMSE of position and orientation, more observations
generally leads to better accuracy.

What is instead of more relevance is the relatively high robustness of the filter to
the lack of measurements: indeed even with 30–40% of the available measurements, the
uncertainty growth remains acceptable and slightly worse than using all the measurements.

 

(a)
 

(b)

Figure 9. Cont.
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(c)
 

(d)

Figure 9. (a,c) Position and (b,d) orientation RMSE for different percentages of available observations for the EKF (a,b) and
the SEKF (c,d).

4.1.4. Vehicle Dynamic

In the last set of simulations, we investigate the impact of different linear and angular
velocities on the localisation error using one single trajectory among the available set, which
is represented in Figure 4 for the realistic warehouse scenario. Since different velocity
profiles are used, ranging in the interval (2.8, 1.5) m/s for the linear velocity and in the
interval (|1.5|, |0.6|) rad/s for theangular velocity (we recall that the sign of the angular
velocity is determined by the turn direction), different trajectories for the same sequence
of via-points are generated (see Figure 4). For a more quantitative analysis, we consider
sufficiently long trajectories, ranging from 70 to 164 s (the difference in the length are
actually dictated by the different velocities on the same path). Results are reported in
the RMSE plot of Figure 10, where we use the SEKF with the optimal window size of
n = 55 samples and we denote with ω̄ = |ω|, i.e., the magnitude of turning speed.

 

(a)
 

(b)

Figure 10. (a) Position and (b) orientation RMSE for different values of the angular and linear velocities.

Both the position and the orientation RMSEs are reported, which are computed on
Monte Carlo trials of 100 executions. Due to the presence of a Kalman filter estimator,
it is expected that the RMSE reaches a steady state value determined by the model and
measurement covariances. This is certainly the case for linear systems, while for nonlinear
systems (as the one at hand) it is expected a fluctuation of the RMSE, induced by the
particular trajectory followed. Nevertheless, Figure 10 shows a clear divergence when the
forward velocity v decreases. This apparently strange behaviour is a direct consequence
of the longer trajectory followed when the forward velocity reduces, which implies a
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higher number of integration steps of the model noises with the same variance in the
filter prediction step. This is usually compensated by the larger amount of measurements
that can be collected along the trajectory. Unfortunately, this is not the case for RFID-tag
measurements, where the difference of ranges are actually collected (see Section 3.2). Hence,
smaller forward velocities v imply smaller displacements between two time steps, thus
smaller differences among the range measurements. Therefore, the observations become
comparable with the measurement uncertainties, thus reducing the amount of information
carried by each observation. This fact is further proved by the substantial independence of
the RMSE by the angular velocity ω, which does not affect the ranging measurements by
design (see Figure 10).

4.2. Experimental Results

The effectiveness of the proposed SEKF estimator is further substantiated by the
experiments conducted on a robot moving in an indoor environment, as described in
Section 3.3. The RFID reader has a nominal phase noise standard deviation of 0.1 rad due to
thermal noise, meaning that the measured differences of distance ḋi,k in (8) have a nominal
standard deviation of around 4 mm. In practical situations, this modelled uncertainty
is increased due to the presence of multi-path interference that leads to a higher value
than the nominal one, but still acceptable. Despite the phase robustness once adopted
for localisation, the problem of robot displacements between consecutive measurements
has a detrimental effect (as noticed and analysed in simulations in Figure 10). In practice,
if the ḋi,k values are too close to zero, the relative impact of the measurement noises on
the observation function is high. On the other hand, a relatively high sampling frequency
is needed for reliable localisation using RFID signal phase to avoid problems due to the
2π-phase ambiguity. In other words, since the average spatial sampling (which depends on
the robot speed and on the RFID system sampling rate) cannot be too large, a relative high
number of tag reading for each time step must be guaranteed to compensate for the high
relative impact of the measurement noise on the observation function. The variance of the
uncertainties affecting vehicle velocities vk and ωk has been obtained with a Type A analysis,
according to the Guide to the Expression of Uncertainty in Measurement [45]. In particular,
we have implemented an EKF with encoder readings and actual range measurements and
compared against the ground truth range measurements, in order to derive the odometry
covariance matrix. Next, we have tested the estimation procedure in simulation by running
Monte Carlo experiments using a very large set of testing trajectories. At the end of the
process,we found out that σv = 0.1 m/s and σω = 0.05 rad/s.

Three different sample trajectories are considered in this section, and reported in
Figure 11. The robot was driven manually through a remote control by an operator.

 

(a)
 

(b)
 

(c)

Figure 11. Three (a–c) sample trajectories of the robot (dashed line), SEKF estimates (solid line) and dead reckoning only
reconstructed trajectories (dotted line). In all the pictures, the starting and ending positions of the trajectories as well as the
RFID tag locations are reported as well.
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The trajectories estimated by the SEKF (solid lines) as well as the dead reckoning
results reported for comparison (dotted lines, obtained using only the encoder measure-
ments and the model (2)) and the ground truth data (dashed lines) are plotted in Figure 11.
The estimated trajectories (both using the SEKF or the encoders only) assumes perfect
knowledge of the initial conditions, which is a strong assumption for any Bayesian esti-
mator. Nonetheless, the purpose of these experiments is just to test the effect of a reduced
forward velocity, set to v = 0.23 m/s, which has detrimental effect on the overall accuracy,
as previously mentioned. From a qualitative analysis of Figure 11, it is evident how the
SEKF returns a good path reconstruction, with a maximum error, happening in the turning
conditions, which is approximately around 30 cm. A more detailed analysis of the localisa-
tion uncertainty for the three trajectories is reported in Figure 12, where the position RMSE
shows to be almost everywhere less than 15 cm.

 

(a)
 

(b)
 

(c)

Figure 12. Position RMSE time evolution during localisation for (a) the sample trajectory of Figure 11a, (b) the sample
trajectory of Figure 11b, (c) the sample trajectory of Figure 11c.

For the orientation RMSE we have along the trajectories approximately 0.2 rad.
To account for theinitial-condition uncertainty, Figure 13 reports the same trajectories

shown in Figure 11 but assuming that the initial state ŝ0 is randomly generated from a
Gaussian distribution with zero-mean and covariance matrix P(3,3)

0 (i.e., the marginal of
the filter covariance matrix P0 in (15) restricted to the robot state ŝk).

 

(a)
 

(b)
 

(c)

Figure 13. Trajectory estimation for (a) the sample trajectory of Figure 11a, (b) the sample trajectory of Figure 11b, (c) the
sample trajectory of Figure 11c with different range of uncertainties about the true initial conditions.

Moreover, the roots of the elements on the diagonal of P(3,3)
0 , i.e., the standard devi-

ations, have been changed as reported in Table 1. As can be seen, the initial conditions
slightly modify the reconstructed trajectory, thus showing the robustness and the consis-
tency of the SEKF. The impact of the initial condition uncertainty is also analysed in a
quantitative manner in Figure 14.

The results have been collected by executing a Monte Carlo approach for the different
initial conditions and using the same experimental data. In particular, we performed 15,000
executions for each of the initial P(3,3)

0 reported in Table 1. It can be fairly observed from the
corresponding graphs that, the localisation accuracy is insensitive from the initial-condition
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uncertainty, being the slight increase of the RMSE dictated by the first part of the trajectories
(i.e., a transient effect). To assess the validity of the proposed RMSE analysis, we show also
the odometry-only reconstruction that obviously report a direct proportionality with the
initial conditions (i.e., the uncertainty in the initial pose is not transient).

Table 1. Standard deviations assumed for the initial robot state and distributed according to a
Gaussian probability density function.

x̂0 ŷ0 θ̂0

σ

0.01 0.01 0.01
0.02 0.02 0.1
0.04 0.04 0.2
0.08 0.08 0.3
0.1 0.1 0.4

 

(a)
 

(b)

Figure 14. Localisation estimation accuracy in presence of different uncertainties about the true initial conditions for (a) the
position and (b) the orientation.

As a final empirical analysis on the experimental set-up, we analyse the problem of the
number of RFID tag measurements. Intuitively, the larger is the number of sensed tags at
each time step, the lower will be the RMSE. Indeed, this is empirically verified in Figure 15
considering the RMSE for the x, y and θ quantities and the associated standard deviations.

 

Figure 15. Impact of minimum number of available phase measurements at each time step on the
localisation accuracy for the current experimental setup.

These results have be collected considering the average robot speed of 0.23 m/s and
considering the odometry sampling period Ts = 100 ms as the main sampling time (during
the experiments, we used fixed time steps and the assumption of constant velocities at each
time step). As can be seen from the figure, relying on a few number of tags, has resulted
in a high localisation uncertainty, as expected. From the picture, just 10 tags provide a
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sufficiently accurate SEKF, at least for the purposes of trajectory analysis in the industrial
domain. In an actual deployment, hence, it could be beneficial to increase the number
of RFID antennas and the sampling frequency as well. Nevertheless, in such scenarios,
other second-order effects will take place at the cost of a degradation in the accuracy of
phase measurements, therefore such a solution is discouraged with the actual equipment.
To summarise, we can conclude that it is highly recommended to have access to an average
number of 7 to 10 tags readings at each time step. Of course, this is an average rate, since
in the actual applications absence of measurements at some time steps cannot be ruled out,
but, as reported in Figure 9, this phenomenon slightly affects the SEKF.

5. Discussion

The focus of the presented solution is to determine the best possible estimate of the
whole trajectory followed by the agent inside a plant using an EKF-based smoother rather
than an EKF. This issue turns to be very relevant in an actual industrial application where
the knowledge of set of trajectories followed by the different moving agents is extremely
important to detect points of failures as well as to optimise the team trajectories as a whole.
As discussed in the Introduction, different RFID-based localisation systems were designed
in the literature. Although some solutions rely on the combination of phase and amplitude
measurements [26,33], phase-only measurements prove to be quite effective in indoor
environments [21]. To account for the phase ambiguity, different filters were provided
that are based on the fusion with wheel encoders, ranging from Unscented Kalman Filters
(UKF) [37], Multi-Hypothesis EKF [32] and particle filters [35].

Nevertheless, this paper marks a non negligible difference since it proposes a smoother
EKF-RTS to deal with the peculiarity of the phase measurements, which inherently need
measurement differences to retrieve useful quantities. In particular, we presented an EKF-
RTS smoother to reconstruct the whole trajectory of a unicycle-like vehicle moving in an
industrial environment. The analysis of the uncertainty affecting the estimates in a realistic
warehouse scenario with only four RFID tags is presented and compared with a standard
EKF approach. We have also proved that the smoother may be endowed with a tuning
parameter, i.e., the length of the observation window n, whose value leverages between the
performance of the filter and the computational requirements. Another important feature
that is totally missed in the cited literature, is related to the robustness of the solution when
measurements are missing, which again marks a notable performance improvement with
respect to a filter-based solution, i.e., the EKF. We have additionally explicitly accounted for
the relative robot displacement between consecutive RFID tag phase readings, which may
jeopardise the solution performance. This tradeoff was also analysed and exposed in the
experimental section, where on-field results have been collected and a specific collection of
data has been conceived and reported.

To summarise, the proposed smoother-based solution proved to be more effective
of a standard filter and demonstrated its viability, effectiveness and feasibility in a real-
time scenario by means of the tuning parameter n. The shortcomings and the advantages
of the proposed solution have been throughly exposed and discussed with simulations
and experiments.
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Abbreviations
The following abbreviations are used in this manuscript:

EKF Extended Kalman Filter
EKF-RTS Extended Kalman Filter Rauch-Tung-Striebel smoother
LiDAR Laser Imaging Detection and Ranging
RF Radio Frequency
RFID Radio Frequency IDentification
SEKF Fixed-lag Extended Kalman Filter Rauch-Tung-Striebel smoother
SEKF2 Full-length Extended Kalman Filter Rauch-Tung-Striebel smoother
UHF Ultra-High-Frequency
UKF Unscented Kalman Filter
UWB Ultra Wide Band
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