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Abstract: Stochastic resonance (SR), a typical randomness-assisted signal processing method, has been
extensively studied in bearing fault diagnosis to enhance the feature of periodic signal. In this study,
we cast off the basic constraint of nonlinearity, extend it to a new type of generalized SR (GSR) in
linear Langevin system, and propose the fluctuating-mass induced linear oscillator (FMLO). Then, by
generalized scale transformation (GST), it is improved to be more suitable for exacting high-frequency
fault features. Moreover, by analyzing the system stationary response, we find that the synergy of
the linear system, internal random regulation and external excitement can conduct a rich variety of
non-monotonic behaviors, such as bona-fide SR, conventional SR, GSR, and stochastic inhibition (SI).
Based on the numerical implementation, it is found that these behaviors play an important role in
adaptively optimizing system parameters to maximally improve the performance and identification
ability of weak high-frequency signal in strong background noise. Finally, the experimental data
are further performed to verify the effectiveness and superiority in comparison with traditional
dynamical methods. The results show that the proposed GST-FMLO system performs the best in the
bearing fault diagnoses of inner race, outer race and rolling element. Particularly, by amplifying the
characteristic harmonics, the low harmonics become extremely weak compared to the characteristic.
Additionally, the efficiency is increased by more than 5 times, which is significantly better than the
nonlinear dynamical methods, and has the great potential for online fault diagnosis.

Keywords: bearing fault diagnosis; linear oscillator (LO); generalized stochastic resonance (GSR);
generalized scale transformation (GST); symmetric dichotomous noise (SDN)

1. Introduction

Rolling bearing is one of the most critical aspects of modern machines, such as wind
turbines, machine tools, centrifugal pumps, compressors, and motorized spindles [1].
In complex operating environments, the faults are inevitable and even lead to the damage
of whole equipment. Thus, it is extremely important to monitor the health state and
diagnose the early fault. In the past few decades, the issue of bearing fault diagnosis has
attracted more and more attentions, and many methods are proposed in view of vibration,
acoustics, liquid and deep learning [2–5]. Moreover, fault signals are always shown
to be weak, especially in early stages. The ability to identify and extract weak signals
become a key consideration. Some diagnosis methods focusing on noise suppression
or cancellation technologies have been studied in depth and shown to be successful to
highlight the weak fault features in many practical situations, i.e., maximum correlated
kurtosis deconvolution [6], spectral kurtosis [7], empirical mode decomposition [8], wavelet
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transform [9], and chaos theory [10], but it is limited because of the inevitable damage of
fault features during the de-noising process.

Recently, a new type of fault diagnosis methods based on non-monotonous dynamical
behaviors are proposed in view of helpful randomness, such as stochastic resonance
(SR) [11–13], vibration resonance [14,15], chaotic system [16,17], fractal method [18,19],
etc. It is worth emphasizing that these dynamical methods have played an important role
in modern engineering fields, and shown the intrinsic superiority in weak fault feature
extraction by transferring the energy of noise to a weak signal [20,21]. Meanwhile, in order
to overcome the limitation that classical resonant behaviors can only be applied to the
low-frequency signal [22], some transformed systems have been considered, typically
including scale transformation (ST) method [23,24], and generalized scale transformation
(GST) [25–27], and they have been verified to be effective in the fault diagnosis of weak high-
frequency signal. Recently, some adaptive algorithms, such as particle swarm optimization
(PSO) and genetic algorithm (GA), are involved in the online conditions to optimize the
system parameters based on the adaptive regulation of resonant behaviors [28,29].

However, all these dynamical methods mentioned above were based on nonlinear
systems, in which nonlinearity, periodicity and random force were generally regarded as the
basic elements for generating classical SR behaviors, but in recent years, many studies on
wide-sense SR phenomena have overturned this view, and expanded it to linear oscillator
(LO) by introducing additive and multiplicative noise, i.e., linear noisy oscillators with
random fluctuations on damping [30,31], frequency [32–34], or mass [35,36]. Particularly,
random-mass systems were first proposed in chemical and biological background, where
the surrounding molecules not only collide with the oscillator but may also adhere to it,
thereby changing its mass [37]. The additive noise and mass fluctuation are responsible for
an influx of energy to the oscillator and its dissipation to the surrounding environment. It
is found that the synergy could conduct a rich variety of generalized stochastic resonance
(GSR) behaviors, played an important role in enhancing the driving signal in terms of
output amplitude amplification (OAA) or signal-to-noise ratio (SNR). Henceforth, such
a model has received widespread attention and shown prominent significance with the
explosive development of micro- and nano-technologies, which leads to the growing need
to study the influences of random mass disturbance on the systems, i.e., ion-ion reactions,
electrodeposition, granular flow, film deposition, nano-technological devices, etc.

Therefore, we are inspired to consider a new type of GSR behavior based dynamical
system for bearing fault diagnosis in the framework of linear oscillators, and extend it
to the high-frequency signal by introducing GST method. Meanwhile, based on Shapiro-
Loginov formula and Laplace transform, the system stationary response can be analyzed
to obtain the exact expression of OAA. Moreover, an improved PSO algorithm [38] is
adopted to adaptively achieve the optimal GSR match of system parameters, including
damping coefficient, inherent frequency, the intensity and correlation rate of internal
multiplicative fluctuation, and GST coefficient. Compared with the traditional methods,
i.e., overdamped bistable SR system and underdamped Duffing oscillator in the simulations,
the proposed method is verified to be significantly better in both output SNR performance
with the known driving frequency and adaptive identifying ability with the unknown
driving frequency. Finally, it also shows the superiority in the experimental application of
bearing fault diagnosis. It is worth emphasizing that the proposed system can identify the
characteristic more clearly in the most difficult diagnosis for rolling element fault, but the
classical methods might be invalid. Meanwhile, the diagnosis efficiency is increased by
more than 5 times, which is significantly better than the nonlinear dynamical methods.
Obviously, it shows the great potential in engineering applications, especially the online
fault diagnosis. The main novelty of this paper is to extend the classical SR based methods
for bearing fault diagnosis to fluctuating-mass induced linear oscillator (FMLO), in which
GST method is combined to compensate for the shortcomings of low-frequency driving
constraint. It is verified from stationary response analysis that the proposed GST-FMLO
system shows a rich variety of high-frequency induced GSR behaviors, particularly the
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double-peak bona fide SR with GST coefficient, which can be adaptively utilized in the
multi-parameter regulation by PSO algorithm with the strategy of decreasing inertial
weight, and achieve the optimal energy conversion from mass fluctuation to weak high-
frequency fault characteristic.

The rest of this paper is organized as follows. In Section 2, we propose the system
model, and reveal the GSR behaviors based on the analysis of system stationary response.
In Section 3, the system implementation and optimal performance based on multiple-
parameter regulation are investigated. In Section 4, the practical application and result
discussions are presented. A brief conclusion follows in Section 5.

2. System Model
2.1. GST Based FMLO System

In some chemical and biological environments, it is a fact often observed that the
surrounding molecules are capable of colliding with the Brownian particle and adher-
ing to it randomly in the viscous medium, thereby forming the random fluctuation on
particle mass [35–37]. Motivated by the phenomena, we consider the linear oscillator
driven by a periodic signal u(t) and subjected to an additive noise ε(t) in the harmonic
potential U(x) = 1

2 ω2
0x2. Thus, the fluctuating-mass induced linear oscillator (FMLO) can

be described by the following underdamped Langevin system:

[1 + ξ(t)]ẍ(t) + γ0 ẋ(t) + ω2
0x(t) = g(t), (1)

where x(t) is the system response at time t, γ0 is a constant representing the damping coef-
ficient, ω0 represents the system inherent frequency, g(t) = u(t)+ε(t) is the system input,
including periodic signal u(t) = A cos(2π f t) (with the amplitude A and driving frequency
f ) and the additive white Gaussian noise ε(t), which has the following statistical properties:

〈ε(t)〉 = 0, 〈ε(t)ε(t + τ)〉 = 2Dδ(τ), (2)

where D is the noise intensity. In addition, ξ(t) in Equation (1) represents the fluctuation
on particle mass in Langevin dynamics, and it is modeled as symmetric dichotomous noise
(SDN), taking two values ξ(t)∈{−σ0, σ0} with σ0∈ (0, 1) to ensure 1+ξ(t)>0. Meanwhile,
it is supposed to satisfy

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t + τ)〉 = σ2
0 e−λ0|τ|, (3)

where σ2
0 and λ0 are the intensity and correlation rate of ξ(t), respectively. Because of

different origins, multiplicative SDN fluctuation ξ(t) and additive noise ε(t) are further
assumed to be independent, i.e., 〈ξ(t)ε(t+τ)〉 = 0.

Previous studies have noted that bona fide SR behavior widely exists in this type of
LO system [31,32,34,36], that is, as the driving frequency f increases, the output periodic
component of system stationary response non-monotonously decreases with single or
double peaks, especially for high-frequency driving signal. It becomes much weaker,
and completely submerges in the background noise. In the practical application of bearing
diagnosis, the fault signals always behave to be high-frequency. Inevitably, in Equation (1)
we need to apply the generalized scale transformation (GST), which has been verified to be
effective in many dynamical methods for bearing fault diagnosis.

We introduce the coefficient R to perform time-scale transformation t̃ = Rt, and define
y(t̃),x(t) in Equation (1), thus we have

[1 + ξ(t̃)]ÿ(t̃) +
γ0

R
ẏ(t̃) +

ω2
0

R2 y(t̃) =
A
R2 cos

(
2π

f
R

t̃
)
+

1
R2 ε(t̃), (4)

with the statistical properties: 〈ξ(t̃)〉 = 0, 〈ε(t̃)〉 = 0, 〈ξ(t̃)ξ(t̃+τ̃)〉 = σ2
0 e−

λ0
R |τ̃|, 〈ε(t̃)ε(t̃+

τ̃)〉 = 2Dδ(τ̃), and 〈ξ(t̃)ε(t̃+τ̃)〉 = 0.
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Comparing Equation (4) with Equation (1), we observe that the driving frequency is
decreased to f

R , but the amplitude decreases to A
R2 after the transformation. It is noted that

the purpose of using re-scaled method is to find the suitable parameters to accomplish
system resonance behaviors. As a result, to ensure that the transformed system has an
equivalent dynamical behavior driven by the low-frequency signal, we have to make the
input signal recover to the original strength [25–27]. Accordingly, the system described by
Equation (1) is equivalently extended to[

1 + ξ̃(t̃)
]
ÿ(t̃) + γẏ(t̃) + ω2y(t̃) = g(t̃), (5)

where γ and ω are the regulatable parameters, which have the similar meanings as γ0
and ω0 in Equation (1); g(t̃) is the system input, which includes the periodic signal u(t̃) =
A cos(2π f̃ t̃) (with lowered driving frequency f̃ = f

R ) and the background noise ε(t̃),
satisfying the properties 〈ε(t̃)〉 = 0, 〈ε(t̃)ε(t̃+τ̃)〉 = 2Dδ(τ̃)); ξ̃(t̃) is the internal random
regulation of SDN on second order inertia term, and obeys: 〈ξ̃(t̃)ε(t̃+τ̃)〉 = 0, 〈ξ̃(t̃)〉 = 0,
and 〈ξ̃(t̃)ξ̃(t̃+τ̃)〉 = σ2e−λ|τ̃|, in which σ2 and λ are the intensity and correlation rate
of ξ̃(t̃).

Here Equation (5) is named GST-FMLO system. In practical applications, the mea-
sured high-frequency signal should be converted to low-frequency signal by selecting
an appropriate GST coefficient R, and then it is processed by Equation (5) as the system
input. Based on the wide-sense SR mechanism existed in LOs driven by additive and
multiplicative noises, the input signal can be maximally amplified by optimizing the sys-
tem parameters, i.e., γ, ω, σ, λ and R. In the following subsection, we will analyze the
system stationary response in details to obtain the output amplitude amplification (OAA),
and reveal the cooperative mechanism of multiple parameters induced generalized SR
(GSR) behaviors in the proposed GST-FMLO system.

2.2. System Stationary Response

Firstly, we perform two operations upon Equation (5): (i) averaging Equation (5) with
respect to the noise term ε(t̃), (ii) multiplying the both sides of Equation (5) by ξ̃(t̃) and
then averaging it. We obtain{

d2

dt̃2 〈y(t̃)〉+
〈
ξ̃(t)ÿ(t̃)

〉
+ γ d

dt̃ 〈y(t̃)〉+ ω2〈y(t̃)〉 = A cos(2π f̃ t̃),〈
ξ̃(t̃)ÿ(t̃)

〉
+ σ2 d2

dt̃2 〈y(t̃)〉+ γ
〈
ξ̃(t̃)ẏ(t̃)

〉
+ ω2〈ξ̃(t̃)y(t̃)〉 = 0.

(6)

To perform the splitting of correlations in Equation (6), we employ the Shapiro-
Loginov formula [39] with following forms:

d
dt̃
〈
ξ̃(t̃)y(t̃)

〉
=
〈
ξ̃(t̃)ẏ(t̃)

〉
− λ

〈
ξ̃(t̃)y(t̃)

〉
, (7)

and
d
dt̃
〈
ξ̃(t̃)ẏ(t̃)

〉
=
〈
ξ̃(t̃)ÿ(t̃)

〉
− λ

〈
ξ̃(t̃)ẏ(t̃)

〉
, (8)

respectively. Combining Equations (6)–(8), and then taking the Laplace transform, we obtain
(s2 + γs + ω2)Y1(s) + Y4(s) = As

s2+4π2 f̃ 2 + (s + γ)y1(0) + ẏ1(0),

σ2s2Y1(s) + ω2Y2(s) + γY3(s) + Y4(s) = sσ2y1(0) + σ2ẏ1(0),
sY2(s) = Y3(s)− λY2(s) + y2(0),
sY3(s) = Y4(s)− λY3(s) + y3(0),

(9)

where Yi(s) = L{yi(t̃)}(s), i = 1, 2, 3, 4, are the Laplace transforms of new variables:
y1(t̃), 〈y(t̃)〉, y2(t̃),

〈
ξ̃(t̃)y(t̃)

〉
, y3(t̃),

〈
ξ̃(t̃)ẏ(t̃)

〉
, and y4(t̃),

〈
ξ̃(t̃)ÿ(t̃)

〉
. y1(0), y2(0),

y3(0) and ẏ1(0) are the initial conditions, whose influences will vanish in the long-time



Sensors 2021, 21, 707 5 of 21

limit of t̃→ ∞. Thus, the solutions of Equation (9) can be easily obtained. Particulary,
we have

Y1(s) = H(s)
As

s2 + 4π2 f̃ 2
, (10)

with {
H(s) = 1

D(s)

[
(s + λ)2 + γ(s + λ) + ω2],

D(s) = (ω2 + s2 + γs)
[
(s + λ)2 + γ(s + λ) + ω2]− s2σ2(s + λ)2.

(11)

Based on linear response theory [40], we apply the inverse Laplace transform to obtain
the asymptotic expression of system stationary response 〈y(t̃)〉as with the following form:

〈y(t̃)〉as = 〈y(t̃)〉 | t̃→∞= Ãas cos(2π f̃ t̃ + ϕ̃as), (12)

where Ãas, ϕ̃as are the stationary amplitude and phase shift, respectively, and have been
arranged as follows:  Ãas = A|H(j2π f̃ )| = A

√
µ2

1+µ2
2

µ2
3+µ2

4
,

ϕ̃as = arctan( µ2µ3−µ4µ1
µ1µ3+µ2µ4

),
(13)

with the related coefficients:

µ1 = −4π2 f̃ 2 + λ2 + γλ + ω2,

µ2 = 2π f̃ (2λ + γ),

µ3 = −(4π2 f̃ 2 −ω2)(λ2 + γλ + ω2 − 4π2 f̃ 2)− 4π2 f̃ 2σ2(4π2 f̃ 2 − λ2)− 4π2 f̃ 2γ(2λ + γ),

µ4 = 16π3 f̃ 3λσ2 − 2π f̃ (4π2 f̃ 2 −ω2)(2λ + γ) + 2π f̃ γ(λ2 + γλ + ω2 − 4π2 f̃ 2).

(14)

It is worth emphasizing that the result holds under the premise of σ∈ (0, 1), which
causes no positive real part in the roots of D(s) = 0. Thus, Equation (9) has stable
solutions [40]. Here we further focus on the output amplitude amplification (OAA) to
measure the magnification ability of weak high-frequency signal:

G(γ, ω, σ, λ, R) =
1
A

Ãas, (15)

which has been expressed as the function of regulatable parameters, γ, ω, σ, λ, and R.

2.3. Multi-Parameter Induced GSR Behaviors

The typical SR behavior reveals the effect of randomness on enhancing the response
of nonlinear systems to weak periodic signal and making output SNR varying with the
intensity be non-monotonic. But in recent studies, the term has been extended in the
framework of linear systems [32,37]. To avoid the misunderstanding, generalized stochastic
resonance (GSR) is used to focus on the non-monotonic dependence of system performances
(i.e., stationary amplitude, OAA, output SNR) on various parameters.

In Figure 1, we plot the OAA curves varying with γ, ω2, σ2, and λ, respectively. It
is clearly observed that there exist multiple parameters induced SR or GSR behaviors,
i.e., single-peak GSR of G(γ) in Figure 1a, double-peak GSR of G(ω2) in Figure 1b, classical
SR of G(σ2) in Figure 1c, SI of G(λ) in Figure 1d.
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Figure 1. Dynamical behaviors of output amplitude amplification (OAA) varying with different
system parameters: (a) G vs. γ with ω2 = 1.0, σ2 = 0.1, λ = 0.1, R = 600, A = 1.0, f = 100, D = 10;
(b) G vs. ω2 with γ = 0.2, σ2 = 0.2, λ = 0.1, R = 500, A = 1.0, f = 100, D = 10; (c) G vs. σ2 with
γ = 0.1, ω2 = 1.0, λ = 0.1, R = 500, A = 1.0, f = 100, D = 10; (d) G vs. λ with γ = 0.1, ω2 = 1.0,
σ2 = 0.2, R = 500, A = 1.0, f = 100, D = 10.

Specifically, in Figure 1a, we consider G varying with the damping coefficient γ,
and observe the single-peak GSR behavior, based on which the value of γ can be regu-
lated within [0.01, 0.89] to magnify the stationary amplitude Aas by lowering the driving
frequency to f̃ = f

R ≈ 0.1667, and the optimum value occurs at γ = 0.09, corresponding
to the maximum G = 2.224. In Figure 1b, G is plotted as the function of system inherent
frequency ω2, and it typically shows double-peak GSR behavior. By confining G(ω2)>1,
we find that ω2 should be controlled into [0.28, 1.28] or [1.92, 2.76], and the optimum value
of main-peak occurs at ω2 = 0.84 with the maximum G = 1.809.

Furthermore, we depict the curves of G varying with the parameters of SDN fluc-
tuation, i.e., σ2 and λ, as shown in Figure 1c,d, respectively. Obviously, G(σ2) behaves
non-monotonous phenomenon of conventional SR, and the peak occurs at σ2 = 0.13,
with which the internal SDN energy can be optimally transformed to periodic signal at
the lowered driving frequency f̃ = 0.2. It plays an important role in magnifying the
signal, and it is similar to the additive noise in classical nonlinear bistable system [22].
Conversely, as λ increases in Figure 1d, we observe the non-monotonous SI phenomenon of
first decrease and then increase, and the valley of maximum inhibition occurs at λ = 0.12.
Thus, it is necessary to avoid the area of SI valley in the parameter selection of λ.

In Figure 2, we investigate the effect of GST coefficient R in the system driven by high-
frequency signal, respectively with f = 100 Hz and 200 Hz, and we find that as R increases,
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both the evolutions of G(R) show the bona-fide SR with double peaks. It can be explained
as follows: in GST-FMLO system, the internal SDN fluctuation ξ̃(t̃)∈{−σ, σ} leads to two
stable states in statistical sense, thus it can be regarded as an additive noisy oscillator [37],

and approximately exists two resonance frequencies fSR = R
2π

√
ω2

1±σ−
γ2

2(1±σ)2 . As expected,

in Figure 2a with f = 100 Hz, we first observe the sub-peak at R = 480, and the main-peak
occurs at R = 780, with which the signal can be optimally regulated to magnify 2.554 times
in terms of OAA. In Figure 2b, where the driving frequency is increased to f = 200 Hz and
the other parameters remain the same as those in Figure 2a, it is seen that G(R) performs
the similar non-monotonous tendency with the increase of R, and it is equivalent to the
curve in Figure 2a stretched to 2 times in horizontal direction. Thus, the positions of two
peaks proportionally shift to the larger value of R, i.e., R = 960, and 1560, and the peak
values remain unchanged. It shows that GST coefficient R, combined with γ, ω, σ and λ,
can be regulated to match the external driving frequency f , and reach the main-peak of
bona-fide SR to maximally enhance the input periodic signal.
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Figure 2. Dynamical behaviors of OAA varying with generalized scale transformation (GST) coeffi-
cient: (a) G vs. R with γ = 0.2, ω2 = 1.0, σ2 = 0.2, λ = 0.1, A = 1.0, f = 100, D = 10; (b) G vs. R
with γ = 0.2, ω2 = 1.0, σ2 = 0.2, λ = 0.1, A = 1.0, f = 100, D = 10.

3. Numerical Performance Based on Multi-Parameter Optimization
3.1. Numerical Implementation

Recalling Equation (5), the system can be rewritten as:{
z(t̃) = ẏ(t̃),[
1 + ξ̃(t̃)

]
ż(t̃) + γz(t̃) + ω2y(t̃) = g(t̃),

(16)

which is the stochastic differential equations, and can be implemented by using fourth-
order Runge-Kutta (RK-4) numerical method as follows:

k1 = z[i], h1 = 1
1+ξ̃[i]

(−γk1 −ω2y[i] + g[i]),

k2 = z[i] + 1
2 hh1, h2 = 1

1+ξ̃[i]
(−γk2 −ω2(y[i] + 1

2 hk1) + g[i]),

k3 = z[i] + 1
2 hh2, h3 = 1

1+ξ̃[i+1]
(−γk3 −ω2(y(i) + 1

2 hk2) + g[i+1]),

k4 = z[i] + hh3, h4 = 1
1+ξ̃[i+1]

(−γk4 −ω2(y[i] + hk3) + g[i+1]),

z[i+1] = z[i] + 1
6 h(h1 + 2h2 + 2h3 + h4),

y[i+1] = y[i] + 1
6 h(k1 + 2k2 + 2k3 + k4),

(17)
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where h is the iteration step, and y[i], z[i] and g[i] are the discrete forms of y(t̃), z(t̃) and
g(t̃), respectively. Furthermore, the system performance of output SNR with the discrete
form [12] is given by

SNRout = 10 log10
Y[round( f /∆ f )+1]

∑Ns/2
i=1 Y[i]−Y[round( f /∆ f )+1]

, (18)

where Y[i] is the amplitude spectrum calculated by fast Fourier transform (FFT) of discrete
output y[i], ∆ f is the frequency resolution, and Ns is the series length in FFT. Based on
Equation (18), the input SNR, denoted as SNRin, can be similarly calculated by the FFT of
g[i], and thus the SNR gain

SNRgain = SNRout − SNRin, (19)

is used to measure the system performance on amplifying ability of weak high-frequency
signal. If not specified in the simulations, the system is numerically achieved based on
sampling frequency fs = 10,000 Hz and iteration step h = R/ fs, and the number of
sampling points is set as Ns = 100,000.

3.2. System Regulation Mechanism

Based on Equations (16)–(18), the numerical performance is explicitly or implicitly
determined by different parameters, and thus the proposed GST-FMLO system can be
optimized by the multi-parameter regulation, i.e., damping coefficient γ, inherent frequency
ω, SDN parameters σ and λ, and GST coefficient R. In the following simulations, we mainly
investigate the system regulation mechanisms on output SNR improvement. The input
periodic signal is characterized by A = 0.1, f = 100 Hz, and submerged in the background
noise with D = 1.0.

- Damping Regulation

In Langevin dynamics, the damping coefficient as an important physical parameter
characterizes the energy dissipation, thus the small γ has the obvious magnification effect
on the system input, for both the periodic signal and background noise. With the coopera-
tion of internal SDN regulation, the system shows two equilibria in statistical sense, and a
part of additive noise energy can be transformed into signal energy, which might lead to
the increase of output SNR, i.e., SNRgain = 18.60 dB for γ = 0.05 in Figure 3. Although the
output is relatively inhibited to a certain extend (compared with γ = 0.01), it is also clearly
observed the noise interference is decreased to replenish the inhibited signal energy. This
is why we observe that the component is substantially retained at f = 100 Hz.
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Figure 3. The performance of the generalized scale transformation-fluctuating-mass induced linear oscillator (GST-FMLO)
system regulated by different damping coefficients γ = 0.01, 0.05 and 0.50. The other parameters are chosen as ω = 1.6,
σ = 0.2, λ = 1.0, R = 400, A = 0.1, f = 100, D = 1.0.
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However, much smaller γ, i.e., γ = 0.01 in Figure 3, will over-amplify the noise,
and the residual noise is still heavy and will submerge the periodic signal without the
cooperation of other regulatable means. Thus, we observe the performance degradation
SNRgain = 14.49 dB instead. In contrast, with the increase of γ, i.e., γ = 0.50, the system
shows a significant impact on inhibiting the input, in which the inhibited periodic signal is
too weak to excite the system to escape the local equilibria and regularly switch between
two equilibria, even with the cooperation of input noise, which is still inhibited by the
system at the same time. Thus, this also leads to a 2.08 dB decrease of SNR gain.

- Inherent Frequency Regulation

In Figure 4, we investigate the effect of potential U(x) = 1
2 ω2x2, respectively regulated

by inherent frequencies ω = 0.8, 1.6 and 2.4. Here it is worth noting that U(x) is different
from the potentials in classical bistable SR system [22], and nonlinear monostable SR
system [41]. As a generalized monostable form, the SR behavior does not exist without
the cooperation of multiplicative SDN. Thus, it is not involved in the conventional SR
based bearing fault diagnosis methods. It is seen from Figure 4 that ω plays a role of band
pass filter parameter in detecting the weak signal. As ω increases from 0.8 to 2.4, the pass
band gradually shifts from lower band [30, 70] to higher [130, 170]. The input signal can
be amplified significantly if ω matches with the driving frequency f = 100 Hz, that is, it
exactly falls into the regulated pass band [80, 120] with ω = 1.6.
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Figure 4. The performance of GST-FMLO system regulated by different inherent frequencies ω = 0.8, 1.6 and 2.4. The other
parameters are chosen as γ = 0.05, σ = 0.2, λ = 1.0, R = 400, A = 0.1, f = 100, D = 1.0.

- SDN Regulation

Moreover, in Figure 5 we discuss the regulation effect of SDN fluctuation, which
is randomly governed by fluctuating amplitude σ and correlation rate λ. When SDN is
controlled by σ = 0.1, then λ = 0.1, which corresponds to the lower switching frequency in
statistical sense, and it is difficult to transform noise energy to the relative high-frequency
signal (with f̃ = f

R = 0.25 Hz). As λ increases to 1.0, we clearly observe the component at
f = 100 Hz is enhanced, and SNR gain is improved from 19.01 dB to 21.25 dB. On the other
hand, if we further regulate SDN intensity, increased to σ2 = 0.42, the residual noise energy
plays a negative role in disordering the system response, thus we observe the component at
f = 100 Hz weakens, and the interference spreads to wider frequency band, which instead
makes the SNR gain decrease to 14.60 dB.
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Figure 5. The performance of GST-FMLO system regulated by different SDN with parameters (σ, λ) = (0.1, 0.1), (0.1, 1.0)
and (0.4, 1.0). The other parameters are chosen as γ = 0.1, ω = 1.6, R = 400, A = 0.1, f = 100, D = 1.0.

- GST Regulation

Finally, we further analyze the regulation effect of GST coefficient R in Figure 6. In
FMLO system, ω mainly controls the system to match with external driving frequency
f , and leads to the amplification of weak signal based on bona fide SR behavior existing
in the system. However, the effect is limited, that is, as ω increases, the output periodic
component non-monotonously fades with double-peaks, especially for high-frequency
driving signal, when it becomes much weaker, and even completely submerges in the
background noise. Thus, GST is necessary, and R can be used to lower the driving frequency
to arbitrarily expected value. In Figure 6, the system is regulated by R, respectively with
R = 100, 200, 300 and 400. As expected, we observe the similar regulation effect of band
pass filter, and they respectively lead to the different pass bands from low to high. When
the driving frequency f = 100 Hz happens to fall into the band, i.e., [90, 115] with R = 300,
we observe that noise energy out of the band can be effectively transformed into the energy
of the periodic driving signal. Accordingly, the SNR gain is improved to 21.50 dB.
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Figure 6. The performance of the GST-FMLO system regulated by different GST coefficients R = 100, 200, 300 and 400.
The other parameters are chosen as γ = 0.1, ω = 2.0, σ = 0.1, λ = 1.0, A = 0.1, f = 100, D = 1.0.
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3.3. PSO Based Multi-Parameter Regulation

Based on the above description and discussion, we have different means and methods
to improve the system performance for detecting the weak high-frequency signal (at the
driving frequency f = fin) in the background noise. Taken together, all the parameters
involved in Section 3.2 can be optimized based on SNRout, and the objective function is
expressed as:

{γ, ω, σ, λ, R}GST−FMLO
opt = arg max

γ,ω,σ,λ,R∈R+
SNRout(γ, ω, σ, λ, R | f = fin). (20)

By applying PSO algorithm [38], it is easy to obtain the optimal parameters. Moreover,
the strategy of decreasing inertial weight based on particle distance is used to improve the
global search capabilities, and avoid trapping in the local optimum, i.e., the value of ω or
R at the sub-peak position, as shown in Figures 1b and 2. The skeleton diagram is shown
in Figure 7.

In order to verify the effectiveness of proposed method, two more classical SR systems
are considered to compare the performance in the detection of weak high-frequency signal:

• overdamped bistable SR system (GST-OBSR)

γẏ(t̃)− ay(t̃) + by3(t̃) = g(t̃), (21)

with four parameters: γ, a, b, R;
• underdamped Duffing oscillator (GST-Duffing)

ÿ(t̃) + γẏ(t̃)− ay(t̃) + by3(t̃) = g(t̃), (22)

with four parameters: γ, a, b, R;
• our proposed GST-FMLO system Equation (5) with five parameters: γ, ω, σ, λ, R.

It is noted that, all the parameters in GST-OBSR and GST-Duffing systems are also opti-
mized by the previously mentioned PSO algorithm with the objective function SNRout.
In practical applications, the actual input driving frequency may be known, or un-
known and should be estimated. Thus, in the following simulations, we focus on the
performance of two cases, respectively with known and unknown driving frequency.

PSO initialization 

Input noisy signal to be processed

RK-4 numerical method 

to obtain the system response

Generate next-generation particles 

using inertial weight coefficients 

with particle distance

Calculate and compare to 

update the particles

Does it meet the number 

of iterations?

Obtain optimal parameters and

save the system response

Yes

No

out
SNR

Start

End

Figure 7. The skeleton diagram of multi-parameter optimization based on improved particle swarm
optimization (PSO) algorithm.
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- Performance with Known Driving Frequency

We consider the optimal detection of weak signal in the background noise with
D = 1.0. In Figure 8, the noisy signal as the input is respectively processed by above three
different systems, and the input SNR is calculated as −34.10 dB. By maximizing the SNRout
at the known driving frequency f = 100 Hz in PSO algorithm, the parameters of three
systems can be optimized, and the results are summarized in Table 1. With the optimal
parameters, the system output and corresponding amplitude spectrum have been depicted
in Figure 8. Obviously, compared with the results in Section 3.2, the weak signal has been
further enhanced through the optimal GST-FMLO system with multi-parameter regulation,
and the output SNR is improved to −10.91 dB with SNR gain 23.19 dB. Moreover, the other
two systems is relatively difficult to deal with low harmonics, resulting in lower output SNR.
Surprisingly, the linear system GST-FMLO can greatly amplify the characteristic harmonic,
which causes the low harmonics to be extremely weak compared to the characteristic. This
is quite valuable in bearing fault diagnosis.

Table 1. The results of weak signal detection based on three different dynamical methods.

Method Optimal System Parameters (osp) Detection Performance

osp-1 osp-2 osp-3 osp-4 R SNRin SNRout SNRgain

GST-OBSR 0.4680 0.0025 0.8440 - 4.1561× 102 −34.10 dB −24.48 dB 9.62 dB
GST-Duffing 0.2224 1.2144 0.2384 - 4.4083× 102 −34.10 dB −19.10 dB 15.00 dB
GST-FMLO 0.0407 1.5839 0.0812 0.7088 3.9694× 102 −34.10 dB −10.91 dB 23.19 dB

{γ, ω, σ, λ, R}opt

{γ, a, b, R}opt
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Figure 8. The optimal performance of three different dynamical methods (GST-overdamped bistable SR system (OBSR),
GST-Duffing and GST-FMLO) in the detection of weak signal with the known driving frequency f = 100 Hz.

- Adaptive Performance with Unknown Driving Frequency

In practical applications on bearing fault diagnosis, due to the inevitable influence
of loads, sensor error and installation position, the deviation always exists between the
theoretical and actual values of fault frequency. Thus, we need to adaptively estimate
the actual fault frequency. Based on PSO algorithm in GST-FMLO system, the estimate is
achieved by {

f̂ = arg max f∈[ fa , fb ]
SNRopt

out( f ),
SNRopt

out( f ) = SNRout( f ∈ [ fa, fb] | {γ, ω, σ, λ, R}GST−FMLO
opt ).

(23)

Obviously, the identifying ability of actual driving frequency is an important perfor-
mance index, and it can be measured by analyzing whether the value of SNRopt

out at the
actual value f̂ = fin is significantly larger than SNRopt

out( f̂ ∈ [ fa, fb] \ fin).
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We consider the adaptive performance of three different dynamical methods, i.e., GST-
OBSR, GST-Duffing and GST-FMLO, in the detection of weak signal with the actual driving
frequency fin = 100 Hz, which is regarded as an unknown parameter. As the background
noise intensity D varies within the range of [0.25, 5.0], we observe the result of SNRopt

out( f̂ ∈
[99, 101]), and depict SNRopt

out in f̂ -D plane in Figure 9, where the value can be determined by
the color bar at the right side of each sub-figure. By comparing the color variation, the peak
of SNRopt

out can be roughly identified at fin = 100 Hz for the relative lower noise intensities.
In the GST-OBSR and GST-Duffing systems, the peak value decreases significantly with
the increase of D, and it becomes difficult to be clearly identified and accurately estimated.
However in the GST-FMLO system, the decrease is limited as D increases, and with the
increase of deviation δ f = | f̂− fin|, SNRopt

out fades quickly. Thus, we can evidently distinguish
the peak at the actual driving frequency fin = 100 Hz, even under the background of much
heavier noise.

Frequency /Hz

D

GST−OBSR

 

 

99 99.5 100 100.5 101

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

−36

−34

−32

−30

−28

−26

−24

−22

−20

−18

Frequency /Hz

D

GST−Duffing

 

 

99 99.5 100 100.5 101

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

−28

−26

−24

−22

−20

−18

Frequency /Hz

D

GST−FMLO

 

 

99 99.5 100 100.5 101

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

−30

−28

−26

−24

−22

−20

−18

Figure 9. The adaptive performance of three different dynamical methods (GST-OBSR, GST-Duffing and GST-FMLO) in the
detection of weak signal with the unknown driving frequency f = 100 Hz.

It should be stated that the simply noisy sinusoids are considered in these simulations
for convenience. The practical bearing fault signals are more complicated, as they are
always non-stationary or cyclo-stationary [42]. Hence some preprocessing methods should
be applied to make the system be more effective in the applications, which will be further
described and discussed in next section.

4. Experimental Applications

In this section, we introduce the adaptive method of GST-FMLO system in bearing
fault diagnosis, and verify the effectiveness and practicability. The experimental data comes
from the tests conducted by Bearing Data Center of Case Western Reserve University [43],
and the basic layout of experimental setup is shown in Figure 10. It consists of a 2 hp motor
(left) driving the shaft where a torque transducer/encoder (center) are mounted. Torque
is applied to the shaft via a dynamometer (right) and electronic control system. By using
electro-discharge machining (EDM), the faults were seeded on the drive end bearing (SKF
6205-2RS JEM: inner ring diameter 0.9843 inches, outer ring diameter 2.0472 inches, rolling
element diameter 0.3126 inches, pitch diameter 1.5370 inches, contact angle 0◦, number
of rolling elements 9), which leads to the fault size 0.021 inches at inner race, 0.007 inches
at outer race, and 0.028 inches at rolling element. The faulted bearings were reinstalled
into the test rig, which was run at the speed of 1797 rpm (i.e., fr = 29.95 Hz). When the
bearing fault appears, periodic impulses can be revealed in the corresponding spectrum of
the generated vibrational or acoustic signals, collected by using a 16 channel DAT recorder
with sampling frequency fs = 12,000 Hz and sampling number Ns = 120,000. Based on
theoretical calculation in normal conditions without considering the influence of loads [42],
the values of fault frequencies from inner race, outer race, and rolling element, are expected
at fBPFI = 162.2 Hz, fBPFO = 107.4 Hz and 2 fBSF = 141.2 Hz, respectively.
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Fan end bearing

Driving Motor

Drive end bearing

Torque 

transducer/Encoder

Load Motor

Figure 10. The basic layout of experimental setup.

When a localized fault appears in a bearing with constant shaft speed, the collisions
between the kinetic bearing components will generate a series of periodic or qusi-periodic
impacts, which can be captured by the accelerometer or microphone sensors that are placed
on or near to the bearing housing, but are always blurred by background noises [12].
Hence, the practical bearing fault signals satisfy the input requirement of SR or GSR based
dynamical systems, i.e., GST-OBSR, GST-Duffing, GST-FMLO. Given this, the above three
methods are suitable for processing the noisy bearing fault signals, and extracting the
fault features from original signals, or envelope signals of the bearings [42]. Additionally,
in terms of specific situation, the actual measured fault frequencies are distinguished from
the theoretical values. They are should be identified adaptively in practice, and the skeleton
diagram for adaptive bearing fault diagnosis has been described in Figure 11, where the
difference between the applications of three systems is just the RK-4 numerical method to
solve system response in the PSO algorithm.

Start
Preprocessing of 

Sample signal

Obtain optimal and 

system response for each 

frequency 

Determine fault frequency 

range and step length

Diagnose each 

frequency within the 

range

Record optimal

for each 

frequency

Determine fault frequency

in terms of maximum 

Output PSO 

optimized signal of 

fault frequency

End

Signal preprocessing and search range determination

Improved PSO algorithm

Fault frequency determination and result output

,a bf f and f Hilbert transform = , 0, , ,

.

i a

b a

f f i f i n

f f
where n

f

outSNR

outSNR

outSNR

if

Figure 11. The skeleton diagram of numerical implementation for adaptive bearing fault diagnosis based on the improved
PSO algorithm.

Based on the SR or GSR mechanism, the periodic signal can be maximally enhanced
at the actual driving frequency in the systems, respectively with optimal parameters. Thus,
we focus on the adaptively ability to identify bearing fault frequency. In Figure 12a–c,
we respectively observe the optimal output SNR at a certain range around theoretical
values, and plot the curves of SNRopt

out to estimate the actual fault frequencies based on
the peaks. It is found that the actual fault frequency from inner race is f̂BPFI = 161.9 Hz,
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which is smaller than the theoretical value. However, the actual fault frequencies are
higher than the theoretical results for outer race and rolling element, i.e., f̂BPFO = 107.6 Hz,
2 f̂BSF = 141.8 Hz. Moreover, the identifying ability of three different systems is basically
consistent with the results in Figure 9. In all cases, the proposed GST-FMLO system shows
the optimal identifying performance with the most distinctive peaks.
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Figure 12. The adaptive identification of bearing fault frequencies f̂BPFI, f̂BPFO and 2 f̂BSF in terms of optimal SNRout.

Firstly, the vibration signal of a bearing with fault on the inner race is employed to
compare the diagnosis performance of three different dynamical systems. The original
waveform of the inner race fault signal and amplitude spectrum have been described in
Figure 13a,b, respectively. It is seen that the noise influence is obvious in both time-domain
and spectrum diagram, where the input SNR is−44.46 dB by numerical calculation, and the
component at f̂BPFI = 161.9 Hz is extremely insignificant, which inevitably leads to much
difficulty for recognizing the fault feature. As the preprocessing method, we analyze the
envelope signal in Figure 13c,d, and the characteristic frequency is still difficult to identify
due to excessive interference harmonics. It is reflected in the time-domain waveform that
the noise covers the periodic component of characteristic frequency. In Figure 13e–h, we
consider two traditional methods, that is, make the fault signal as input drive the GST-
OBSR and GST-Duffing systems. It is intuitively seen from Figure 13e–h that, although the
interferences are suppressed to a certain extent, some low harmonics (i.e., fr etc.) are
still quite obvious, which seriously affects the identification of characteristic harmonics.
Among them, due to the second order filtering effect of GST-duffing, the result will be
slightly better [24]. It is also supported by the numerical results of output SNR, which is
respectively improved to−19.55 dB and−14.44 dB, with the gains 24.91 dB and 30.02 dB. In
Figure 13i,j, we investigate the diagnosis performance of the GST-FMLO system. Obviously,
the component absolutely predominates at the fault frequency f̂BPFI = 161.9 Hz, and the
low harmonics are not significantly observed. This is because of the co-excitation of internal
and external noise energy, the linear system GST-FMLO greatly amplifies the characteristic
harmonics, thus showing that the low-order harmonics become extremely weak relative
to the characteristic. Based on this method, the output SNR can be further improved to
−9.85 dB with SNR gain 34.61 dB, which demonstrates that GST-FMLO system performs
better in processing the inner race fault signal.
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(b) The spectrum of inner race fault signal
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(c) The envelope of inner race fault signal
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(d) The spectrum of the envelope of inner race fault signal
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(e) GST−OBSR system output
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(f) The spectrum of GST−OBSR system output
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(g) GST−Dufffing system output

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

fBPFI

SNR
gain

=30.02dB

Frequency/Hz

A
m

p
 /

m
s

−
2

(h) The spectrum of GST−Dufffing system output
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(i) GST−FMLO system output
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(j) The spectrum of GST−FMLO system output

Figure 13. Inner race fault diagnosis by three different dynamical methods: (a) Inner race fault signal with f̂BPFI = 161.9 Hz;
(b) The spectrum of inner race fault signal; (c) The envelope of inner race fault signal; (d) The spectrum of envelope signal;
(e) GST-OBSR system output; (f) The spectrum of GST-OBSR system output; (g) GST-Duffing system output; (h) The
spectrum of GST-Duffing system output; (i) GST-FMLO system output; (j) The spectrum of GST-FMLO system output.

In the fault diagnosis of outer race, the original waveform and spectrum of fault
signal are described in Figure 14a,b, where the noise interference mainly concentrates
in the bandwidth of 2400 to 3800 Hz, and the input SNR is calculated as −44.07 dB.
When the envelope signal is analyzed in Figure 14c,d, it is seen that there still exist many
harmonic interferences around the outer race fault frequency 107.6 Hz in the spectrum.
Then, the envelope signal is used to drive the above three systems, and the time-domain
outputs and the corresponding amplitude spectrums are shown in Figure 14e–j. It is
found that the GST-FMLO system performs better to remove the low harmonics, and the
component at f̂BPFO = 107.6 Hz is amplified the most. The SNR gain is 6.38 dB and 2.87 dB
higher than that of GST-OBSR and GST-Duffing systems, respectively. This is also reflected
in the optimal output waveform of GST-FMLO system. It behaves with good periodicity
and and stationary amplitude. We can clearly identify the fault characteristic of outer
race signal.
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(b) The spectrum of outer race fault signal

f̂BPFO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

Time/s

A
m

p 
/m

s−
2

(c) The envelope of outer race fault signal

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

Frequency/Hz

A
m

p 
/m

s−
2

(d) The spectrum of the envelope of outer race fault signal

0.15 0.2 0.25 0.3
0.2

0.4

0.6

0.8

1

1.2

Time/s

A
m

p 
/m

s−
2

(e) GST−OBSR system output
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(f) The spectrum of GST−OBSR system output
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(g) GST−Dufffing system output
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(h) The spectrum of GST−Dufffing system output
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(i) GST−FMLO system output
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Figure 14. Outer race fault diagnosis by three different dynamical methods: (a) Outer race fault signal with f̂BPFO = 107.6 Hz;
(b) The spectrum of outer race fault signal; (c) The envelope of outer race fault signal; (d) The spectrum of envelope signal;
(e) GST-OBSR system output; (f) The spectrum of GST-OBSR system output; (g) GST-Duffing system output; (h) The
spectrum of GST-Duffing system output; (i) GST-FMLO system output; (j) The spectrum of GST-FMLO system output.

In the diagnosis of rolling element, the fault signal is always surrounded by modu-
lation sidebands at cage speed, and it is undoubtedly the most difficult to diagnose [42].
Here the original waveform and spectrum of fault signal are depicted in Figure 15a,b,
where a large number of low harmonic interferences (in addition to the component at fr)
play the dominate role. The input SNR is as low as −48.82 dB, which causes the fault
characteristic at 2 f̂BSF = 141.8 Hz to be much more difficult to identify. The results of
envelope analysis and GST-OBSR system are shown in Figure 15c–f, respectively. It is
clearly observed that many low harmonics are more obvious than characteristic harmonics,
thus they are invalid. Although GST-Duffing system performs better and SNR gain is
improved to 27.46 dB, as shown in Figure 15g,h, the interference is still relative heavy in
the lower frequency band. Thus, the GST-FMLO system is further applied to diagnose the
rolling element fault signal, in Figure 15i,j. We evidently observe the great improvement
of output SNR, which results from the fact that, based on the analysis of multi-parameter
regulation mechanism in Section 3.2, the system could play a cooperative role in optimally
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transforming the energy of SDN fluctuation to the fault signal. Thus, the component
at 141.8 Hz significantly increases, and SNR gains are 10.59 dB and 5.57 dB higher than
the GST-OBSR and GST-Duffing systems, respectively. It is fully demonstrated that the
proposed GST-FMLO system in this paper is also an extremely effective method in the
diagnosis of the rolling element.
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(c) The envelope of rolling element fault signal
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(e) GST−OBSR system output
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(f) The spectrum of GST−OBSR system output
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(g) GST−Duffing system output
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(h) The spectrum of GST−Duffing system output
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(i) GST−FMLO system output
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(j) The spectrum of GST−FMLO system output

Figure 15. Rolling element fault diagnosis by three different dynamical methods: (a) Rolling element fault signal with
2 f̂BSF = 141.8 Hz; (b) The spectrum of rolling element fault signal; (c) The envelope of rolling element fault signal; (d) The
spectrum of envelope signal; (e) GST-OBSR system output; (f) The spectrum of GST-OBSR system output; (g) GST-Duffing
system output; (h) The spectrum of GST-Duffing system output; (i) GST-FMLO system output; (j) The spectrum of
GST-FMLO system output.

It is noted that all the parameters in three systems are optimized by the adaptive PSO
algorithm, and the results have been clearly listed in Table 2. Compared with the other two
dynamical methods, the GST-FMLO system appears to be best in adaptively identifying
the actual fault frequency and obtain the results with optimal performance.

Besides, a point worth emphasizing is that, although the regulation in GST-FMLO
system involves more parameters, as a linear system it still seems to be most efficient,
and thus we observe the shortest runtime, only about 16.7% of that in two other systems.
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In Table 2, all the values of Tsim are normalized by the runtime of GST-FMLO system.
Obviously, the diagnosis efficiency is greatly increased by more than 5 times. The advantage
mainly comes from the reduced algorithm complexity of linear system implementation.
Thus, it provides an effective and efficient method in the practical applications, especially
the online fault diagnosis.

Table 2. The summaries of bearing fault diagnosis based on three different dynamical systems.

Method Optimal System Parameters (osp) Diagnosis Performance

Inner race fault with f̂BPFI = 161.9 Hz

osp-1 osp-2 osp-3 osp-4 R SNRin SNRout SNRgain Tsim

GST-OBSR 1.7930 0.0036 0.8986 - 1.1411× 103 −44.46 dB −19.55 dB 24.91 dB 6.60
GST-Duffing 0.2345 1.8715 0.5370 - 5.0625× 102 −44.46 dB −14.44 dB 30.02 dB 6.74
GST-FMLO 0.0205 1.7558 0.0272 0.6580 5.8626× 102 −44.46 dB −9.85 dB 34.61 dB 1.00

Outer race fault with f̂BPFO = 107.6 Hz

osp-1 osp-2 osp-3 osp-4 R SNRin SNRout SNRgain Tsim

GST-OBSR 1.6615 0.0096 1.0263 - 8.4209× 102 −44.07 dB −16.14 dB 27.94 dB 6.58
GST-Duffing 0.5250 0.0878 1.4789 - 6.1283× 102 −44.07 dB −12.62 dB 31.45 dB 6.72
GST-FMLO 0.1196 1.7923 0.0071 0.9982 3.7154× 102 −44.07 dB −9.76 dB 34.32 dB 1.00

Rolling element fault with 2 f̂BSF = 141.8 Hz

osp-1 osp-2 osp-3 osp-4 R SNRin SNRout SNRgain Tsim

GST-OBSR 1.6864 0.0537 0.5879 - 3.6795× 102 −48.82 dB −26.38 dB 22.44 dB 6.51
GST-Duffing 0.4721 1.7500 0.6105 - 3.7652× 102 −48.82 dB −21.36 dB 27.46 dB 7.02
GST-FMLO 0.0817 1.7770 0.0305 0.8001 4.8979× 102 −48.82 dB −15.79 dB 33.03 dB 1.00

5. Conclusions

This paper proposes an adaptive GST-FMLO system for bearing fault diagnosis in
the framework of Langevin dynamics, which effectively extends the traditional nonlinear
dynamical methods. By analyzing the system stationary response, in theory we discuss
systematically the dependence of OAA G on various parameters, including damping
coefficient γ, inherent frequency ω2, multiplicative SDN intensity σ2, correlation rate λ,
and GST coefficient R. It is found that the synergy of linear system, internal regulation
and external driving can conduct a rich variety of non-monotonic behaviors, such as
double-peak bona fide SR of G(R), single-peak GSR of G(γ), double-peak GSR of G(ω2),
conventional SR of G(σ2), and SI of G(λ). All these behaviors have a significant effect on
optimizing the system parameters to improve the diagnosis performance of weak high-
frequency signal in the heavy-noise background, and they are verified in the investigation
of multi-parameter regulation mechanisms. Finally, three types of dynamical methods,
i.e., GST-OBSR, GST-Duffing, and GST-FMLO systems, are applied to the experimental
data, and the results show that the proposed GST-FMLO system has the best identifying
ability, diagnosis performance and operating efficiency in all the fault diagnoses of inner
race, outer race and rolling element. It is demonstrated that the method proposed in this
paper has great potential in engineering applications.
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