
sensors

Article

Industry 4.0 towards Forestry 4.0: Fire Detection Use Case †

Radhya Sahal 1,2,∗, Saeed H. Alsamhi 3,4 , John G. Breslin 1 and Muhammad Intizar Ali 5

����������
�������

Citation: Sahal, R.; Alsamhi, S.H.;

Breslin, J.G.; Ali, M.I. Industry 4.0

towards Forestry 4.0: Fire Detection

Use Case . Sensors 2021, 21, 694.

https://doi.org/10.3390/s21030694

Received: 7 December 2020

Accepted: 15 January 2021

Published: 20 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Confirm SFI Research Centre for Smart Manufacturing, National University of Ireland Galway,
Galway, Ireland; john.breslin@nuigalway.ie

2 Faculty of Computer Science and Engineering, Hodeidah University, Al Hodeidah 3114, Yemen
3 SMART 4.0 FELLOW, Software Research Institute, Athlone Institute of Technology, Athlone, Ireland;

salsamhi@ait.ie
4 Faculty of Engineering, IBB University, Ibb 70270, Yemen
5 School of Electronic Engineering, Dublin City University, Dublin, Ireland; ali.intizar@dcu.ie
* Correspondence: radhya.sahal@nuigalway.ie
† This manuscript is extension version of conference paper: R Sahal, J. Breslin, M.I Ali, “On Evaluating the

Impact of Changes in IoT Data Streams Rate over Query Window Configurations”, Proceedings of the 13th
ACM International Conference on Distributed and Event-based Systems, ACM: New York, NY, USA, 2019;
DEBS ’19, pp. 262–263 .

Abstract: Forestry 4.0 is inspired by the Industry 4.0 concept, which plays a vital role in the next
industrial generation revolution. It is ushering in a new era for efficient and sustainable forest
management. Environmental sustainability and climate change are related challenges to promote
sustainable forest management of natural resources. Internet of Forest Things (IoFT) is an emerging
technology that helps manage forest sustainability and protect forest from hazards via distributing
smart devices for gathering data stream during monitoring and detecting fire. Stream processing is a
well-known research area, and recently, it has gained a further significance due to the emergence of
IoFT devices. Distributed stream processing platforms have emerged, e.g., Apache Flink, Storm, and
Spark, etc. Querying windowing is the heart of any stream-processing platform which splits infinite
data stream into chunks of finite data to execute a query. Dynamic query window-based processing
can reduce the reporting time in case of missing and delayed events caused by data drift.In this
paper, we present a novel dynamic mechanism to recommend the optimal window size and type
based on the dynamic context of IoFT application. In particular, we designed a dynamic window
selector for stream queries considering input stream data characteristics, application workload and
resource constraints to recommend the optimal stream query window configuration. A research
gap on the likelihood of adopting smart IoFT devices in environmental sustainability indicates a
lack of empirical studies to pursue forest sustainability, i.e., sustainable forestry applications. So,
we focus on forest fire management and detection as a use case of Forestry 4.0, one of the dynamic
environmental management challenges, i.e., climate change, to deliver sustainable forestry goals.
According to the dynamic window selector’s experimental results, end-to-end latency time for the
reported fire alerts has been reduced by dynamical adaptation of window size with IoFT stream
rate changes.

Keywords: IoT; query; industry 4.0; stream processing; window size; forestry 4.0; internet of forestry
things; forest fire detection; forest sustainability

1. Introduction

Information gathering and transmission are growing to the point where it is common
to exchange information between participation in real-time and anywhere in the world.
However, the information is required to adjust the process for producing decision-making
dynamically. Smart forest is one of the domains that is drastically becoming technologized
with data-gathering sites, processing, transportation and analysis. Industrial IoT data-
processing poses some unique challenges when endeavouring to make stream processing

Sensors 2021, 21, 694. https://doi.org/10.3390/s21030694 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2857-6979
https://orcid.org/0000-0001-5790-050X
https://doi.org/10.3390/s21030694
https://doi.org/10.3390/s21030694
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21030694
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/3/694?type=check_update&version=1

Sensors 2021, 21, 694 2 of 36

a reliable solution. Some specific challenges that the IoT industry faces when it comes
to data-processing are (1) the retrieval and processing overheads for the huge amount
of heterogeneous streaming data generated from a large number of IoT devices, and (2)
the missing and delayed events due to unpredictability of data which affects the required
rapid response time in the IoT industry [1]. In particular, these IoT devices produce data
at a variable rate (e.g., unscheduled events) rather than at a fixed rate, which augments
the difficulties for data stream processing platforms to cope with such a sudden increase
in streaming rates [2]. Taming this massive streaming data is a very challenging task.
Mainly, the true vision of IoT can only be realized if the underlying technologies for stream
processing can handle large amounts of data. Realizing the necessity, recently, a few
stable and scalable have emerged to facilitate real-time building applications for IoT by
processing large IoT data at scale, such as Apache Spark, Apache Flink, Apache Samza
and Apache Storm [3] etc. The rapid development of IoT has resulted in the emergence of
a few sophisticated query language tailor-made for performing analytics over streaming
data, such as Spark SQL, Flink Table API, KSQL, SamzaSQL, and StromSQL. All of these
streaming data queries are relying on the concept of windowing to convert continuous
infinite data streams into chunks of finite data sets sliced according to a pre-defined time
(e.g., minutes, seconds, milliseconds) [4].

Our previous work has addressed the study of the impact of changes in IoT data
streams rate over query window configurations [5]. Our evaluation results have indi-
cated a direct impact of any changes in stream rate and window size over the engines’
performance. For instance, consider a fire alarm detection query scenario that processes
two input data streams and observes their values at a fixed interval for any fire hazard
detection. Input streams/sensors are configured so that they change their stream rate
with the changing values (e.g., if the temperature rises beyond a certain threshold, data
observation rate is increased to ensure early detection of any fire event). Larger window
size facilitates streaming query engines for optimal processing of data with high velocity.
Still, it impedes the query engine’s performance due to large intermediate result size or
delay events. The smaller window size can lead to short-latency, but it misses events in
case of high stream rates. Therefore, a fixed window size will either impede the query
engine’s performance due to a large number of intermediate results or miss the detection of
fire events due to the small window size. One of the real use case of fire data monitoring is
forest fire detection. The forest managers have gradually accepted IoT forest environmental
monitoring technologies for taking forest inventory through remote IoT data collection [6].
The IoT-based forest fire monitoring data has the challenge of dynamic ecological changes,
i.e., climate change due to unpredictable streaming data. In particular, the timeliness of
acquired monitoring IoT data should be considered to avoid real-time data being affected
by sudden factors.

Internet of Forest Things (IoFT) is version revolution of IoT, which refers to the smart
devices distributed in forest for monitoring, management and fire detection and protection.
A big picture of the forest fire situation is depicted in Figure 1. As shown, the deployed IoFT
is used to monitor weather conditions (temperature, humidity, CO (Carbon Monoxide),
and CO2 (Carbon Dioxide)). The sensory weather data are collected and consumed by
Apache Kafka as a scalable message queuing system. The collected data (i.e., potential
fire events) is then sent to the query engine running on top stream processing platform.
The number of possible fire events varies drastically during the day, which causes a delayed
fire reporting to the forest department authority. The delay will also raise late alarms to
the forest department authority to send its firefighters and drones to the burning forest.
Therefore, the automation theme of Forestry 4.0 can lead to appropriate, timely action to be
taken from the forest department authority side. Applying adaptive window-based stream-
ing data analysis on forest fire data monitoring can provide early warning mechanisms to
reduce fire risks by sending quick decision-making responses.

Sensors 2021, 21, 694 3 of 36

Figure 1. Forest fire monitoring use case using weather sensors data (temperature, humidity, CO and CO2).

Sustainable forestry focuses on three impacts, i.e., economic (timber supply), ecological
(biological and resilience), and social sustainability (forests multiple-use and non-timber
products). The forest operations challenges are finding optimal management strategies to
predict the environmental, economic, and social performance of various services, processes
and productions. The concept of sustainable forestry is based on sustainable development,
which refers to maintaining biodiversity, capacity, productivity, vitality and relevant economic,
ecological and social operations impacts [7]. Furthermore, the authors of [8] discussed the
challenges of forest operations and the proposed Sustainability Impact Assessment (SIA)
framework that analyses the social, economic and environmental. Sustainable forestry fo-
cuses on three impacts, i.e., economic (timber supply), ecological(biological and resilience),
and social sustainability (forests multiple-use and non-timber products). Figure 2 illustrates
the importance of forest sustainability management for economic, social, and environmen-
tal. Balancing these impacts is a challenge for improving sustainable forestry in terms of
data availability, and quality [9,10]. The authors of [8] summarized the forest operations
sustainability impacts in details. Based on the above study, Figure 2 shows the effect and
the importance of using techniques solutions for improving Forestry 4.0. Forestry 4.0 aims
to bring forest value chain to work within Industry 4.0 parameters (connectivity, security,
and productivity, processing remotely). The authors of [11] discussed challenges regarding
wireless network availability and connectivity in forest in contrast to industries based on the
advanced IoFT, robotics, automation and autonomous technologies.

To the best of our knowledge, there is no dynamic stream processing system that
has been studied concerning the forest fire management and detection to manage the
unpredictable environmental conditions changes. The dynamic window-based selector
is particularly important and relevant for forest fire management and detection use case
because of its ability to adapt to the environmental changes in time. It can provide a timely
warning about fires by real-time monitoring streaming IoT data to detect the dynamic
environmental fire risks. To bring our research work to reality, we develop a data generator
to generate IoFT-based forest fire streaming forestry data with fluctuated change rates
simulated to rapidly changing in an ecological environment within forestry areas. Therefore,
it is sensible to state that our work presents an adaptive stream processing prototype for
Forestry 4.0 i.e., IoFT-based forest fire detection can automatically adapt the window size
according to several parameters and, thus, improve the performance of the underlying IoFT.

Sensors 2021, 21, 694 4 of 36

Figure 2. Forestry 4.0 and sustainability impacts.

1.1. Contribution

The main contributions in this paper can be summarized as follows,

1. We elaborate Industry 4.0 towards Forestry 4.0, which has been proposed as research
initiatives in recent years. While most of the publications have focused mainly on the
digital technologies, we have focused on applying the automation theme by proposing
dynamic stream query processing using IoFT for forest fire detection use case.

2. We provide a flexible model proposing the ideal window type and size depending on
stream rates and application requirements. The proposed dynamic query window se-
lector can monitor various external factors including stream rate, resource constraints,
and application requirement to propose the most optimal window size and type for
a given query. It is also capable of detecting any in-efficiencies and re-deploy the
optimal query.

3. We identify and perform a real-world use case of Forestry 4.0 (i.e., forest fire detection
based on IoT data) to evaluate the dynamic window selector in the fire situation when
the stream rate suddenly changes i.e., weather sensor starts sending streaming data
in high rate.

1.2. Paper Organization

The remainder of this paper is organized as follows; related work is introduced in
Section 2. The Industry 4.0 towards Forestry 4.0 and the forest fire detection use case is
introduced in Sections 3 and 4 respectively. The research methodology, including the data
streaming pipeline and our proposed dynamic window-based selector are introduced in
Section 5. The experimental evaluation and discussion are presented in Sections 6 and 7
respectively. Finally, conclusions and future work are presented in Section 8.

2. Related Work

Traditionally, stream processing systems have managed the sudden changes in stream
rate by elastically increasing available resources, or by discarding part of the data streams
(i.e., load shedding) [12–14]. Much work on the potential of stream processing has been
carried out in recent years due to the growth in IoT. Our work tackles change of stream rates
and window-based stream processing, which are major challenges faced due to loosely
couple nature of IoT data streams. The research work of forest environmental management
and industry 4.0 including forest fire detection is discussed. Therefore, we divide the
existing work into the following categories:

For the stream processing adaptation, Cervino et al. have proposed an adaptive cloud-
based approach for provisioning virtual machines with respect to stream rate change [15].

Sensors 2021, 21, 694 5 of 36

The proposed approach periodically estimates the number of virtual machines required
to support the input stream data rate to maintain virtual machines overloaded and meet
processing latency. The adaptive stream rate for smart grid applications on clouds has been
studied to throttle the rate of generation of power events by smart meters [2].

Furthermore, one of the aspects of the fluctuated streams generated by various IoT
devices is the out-of-order events problem. Kun et al. have proposed a real-time query-
matching algorithm to generate queries when the number of event types is large and query
length is long by minimizing the overhead and reduce the response time [1]. The distributed
Platform for Elastic Stream Processing (PESP) has been introduced to deal with changing
rates of streaming data [3]. The PESP platform operates a cost-efficient stream processing
engines due to a flexible adoption of processing nodes.

With regard to query stream processing, STREAM, a Stanford’s data stream manage-
ment system, supports a large class of declarative continuous queries over continuous
streams and traditional stored data sets [16]. Das et al. have proposed a robust algorithm to
automatically adapt the batch size based on the data ingestion rates, variations in available
resources, and workload characteristics [17]. Zhang et al. have leveraged adaptive batch
sizing and block size to minimize the end-to-end latency of streaming system without prior
knowledge of workloads specification [18]. The authors proposed a heuristic algorithm in-
tegrated with isotonic regression to automatically learn and adjust batch size and execution
parallelism according to workloads and operating conditions.

There has been much work in the area of stream-processing based on querying win-
dows. SABER, a window-based hybrid stream processing system is proposed to adapt
scheduling strategy on CPU and GPU with respect to increasing of the share of queries [19].
SPECTRE (SPECulaTive Runtime Environment) is a framework for speculative processing
of multiple dependent windows in parallel [20]. The SPECTRE framework has addressed
the speculative processing concept to allow the execution of multiple versions of multiple
windows using different event sets in parallel. It has provided a probabilistic model to
process different window versions that have the highest probability to be correct.

Stream-processing based on sliding window has been extensively studied for different
aspects such as aggregations and anomaly detection. For aggregation, the DABA algorithm
has been proposed for incremental sliding window aggregation over stream data [21].
Scotty, which is window-based operator has been proposed for aggregation and discretiza-
tion [22]. The key idea of the Scotty operator is splitting the streams into non-overlapping
slices and computes shared partial aggregates per slice while supporting out-of-order
processing. For anomaly detection, a sliding window-based strategy has been used for
detecting faults over high dimensional streaming data [23]. In particular, the authors has
proposed ABSAD approach to select fault-relevant sub-spaces and then detect online faults
stream with time-varying characteristics using sliding window.

For IoT forest environmental monitoring, the researchers at Northeast Forestry Uni-
versity have researched a networking based intelligent platform by using the ZIGBEE
protocol to monitor their forest environmental factors in time with the new IoT technol-
ogy [6]. The ZIGBEE-based networking technologies has the advantages of low power
dissipation, low data rate, and high-capacity transportation, which makes it more suitable
for the design of the node of the forest environmental factors collection platform. In the
context of forest fire management, the research works are over-viewed in terms of the
satellite systems, optical cameras, and wireless sensor networks detection techniques [24].
The author has discussed several research experiment results and some market product
methods for better understanding the fire detection technique stated that each technique
has its advantages and disadvantages in terms of efficiency, accuracy, versatility, and other
key attributes. Haifeng et al. have proposed a fuzzy prediction algorithm implemented
by rechargeable wireless sensor network to assess fire risk and calculated the quantitative
potential fire risk [25]. The authors studied the weather variables including temperature
and humidity as input of the proposed fuzzy prediction using 24-h monitoring of whether

Sensors 2021, 21, 694 6 of 36

meteorological factors. They concluded that it is difficult to predict the occurrence of forest
fires accurately.

In the field of IoT-based applications and fire management, Faisal et al. have designed
a wireless sensor network using multiple sensors for early detection of house fires [26].
The authors have used the Global System for Mobile Communications (GSM) to avoid
false alarms and they have tested their system by simulating a fire in a smart home using
Fire Dynamics Simulator. For the IoT-based forest fire detection, the proposed work in [27]
provides new improvements such as the use of innovative IoT technologies and a data
treatment focused on the prevention, detection, activation of alarms and management of
operations for the extinction of fires. The authors have developed a system with secure com-
munication which has been configured for monitoring different variables of environments
including temperature, humidity, CO, CO2 and wind speed. Furthermore, the authors
of [28] addressed the techniques used for reducing pollution such as CO2 for improving
smartness application in the real world via collaboration of drone and IoT framework
applications. However, the authors of [29] presented the collaboration of smart IoT devices
and drone for improving emergency response.

However, some good research work has been carried out to the dynamic stream
processing and previous work has not comprehensively considered dynamic stream rate
and query windowing using an open knowledge base to recommend the proper window
configuration. According to the authors’ knowledge, no comprehensive work towards
Forestry 4.0 which exploits the capabilities of streaming data platforms to manage the forest
fire due to dynamic rapidly changing of the ecological environment. So, we proposed an
adaptive window selector to dynamically change window configuration to face stream
fluctuating. Then, we defined a real-world IoT-based use case, fire forest detection, as a
dimension of Forestry 4.0 using the power of streaming technologies to provide a timely
warning about fires by real-time monitoring streaming IoT data to detect the dynamic
environmental fire risk.

The wood resource is from the forest, making forestry important for economic, cul-
tural, and ecological. Based on industry 4.0, the authors of [30] introduced the concept
of forestry 4.0. they showed the implementation of forestry 4.0 with multi-domain
systems. The authors of [31] discussed the advantages and limitations of using IoT
for wood processing in industry. Many studies discussed industry 4.0 in several field
including economic and business [32], information sharing [33], technologies and ap-
plications [34], future trends [35] and industry 4.0 in the wood industry [36] (https:
//awfsfair.org/2019/04/industry-4-0-in-the-wood-industry-beyond-the-buzz/). How-
ever, many studies have been done in connecting industry 4.0 and forestry 4.0 with the
help of advanced technologies such as IoT, Artificial intelligence, robots, vehicles and
etc. [37], industry 4.0 application to forestry [30], wood processing [31], digitization in
wood supply [38]. The authors of [39] discussed Internet of improving the forest sustain-
ability. Moreover, the authors of [40] introduced the framework of industry 4.0 from the
prospective of forest supply chain. The framework components were included system
intelligence, digital technologies, communication network infrastructure, collaborative
supply chain of forest.

Forest fire accident represents a common hazard that destroys the forest. Therefore,
giant trees were reduced drastically, which led to an unhealthy environment for human
beings and animals. The authors of [41] introduced IoT devices and cloud to produce
forest fire alert in case the fire is detected. Therefore, detecting fire is necessary to avoid
fire hazards in the forest and benefit from distributing IoT devices in forest areas. The
authors of [37] introduced optical remote sensing for early fire alert systems. The proposed
system architecture included spaceborne, airborne, and terrestrial to detect fire with a
high accuracy level. Smart IoT devices are implemented in smart systems to measure
CO2 emissions of different forest fire sources [42]. Furthermore, IoT devices are used for
designing efficient forest fires detection [43]. The summary of the related research work
has been presented in Table 1.

https://awfsfair.org/2019/04/industry-4-0-in-the-wood-industry-beyond-the-buzz/
https://awfsfair.org/2019/04/industry-4-0-in-the-wood-industry-beyond-the-buzz/

Sensors 2021, 21, 694 7 of 36

Table 1. Summary of the related research work.

Ref. (Year) Focused Advantages Industry 4.0 IoT Forestry 4.0 Fire
Detection

Impacts

Social Ecological Economical Environmental

[31] (2020)
IoT for improving logistical
processes of global wood
processing

- Reducing operating costs
- Increasing added value
- Collecting real-time data

X X X X

[8] (2019) Forest operations and proposed
sustainability impact assessment

- Improving efficiency
- Improving safety
- Environmental protection

X X X

[44] (2018) Fuzzy logic for forest fire detection,
prevention based WSN

- Enhancing emergency response time
- Estimating the forest fire risks

X X X

[30] (2019) Internet of things and digital twins
for improving forestry 4.0

- Improving connectivity of forestry 4.0
and software center

X X X X X

[38] (2019) Digitization in wood supply
- Improving the impacts including
social, ecological, economic,
and environmental

X X X X X

[45] (2008) Sustainable forest management meeting
ecological, economic and social needs

- Trade-off of sustainable components X X X

[46] (2016) Analyzing the effects of sustainable
forest management

- Resource management X X X

[47] (2018) Maximum sustainable woody
biomass harvest potential

- Reducing carbon-dioxide forest
sequestration from the atmosphere

X X

[46] (2016) Analyzing the effects of sustainable
forest management

- Resource management X X X

[47] (2018) Maximum sustainable woody
biomass harvest potential

- Reducing carbon-dioxide forest
sequestration from the atmosphere

X X

[40] (2020) Framework industry 4.0 toward
forestry 4.0 of the forest supply chain

Significant economically,
socially, and environmentally of
industry transformation framework
for the forest supply chain
toward Industry 4.0

X X X X X X X

Sensors 2021, 21, 694 8 of 36

3. Industry 4.0 towards Forestry 4.0

Industry 4.0 is considered the fourth industrial revolution introducing a new paradigm
of digital, autonomous, decentralized control for manufacturing systems. The concept
of Industry 4.0 refers to smart manufacturing toward to digitization, collaboration and
automation. The authors of [48] identified the component of industry 4.0 include Cyber–
Physical Systems (CPS), smart factory, IoT, and internet of services (IoS). CPS Refers to
the fusion of physical world in Industry 4.0, while IoT refers to the connectivity between
the physical elements in industry 4.0. Smart factory refers to all categories of smart
phyiscial components such as devices, robots, computers, cameras sensors, and etc. IoS
refers to the processing and functions of all smart devices connected via IoT. Moreover,
the Industry 4.0 impacts can be improve socially, economically, and environmentally [48].
Furthermore, Industry 4.0 covers a broad range of technologies, processes, and systems
mainly related to industry digitalization. In terms of data-related technologies, the main
areas of Industry 4.0 are CPS, Industrial Internet of Things (IIoT), Cloud Solutions and
Decentralized Services, and Big Data and Stream Processing technologies for processing
large amounts of production data in real-time [49].

The transfer of Industry 4.0 concepts and technologies to the forestry sector appears
to be a promising way to optimize existing processes and to spawn new business models.
Forestry 4.0 concept is inspired by Industry 4.0 concept, which plays a vital role in the next
industrial generation revolution. Internet of Forest Things, AI, automation, smart devices,
Blockchain and digital twins will drastically change the Forestry 4.0 for the better. These
advanced and emerging technologies are used to solve the operational issues related to
create a sustainable Forestry 4.0 (https://www.woodbusiness.ca/final-cut-forestry-of-the-
future-the-sustainable-revolution). Furthermore, the combination of emerging technologies
for sustainability is the efficient way of Forestry 4.0 future toward Industry 4.0. For Forestry
4.0, network performance and communication network are required such as IoFT, wireless
sensor network, IoT, big data, edge computing, drone, and cloud computing. Smart IoT
device, mobile devices, IoFT, smart devices, robots, objects, vehicles, drone, and machines;
as shown in Figure 3. The authors of [40] have defined the Forestry 4.0 as paradigm of
forest industry (digitization, connectivity, harvesting, automation and transportation). It
focused on digitization of end-to-end smart devices as well as customers. Thus, the forestry
4.0 concept combines digital technologies, network connectivity, processing and operations,
and collaboration.

Furthermore, Forestry 4.0 technical realization involves connecting wood resources,
data sets, existing and new hard and software components, and stakeholders into a novel
IoT, Services, and People in forestry [30]. Based on the manufacturing industries experience
with Industry 4.0, Forestry 4.0 concept has been launched by FPInnovations (https://web.
fpinnovations.ca/) as an initiative for digitalization in the Forest Industry. Forestry 4.0
initiative aims at enabling the upstream part of the forest value chain in Canada to fully
leverage the agility and power of the fourth industrial revolutions. The development of
Forestry 4.0 achieves solutions for issues that affect the forest industry including labour
shortages, performance, forest connectivity, safety, environmental performance improving,
sustainability and reducing costs. IoFT is based on big data gathering and exchange, real-
time connection, and assembly of technologies. Implementation of communication among
the distributed smart devices in the forest environment is the aim of the Internet of Forest
Things, enabling the industry 4.0 implementation standard. Therefore, communication
for wide range requires device-to-device, robot-to-robot, vehicle to vehicle, vehicle and
robot to infrastructure things, human to devices and machine, interconnected things
among heterogeneous devices, and cellular to operations via Internet network [50,51].
The focus of the IoFT is on keeping connectivity links among all forest components (robots,
smart devices, machines, vehicles, devices, operations, cellulars, etc.) in large forest areas.
The authors of [39] discussed the smart devices and connectivity for digital Forestry 4.0 and
monitoring applications considering sustainability. The Internet of Forest Things is the key
enabling to exchange real-time information between Forestry 4.0 operations components

 https://www.woodbusiness.ca/final-cut-forestry-of-the-future-the-sustainable-revolution
 https://www.woodbusiness.ca/final-cut-forestry-of-the-future-the-sustainable-revolution
 https://web.fpinnovations.ca/
 https://web.fpinnovations.ca/

Sensors 2021, 21, 694 9 of 36

and decision centre and industry 4.0. Furthermore, applying the IoFT can monitor forest
environment impacts in real-time with intelligent platforms. The authors of [50] showed
many benefits of using the IoFT to improve Industry 4.0 via low data rate, transportation of
high capacity, low power consumption and efficient gathering data. Moreover, Internet of
trees is used to monitor and early fires detection (https://https://electronics360.globalspec.
com/article/11399/internet-of-trees-early-detection-of-forest-fires/), and fight climate
change (https://www.euronews.com/living/2020/07/29/internet-of-things-technology-
is-being-used-to-help-trees-fight-climate-change).

Forestry 4.0 concept, four research themes have been defined which, through their
distinct functions; the real environment, IoFT, the next-generation fibre supply chain, data
analytics [11]; as shown in Figure 3. For the real environment, the forest supply chains,
accurate information is needed on the amount and quality of fibre available, the physical en-
vironment in which operations will need to be deployed and the transformational outcomes
of the various phases of harvesting systems. In regards to forestry data-related technologies,
data are collected through remote sensing, satellites, drones or aircraft, imagery and LiDAR
3D cloud points, infrared cameras, high-resolution camera, etc. For the Internet of Forest,
the forestry industries face the most significant challenge regarding communicating in
remote areas with a high cost of satellite communication. Therefore, the Internet of Forest
which refers to various machines’ connectivity, is used as a collaborative system based
on real-time communication between machinery, infrastructures and digital devices to
control operations, even remotely. For the next-generation fibre supply chain theme, the ad-
vanced technologies will be required in harvesting systems to truly enable full Forestry 4.0
functionalities around connectivity, automation, and agility to upstream and downstream
changes in the supply chain. For automation, the production chain must be updated using
the latest technological developments, such as sensors, augmented reality devices, more
autonomous intelligent transportation systems (self-driving vehicles). For data analytics,
forest management’s decision-making process must take account of analyzing vast data
(such as geographical or geological data or those referring to wildlife biology). The forestry
data analyzing is beneficial to early inform and warn for risk analyses, accident statistics,
timber products supply chain, forest-damage, forest fire, etc. Forest fire is one of the
risks which has significant damage to the environment which motivates us to identify
and perform it as a real-world use case (i.e., forest fire detection based on IoFT data) as a
dimension of Forestry 4.0 using the power of streaming technologies. In particular, IoFT
streaming forestry data analysis can support and automate early warning systems that
ensure protection against forest fires around the clock have replaced forest workers and
volunteers doing duty on watchtowers. The summarized comparison of industrial research
in forest fire detection domain has been described in Table 2.

Figure 3. Transformation of Industry 4.0 technologies toward Forestry 4.0.

 https://https://electronics360.globalspec.com/article/11399/internet-of-trees-early-detection-of-forest-fires/
 https://https://electronics360.globalspec.com/article/11399/internet-of-trees-early-detection-of-forest-fires/
 https://www.euronews.com/living/2020/07/29/internet-of-things-technology-is-being-used-to-help-trees-fight-climate-change
 https://www.euronews.com/living/2020/07/29/internet-of-things-technology-is-being-used-to-help-trees-fight-climate-change

Sensors 2021, 21, 694 10 of 36

Based on the above, we try to build Forestry 4.0 in several layers based on [52].
Figure 4 illustrates the forestry layers, including smart devices layer, network layer, data
analysis layer and application layer. Each layer contains various devices, technology,
and technique to build smart Forestry 4.0 to be automated, digitalization and collaboration.
In the forest layer, forest world devices are used for sensing, monitoring, forest robots and
transportation robots. Network layer refers to advanced and emerged communication
technology such as 5G and 6G technology that can make the interaction between devices
reliable and without human intervention. Gathered data are processed in the data analyses
layer. People and employers can monitor Forestry 4.0 in the application layer.

Figure 4. Forestry 4.0 layers.

Sensors 2021, 21, 694 11 of 36

Table 2. Comparison of industrial research in forest fire detection domain.

Ref. (Year) Ref Highlighted
Technologies

Forestry 4.0 Industry 4.0
Applications

IoT WSN IoFT General Monitoring Fire
Detection

[30] (2019) Industry 4.0 beyond the Factory:
An Application to Forestry

Connecting the forestry to
central software with the
help of digital twins

X X X

[44] (2018) Forest Fire Prevention, Detection,
and Fighting Based on Fuzzy Logic
and Wireless Sensor Networks

Forest Fire Prevention,
Detection, and Fighting

X X X X X X

[25] (2018)
A fuzzy inference and big data
analysis algorithm for the prediction
of forest fire based on rechargeable
wireless sensor networks

A fuzzy inference for the
prediction of forest fire based
on wireless sensor networks

X X X X

[53] (2017) The Internet of Things–
wireless sensor networks
and their application to forestry

IoT for forestry applications X X X

[54] (2020) Smart forests and data practices:
From the Internet of Trees to
planetary governance

Internet of tree connected
with government

X X

[39] (2020) Internet of Things for Sustainable
Forestry

IoT and communication applications
for sustainable forestry systems

X X X

[6] (2014) IoT Forest Environmental Factors
Collection Platform Based on ZIGBEE

Monitor the forest environmental factors
using the ZIGBEE protocol
with the new IoT technology

X X X X

[27] (2017) Management of Forest Fires Using
IoT Devices

Using of IoT technologies
to prevent forest fires

X X X X X

[26] (2018) IoT-based intelligent modeling
of smart home environment for fire
prevention and safety

Global System for Mobile
Communications (GSM) to
avoid false alarms by
simulating a fir in a smart home
prevention and safety

X X X X

[40] (2020) Framework industry 4.0 toward
Forestry 4.0 of the forest supply chain

Forest supply chain
toward Industry 4.0
in terms of economic, society
and environment

X X X X

Sensors 2021, 21, 694 12 of 36

4. Forest Fire Detection Use Case

As a use case, IoFT aims to use different smart devices to measure forest parameters
CO, CO2, monitoring, temperature, detecting fire, RFID, sensors, cameras, etc., without hu-
man intervention; as shown in Figure 4. These devices send the gathered data into the
centre platform via advanced wireless communication technologies. Industry 4.0 people or
employers in the centre platform can interact with smart IoFT devices, process received
data, estimate forest growth, monitor trees’ health, and fire detection. Implementing Indus-
try 4.0 technologies reduces data collection cost, improves sustainability, monitors forest
utilization resources, and measures forest parameters. Therefore, decision-making can be
real-time and easy, while growth forest prediction can be more accurate and reliable due
to continuous measurement. These will play a vital role in improving economical impact,
environmental impact of Forestry 4.0.

Forest fires, which are also called wildfires, are among the greatest disasters in the
world today. In 2018 alone, 8,767,492 acres burned, roughly equivalent to 74 of the 75 largest
cities in the United States combined. It is the sixth-highest total since modern historical
records began in the mid-1900s, indicating that no state is entirely free from wildfire risk in
the US. CoreLogic Wildfire Risk Report for 2019 highlights that the total estimated recon-
struction cost value for the extreme-risk homes is more than $221 billion, with California
metropolitan areas dominating the top 15 risk regions (see Figure 5). In late August 2019,
for example, Brazil’s National Institute for Space Research said that the number of fires in
the country (i.e., Amazon) largely set by humans had jumped 84% in 2019 over the same
period in 2018 (https://fortune.com/2019/08/25/causes-of-amazon-forest-fires/).

Figure 5. Top 15 states based on wildfire acreage burned in 2018; NIFC 2019.

The year 2020 has been a year like no other due to COVID-19, which will change the
world forever. As the scientists, researchers, the World Health Organization, and social
communities fight the pandemic, another crisis is unfolding worldwide. Figure 6, (https://
cleantechnica.com/2020/05/13/2020-fire-season-covid-19-not-a-match-made-in-heaven/)
depicts the forest fire outlooks in 2020 for May, June, July, and August, highlighting the
elevated risk in the Pacific Northwest, Northern California, and the Southwest throughout
the summer.

Substantially, a forest fire happens due to rapidly changing ecological environments
such as uncontrolled climate changes, making the forests unable to recover from devas-
tating consequences for the long-term. For example, the climate changes cause to change
the soil moisture and surface temperatures, making the soil becomes water repellent [55].
The forest department authorities’ enormous challenge is that the forests are usually remote,

https://fortune.com/2019/08/25/causes-of-amazon-forest-fires/
https://cleantechnica.com/2020/05/13/2020-fire-season-covid-19-not-a-match-made-in-heaven/
https://cleantechnica.com/2020/05/13/2020-fire-season-covid-19-not-a-match-made-in-heaven/

Sensors 2021, 21, 694 13 of 36

abandoned/unmanaged areas filled with trees and affected by dynamic environmental
variables, e.g., temperature, humidity, CO, and CO2.

Figure 6. Forest fire outlooks in 2020 for May, June, July, and August, highlighting the elevated risk in the Pacific Northwest,
Northern California, and the Southwest throughout the summer.

This issue has been a research interest for many years; many very well-studied solu-
tions are available out there to propose an effective way to minimize the damages caused
by the fires. Early detection of forest fires is the most attractive trend for the market and
research, making decision-makers take a fast appropriate reaction. There are several forest
fire detection techniques, and monitoring systems employed by authorities, including
human-based observation, satellite-based monitoring systems, optical camera-based moni-
toring systems and wireless sensor networks [24]. The human observation is inefficient due
to the error-prone. It provides an accurate forest fire prediction. As humans get fatigued by
time, their forest fire prediction will be inaccurate due to less considering environmental
impact, making it a non-reliable solution to reduce forest fire risks. The promoted satellite
monitoring systems suffer from severe limitations failing speedy and effective control for
forest areas. For example, the satellite systems may not be available for continuous-time to
cover the full regions within forests such as gaps in time when the satellite is not within
the field of view from certain regions or spots of the forest. On the other hand, the optical
camera-based monitoring systems are costly in building towers and communication infras-
tructure in the forests’ remote areas. Furthermore, the optical camera-based monitoring
systems may provide false alarms due to night vision and weather conditions such as
wind-tossed trees and cloud shadows that affect camera performance.

Recently, wireless sensor networks are considered the best available solution for
forest fire detection. They can provide all the required information that influences the

Sensors 2021, 21, 694 14 of 36

environment at any moment accurately. The wireless sensor networks are easily connected
and deployed in broad and inaccessible forestry areas. Accordingly, the researchers and
industries have shifted to IoT paradigm, which has been conducted in various fields.
For instance, the proposed work in [27] provides new improvements such as the use of
innovative IoT technologies and a data treatment focused on the prevention, detection,
activation of alarms and management of operations for the extinction of fires. The authors
have developed a system with secure communication configured for monitoring different
variables of environments including temperature, humidity, CO, CO2 and wind speed.
Lately, the forestry companies leverage the agility and power of the fourth industrial
revolution (i.e., Industry 4.0) towards Forestry 4.0 to utilize the IoT sensors capabilities
which send real-time streaming information to early detect wildfire.

Forest fires can happen due to climate change, and cause significant environmental
damages. So, we identified a forest fire detection use case as one of the dynamic envi-
ronmental management challenges. Several detection and monitoring systems are used
by authorities to detect the fire as fast as possible, and its exact localization and early
notification. As many IoT devices are working together to detect forest fire, the fire alarm
detection technologies can help support the decision-making process due to a rapidly
changing ecological environment. In particular, the generation of IoT streaming data
technology allows managers to establish a set of early warning mechanisms for the quick
response and decision making, together with having full use of the data on environmental
performance evaluation.

5. Methodology

This section will describe our approach to investigate the dynamic stream query
processing using IoT-based forest fire detection use case. To do so, we will introduce The
importance of dynamic window sizing over IoT-based stream rate change and then two
data streaming pipelines, which are static stream rate and dynamic stream rate change (see
Figure 7). The data stream processing pipeline for static stream rate includes IoT streaming
data pipeline over Apache Flink (data collection, data processing, data output) and its
evaluation, described in Section 5.2 and Figure 8. Then, the dynamic query window-based
selector for stream rate change includes the problem of the dynamic streaming query and
the proposed dynamic window-based selector for streaming query (dynamic window
configuration algorithm), described in Section 5.3 and Figure 12.

Figure 7. Research methodology description.

5.1. The Importance of Dynamic Window Sizing over IoT-Based Stream Rate Change

As IoT streaming data is potentially never-ending, analyzing such data can be never-
ending as well. Therefore, the stream windowing concept is re-emerging and being used
in IoT-based data stream processing [4]. All stream queries are executed as multiple
executions of the same query over data within a single window. Hence, the repeated

Sensors 2021, 21, 694 15 of 36

execution of queries on changing data within the window is the major resource-intensive
task. Performing analytics (i.e., aggregation) over streaming data makes it further resource-
complicated, bringing the windowing function into further limelight. Hence, any stream
processing system’s performance depends on the configuration of windows, including
their type and size. A larger window size is used to facilitate streaming query engines for
optimal processing of data with high velocity to deal with higher stream rate. However,
the larger window size increases the latency between the input arrival time and output
generation in lower stream rate. Furthermore, a few external factors can also impede a
query engine’s performance, such as application requirements, resource configurations,
number and type of queries, etc. Therefore, it is of utmost necessity to maintain an optimal
windows size at the query deployment time and during the executions of queries over
the time. As the query static window configuration may cause unreasonable high latency
in case of low stream rate or a resource contention problem and/or violate workload
requirements in case of high stream rate.

However, due to multiple external and dynamic factors it is not possible to guarantee
an optimal window size and type which could be valid throughout the life-cycle of a
streaming query. Ideally, the stream query processor must cater to external factors such
as stream rate and resource availability to continuously monitor the performance and
recommend the alternative optimal solution as soon as it is available. Consequently, if
the stream processing platform is windowing that data for processing, the windows no
longer represent the data that actually tremendously arrived. In particular, alignment
of stream rates with window-based analytics is difficult, especially in cases where these
analytics are required for sending preventable emergency alerts to avoid downtime and
costly unplanned maintenance.

Indeed, not only the windowing configuration affects the stream processing system
performance, but also fluctuations of the incoming streaming data rate [20]. Consequently,
in this work, we will study the data drift in IoT typically faced by industrial data analytics,
and discuss Apache Flink stream processing windows. Flink stream query processing is
insufficient to execute the same continuous query on variable stream data (i.e., high-rate
and low-rate). Significantly, choosing the proper window size in terms of milliseconds,
seconds, or minutes according to stream rates is beneficial to avoid data drift problems
to meet analytics requirements such as latency constraints. We study different stream
rate scenarios with regards to window size such as (1) assigning small window sizes for
high stream rates to materialize enough tuples (sequences of values) to be joined and (2)
assigning large window sizes for low stream rates that could buffer enough tuples for
insightful joins. Then, we provide a flexible model to propose the ideal window type and
size depending on stream rates and application requirements.

In this paper, we performed an empirical study to showcase how constant window size
and type impede query engine performance whenever stream rate varies. We evaluated the
impact over the Flink query engine’s performance with changing stream rate while keeping
the window size and type constant. Advocating the need of adaptive stream query engine,
we proposed a dynamic query window size and type selector, which can monitor various
external factors including stream rate, resource constraints and application requirement to
propose the most optimal window size and type for a given query. The proposed solution is
also capable of detecting any in-efficiencies and re-deploy the optimal query. A real-world
use case of forest fire monitoring based on IoT data is selected to evaluate the dynamic
window selector in the fire situation when the stream rate is changed i.e., weather sensor
start sending data in high stream rate.

5.2. Data Stream Processing Pipeline

This section presents a general overview of the data stream processing pipeline for a
query engine used in the Flink streaming platform. Then, we discuss the different types
of windows.

Sensors 2021, 21, 694 16 of 36

5.2.1. IoT Streaming Data Pipeline over Apache Flink

A typical data pipeline scenario could be as collecting generated data from IoT devices
by Kafka once the events are observed. Then, the Kafka produced data are ingested into
Flink by Flink consumers. The Flink executes the deployed continuous join query over
the ingested data by allowing the running windows to trigger its output based on its
timestamps. The processed output stream will then be sent again to Kafka to be consumed
within the data application pipeline. In doing so, the workflow for IoT data stream
pipeline, shown in Figure 8, consisting of three phases which are; (1) data collection (2) data
processing using Apache Flink) stream data output. Each stage can be described as follows:

In the data collection phase, the input data stream is gathered from IoT devices (i.e.,
data source generators) using Apache Kafka as a scalable message queuing system. Apache
Kafka is responsible for sending input streams to Flink and receiving output stream from
Flink. Worthwhile, other distributed queuing management technologies such as RabbitMQ,
Amazon Kinesis, Microsoft Event Hubs, and Google Pub/Sub. We chose Kafka as it is the
state-of-the-art, distributed large-scale real-time data applications. It has high delivered
and ordering guarantees of the data stream, making Kafka reliable in data drift situations.

For data processing over Apache Flink, this phase contains two components; stream
processing engine used Apache Flink (https://flink.apache.org/), and stream query de-
ployer to deploy a stream query, i.e., join stream query over Apache Flink. The choice of
using Apache Flink to implement this phase can be attributed to three characteristics of
its approach. First, it integrates with the best existing ideas in the industry, such as the
open-source adopter of the Dataflow/Beam model and compatible with Kafka to guarantee
the reliability of the data pipeline with different stream rates. Secondly, it has a powerful
consistency via snapshots, savepoints, and streaming SQL. Third, it is a highly-scalable for
the world’s most demanding stream processing applications. It can scale to thousands of
cores and terabytes of application state and deliver high throughput and low latency for
latency-critical applications. Fourthly, it is continuously improving for streaming process-
ing across the industry around the globe such as Alibaba, eBay, Lyft, Uber... etc. Fifth, it is
automatic scaling with the fluctuated data stream rate.

In the output stream to data sink phase, the output stream is sent back again to
Kafka to be consumed by other data sinks. These data sinks could be any data consumer
within the real-world application in the industrial setting such as web service, real-time
dashboard, storing in big data storage (e.g., HDFS, MongoDB), and sending to alarm
systems. Moreover, the output stream could be passed to the next data analytic phase, such
as machine learning and/or deep learning.

Figure 8. The workflow of data stream pipeline over Apache Flink consisting of three phases (1) data
collection (2) data processing and (3) data output.

 https://flink.apache.org/

Sensors 2021, 21, 694 17 of 36

5.2.2. Query Window-Based Streaming Data

The join query is a common and well-understood operation in batch and stream data
processing to connect the rows of two relations and/or streams. Fink provides two main
join types; regular and time-windowed. Regarding this work, a time-windowed join is
considered which joins two input streams within specific time constraints, i.e., a time
window. The join window operation matches the elements of two streams that share a
common key within the same window. According to the time-streaming context, Fink
provides three types of windows to join operations on finite size of time-stamped data
including, tumbling, sliding and session. A tumbling window is a series of fixed-sized, non-
overlapping and contiguous time intervals. Sliding window assigns elements to windows
of fixed length; hence, sliding windows can be overlapping if the slide is smaller than the
window size. Session window groups events with session activity gap.

Without loss of generality, Figure 9 describes the translated Flink job of join query
which contains data source and window operator. The Flink tumbling window operator
splits the stream into buckets of finite size based on the configured window size, 60,000 s
and then triggers the output when the time passes the pre-defined watermark.

Figure 9. Example of deployed join stream query on Apache Flink web dashboard including data
source and window operator using tumbling window for 1 min, i.e., 60,000 milliseconds.

5.2.3. Evaluating the Impact of Changes in IoT Data Streams Rate over Query
Window Configurations

In this section, we overviewed the evaluation of the impact of any changes in stream
rate and window configurations over the performance of a stream processing engine which
was addressed in our previous work [5]. In particular, we implemented an IoT data stream
pipeline over Flink to consume data from Kafka, ingest it into Flink, execute inner joins over
Flink query engine, and then send back the joined streaming result to Kafka be consumed
by other data sinks.

We conducted our experiments using two input data streams which are streamed
using Kafka and processed by Flink. Query results are stored in MongoDB as data sinks.
We evaluated three types of windows supported by Flink, namely tumbling, sliding,
and session. For the first input stream, we varied it to 10 different stream rates i.e., 60,
120, 180, 240, 300, 360, 420, 480, 540, and 600 tuples per minute. For the second input
stream, we only produced one tuple per minute at a fixed rate. We assess the latency (time
consumed between the input arrival and output generation) using two window sizes; (1)
the small window size which is one minute denoted by 1-min, (2) the large window size
is five minutes denoted by 5-min. To consider the queue delay for Kafka, we calculated
the latency of window-based join queries executed on Flink as (1) Flink with Kafka (i.e.,
the time consumed between the event observed until the output is generated), denoted by
Flink w/Kafka and (2) Flink without Kafka (i.e., the time consumed between the event is
already ingested into Flink till the output is generated), denoted by Flink wo/Kafka.

Sensors 2021, 21, 694 18 of 36

As shown in Figures 10 and 11, Flink w/Kafka and Flink wo/Kafka latency of queries
increases linearly with the increase in stream rate for both 1-min and 5-min window sizes
for three window types. In particular, the Flink w/Kafka grows fast due to Kafka’s delay in
launching Flink Kafka consumers to consume the input streams and Flink Kafka producers
to send back the output stream to Kafka. However, the average latency of Flink w/Kafka
over 5-min window is longer than the 1-min because the ingested tuples (i.e., from the
first minute to the fifth minute) wait until the Flink window triggers its output. The larger
window size can result in large data size ingested into Flink, and when this large data is
processed, it incurs higher processing time/latency. Our evaluation confirms the impact
of dynamic stream rate or other factors over the query engine’s performance. However,
there is no one window size and/or type fitting all input stream rates. Our evaluation
strengthens the case for adaptive window type and size recommendation based on the
input stream rate variation.

Figure 10. The latency of Flink join using window size 1-min.

Figure 11. The latency of Flink join using window size 5-min.

5.3. Dynamic Query Window-Based Selector for Stream Rate Change

In this section, we first describe the formulation of the investigated problem of stream
query window-based configuration regarding stream rate change. Taking advantage of the
learned lessons from the conducted experiments in our previous work (see Section 5.2.3 [5]),

Sensors 2021, 21, 694 19 of 36

a prototype of a dynamic window-based selector for stream query running over fluctuated
stream rate is also presented.

5.3.1. Problem Formulation

Many factors affect stream query processing performance, such as varied stream
rates, workload requirements, and resource limitations. According to our windows-based
stream analysis, the window configuration in the streaming query (i.e., type and size)
significantly affects the performance of the query engine. Assuming that the stream
structure remains fixed and the query and the required resources are available according to
the data application needs.

A proper window configuration is required for stream query running on various
stream rates by estimating factors related to the stream analytic process. These factors could
be called input parameters for querying window configuration over different stream rates.
Some parameters could be identified priory using collected statistics from the past analytic
process (i.e., queries) such as schema, stream rate behavior and previously executed job
statistics. Some of the parameters will be identified by users such as resource capacity and
application requirements, i.e., latency, accuracy, data enrichment, etc. The other parameters
values could be captured during running stream queries on a stream processing system
such as live stream rate and current job status. These parameters could be described in
vectors as follows.

Stathisto = [streamrate, streamjobstatus]

Statlive = [streamrate, streamjobstatu]

Req = [rq1, rq2, ...rqi, ..., rqn], 1 <= i < m

Res = [rs1, rs2, ...rsi, ..., rsn], 1 <= i < n

where Stathisto and Statlive vectors denote the collected historical stream statistics from the
past streaming jobs behaviour and the live streaming statistics including stream rate itself
and current streaming job status respectively. Req denotes the application requirements
for the desired analysis, such as the maximum number of produced tuples known as data
enrichment. Data enrichment is a process of data collection to provide a richer profile that
will be used for further data analysis, such as machine learning and deep learning models
that require large sets of data. Res denotes the number of given resources to the stream
processing system including CPU, memory and network bandwidth etc.

5.3.2. The Proposed Dynamic Window-Based Selector

The dynamic window-based selector is proposed to dynamically select the proper
window configuration for a stream query based on the change of stream rates concerning
the relation of stream attributes, workload requirements, and infrastructure specification.
A typical scenario of running stream query could be deploying the input query with
an initial window configuration. The stream query engine is initially configured the
querying window concerning the identified inputs including stream attributes, workload
requirements, and resources capacity. Then, the behaviour of stream rates is monitored,
which leads to a new deployment of window-based query configuration. The proposed
prototype contains three phases, including (1) input identification, (2) window selection
and (3) query deployment. Each phase can be described as follows (see Figure 12).

Sensors 2021, 21, 694 20 of 36

Figure 12. The prototype of a dynamic window-based selector for stream query running over
fluctuated stream rate consisting of three phases: (1) input identification; (2) window selection
processing and (3) query deployment.

Inputs identification phase
The relevant inputs are identified in this phase, including the stream attributes,

the query workload requirements, and the infrastructure specifications.
The stream attributes represent the stream’s schema (i.e., stream structure) and the

historical stream statistics (i.e., historical data collected during the stream ingestion in the
past). The stream structure could be drifted when the data schema changes at the source,
such as adding, deleting, and modifying the type of fields. We opted the stream structure
as a fixed schema to keep the problem of stream rate change tractable regarding our work.

Three workload requirements are considered; latency, accuracy and data enrichment.
The latency maintains when an event is observed and when the results corresponding
to that event are generated. So, the latency depends on window size, which means that
the small window size leads to low latency materialized output. In contrast, the large
window size has long latency due to late output materialization. The data accuracy refers
to the data quality (i.e., data values are correctly stored). According to this work’s scope,
the inconsistencies of data can be caused by the stream rate change. Due to the granularity
of the stream rate, the data could arrive out-of-order, affecting the data processing and the
accuracy of the output. Consequently, a correct stream query window configuration can
adapt with stream change to keep the output stream accurate over various stream rates.
Intuitively, the generated output stream rate increases monotonically with the increase in
the input stream rates. Thus, the output stream rate should be enriched in case of a high
input stream rate. As reported by the study in subsection 5.2.3 [5], not all query window
configurations over high stream rates lead to enriching resulted stream. Therefore, picking
the proper query window configuration to meet the data enrichment requirement is very
important, and it should be considered whenever a stream query is deployed.

Sensors 2021, 21, 694 21 of 36

Declaring the infrastructure specifications (i.e., CPU, memory and network band-
width) is essential for decision-making processes in query stream processing. A prior
knowledge of the available resources can help the query stream engine select the ap-
propriate query configurations and avoid resource limitation problems in the case of
unpredictable stream rates.

Window selection phase
The window selection phase contains three components i.e., stream monitor, knowl-

edgebase and dynamic window configuration algorithm.
Stream monitor includes monitoring systems to observe different input stream charac-

teristics, including its rate, schema and other relevant information. The stream monitor
builds statistics on the go for live stream jobs being executed by the query engine. Both
the input stream rate and the current status of live jobs help the optimizer to choose the
suitable window configuration whenever the stream rate fluctuates.

The knowledgebase contains the previous recommended window configurations of
different stream rates, including window type and size regarding the relationship between
the identified inputs, query workload requirements and infrastructure specifications. We
built the knowledgebase to get recommendations for window configuration regarding
workload requirements, including latency and data enrichment over stream rate changes.
More specifically, Figure 13 depicts the four-quadrant matrix model of window config-
urations, including type and size for low and high stream rates. The quadrant matrix
model represents the information extracted from the conducted experiments in the study in
Section 5.2.3. Two workload requirements are carried out on different stream rates which
are latency and data enrichment. To simplify the evaluated results shown on quadrant
matrix model (i.e., decision making tool), we scale the 10 generated input stream rates
into the following two categories (see Section 5.2.3); low stream rate which comprises of
first five stream rates i.e., 60, 120, 180, 240, and 300; high stream rate which comprises of
last five stream rates i.e., 360, 420, 480, 540, and 600. For example, suppose the end-user
application requires that results are produced with high stream data with higher latency
irrespective of stream rate. In that case, the recommended window configuration is sliding
with a large window size. Another example could be latency-sensitive scenarios where
the recommended window configuration must be tumbling window with small window
size. For the latency-sensitive cases and need a reasonable resulted data size, a sliding
window with small window size configuration can compromise on these two contradicting
requirements. On the other hand, in high stream data, the session window with large
window size configuration can significantly gain a feasible result size while maintaining
an acceptable latency. We built this knowledgebase based on our experiments, but it will
gradually evolve as more, and more complicated scenarios occur during various query
executions. This knowledgebase acts as the core component for the dynamic window con-
figuration algorithm and recommendation of the optimal query window configuration (see
Table 3).

Sensors 2021, 21, 694 22 of 36

Figure 13. The four-quadrant matrix model of stream query window-based configuration, i.e., type
and size concerning the workload requirements including data enrichment and latency.

Here we introduced our dynamic query stream processing algorithm-Dynamic Win-
dow Configuration (DWC) that integrates the discussed cost model based on stream data
characteristics, application workload requirements and resource constraints. For simplicity,
stream data characteristics including stream rate and application workload requirements
are used. The DWC algorithm uses the historical statistics of the last executed windows
to configure the window type and size of the fluctuated stream rates. Before we explain
the DWC algorithm, we first introduce two data structures that are used to track the
stream statistics and current window sizes. First, we use historical statistics denoted as
Stream_Stat_Histo which contains Stream_Rate_Last to show the ingested stream rate and
Window_Size_Last to record the last recommended window size for the last executed win-
dows. The number of the last executed windows is configurable. A snapshot of historical
statistics is described in JSON-like format as follows:
{
"Window" : {
" ProcessID " : " 1 " ,
" JobName" : " AdpativeWindow " ,
" Resources " : {
"RAM" : 700 ,
"CPU" : 4
} ,
" Requirements " : {
" Latency " : "Low" ,
" DataEnrichment " : "Low" ,
" Accuracy " : "Low"
} ,
" Type " : " Tumble " ,
" S ize " : 1 ,
" Duration " : 10 ,
" StreamingProcessTime " : 125 ,
" QueueingStreamingProcessTime " : 150 ,
" StreamOut " : 600 ,
" NumberofSensors " : 10 ,
" StreamIn " : {
" sensor −value −1 " : 600 ,
" sensor −value −2 " : 1200 ,
" sensor −value −3 " : 1000 ,
" sensor −value −4 " : 500 ,
" sensor −value −5 " : 800 ,
" sensor −value −6 " : 700 ,
" sensor −value −7 " : 400 ,
" sensor −value −8 " : 900 ,
" sensor −value −9 " : 1500 ,
" sensor −value −10 " : 300
}
}
}

Sensors 2021, 21, 694 23 of 36

Table 3. Recommended stream query window configurations for some use cases requirements i.e., latency and data enrichment.

Usecase. No Requirements
Description

Workload Requirements Stream
Rate

Recommended
Window Type

Recommended
Window SizeLatency Data Enrichment

1 data enrichment requirement
has the higher priority

- High Low Sliding Large

2 data enrichment requirement
has the higher priority

- High High Sliding Large

3 Latency requirement
has the higher priority

Low - Low Tumbling Small

4 Latency requirement
has the higher priority

Low - High Tumbling Small

5
Latency requirement
has the higher priority
and reasonable resulted
data size is needed

Low Medium Low Sliding Small

6
Latency requirement
has the higher priority
and reasonable resulted
data size is needed

Low Medium High Sliding Small

7 Latency requirement and
data enrichment have
the same priority

Medium Medium Low Sliding Small

8 Latency requirement and
data enrichment have
the same priority

Medium Medium High Session Large

Second, we track the current window size using live statistics (denoted as Window_
Size_Current) which indicates the configured window size for the current stream rate.

Algorithm 1 presents the core function that calculates the next window configuration in-
cluding window type and size based on the recommended window configuration fetched from
the knowledgebase. The input of the DWC algorithm is the Workload_Requirements_List
which identified by the use case. First, the algorithm identifies the stream type using the
get_Stream_Type function as shown in Line 6. The function of get_Stream_Type is used to
map the numerical values of stream rate to the high-level representations of requirements
within the built knowledgebase (e.g., stream rate = high). Secondly, the algorithm gets the
window type and size from the built knowledgebase based on the workload requirements
and stream rate type. Thirdly, for the window size, the algorithm decodes the high-level
representations of window size into numerical values to be used for new window configu-
ration. For the recommended large window size, the new window size will be increased.
For the small window size, the new window size is identified according to the StreamRat-
eChangeRatio stated on Line 14. The StreamRateChangeRatio is calculated based on the
last stream rate and the current stream rate. Therefore, the new window size is rationally
recommended based on the previous recommendation extracted from the knowledgebase,
the status of both of current stream rate and the last executed window size(s).

Sensors 2021, 21, 694 24 of 36

Algorithm 1: Dynamic Window Configuration Algorithm (Simplified)

1 Input: Workload_Requirements_List[]
2 Output: New_Window_Type, New_Window_Size
3 Function New_Window_Con f iguration()
4 Stream_Stat_Histo← Stat.getAllEntries_Histo(Stream_Rate_Last,

Window_Size_Last);
5 Stream_Stat_Current← Stat.getAllEntries_Live(Stream_Rate_Current,

Window_Size_Current);
6 Stream_Rate_Type← get_Stream_Type(Stream_Rate_Current);
7 New_Window_Type←

get_Window_Type_from_Knowledgebase(Workload_Requirements_List[],
Stream_Rate_Type);

8 Recom_Window_Size←
get_Window_Size_from_Knowledgebase(Workload_Requirements_List[],
Stream_Rate_Type);

// Large window size
9 if Recom_Window_Size.equal (‘large’) then

10 New_Window_Size← Current_Window_Size+1
11 else

// Small window size
12 Stream_Rate_min←min(Stream_Rate_Last, Stream_Rate_Current);
13 Stream_Rate_max←max(Stream_Rate_Last, Stream_Rate_Current);
14 Stream_Rate_Change_Ratio← Stream_Rate_max / Stream_Rate_min;
15 New_Window_Size←Window_Size_Current / Stream_Rate_Change_Ratio
16 end
17 End Function

Deployment phase
In the deployment phase, the new optimized stream query will be deployed using

the selected window configuration based on the current stream job status, the stream rates,
the application requirements, and resource constraints. In doing so, the new query will be
deployed beside the current stream query (i.e., without killing the running query) and the
current query still runs until the new one is warmed up.

6. Experimental Setup and Evaluation

The experiments have been conducted to perform data stream pipeline using Apache
Kafka version 2.11–2.2.0, Apache Flink version 1.7, and MongoDB to consume data from
data sources (i.e., sensor data generator), execute stream query and then store the reported
data respectively. In the following subsections, the generation of forest fire dataset use case
and the description of experiments and discussion are presented.

6.1. Forest Fire Based on Climate Change Dataset

We build our use case called forest fire detection to continuously monitor climate
change, i.e., weather conditions in real-time (see Figure 1). As technical level, Apache
Kafka is used to consume weather streaming data from the deployed sensors within a
forest. The collected data (i.e., potential fire events) is then sent to the query engine running
on the top stream processing platform (i.e., Apache Flink). The number of possible fire
events is varying drastically during the day. In the normal weather conditions, the weather
sensors will send lower data frequencies, and no action will be taken from the forest
department authority side. For the forest fire situation, the weather sensors start to send
data in higher frequencies which causes event-loss due to the delay in consuming and
processing such massive streaming data. Therefore, the delay will raise late alarms to
the forest department authority to send its firefighters and drones to the burning forest.
Consequently, the dynamic query window selector occurs due to the delay issues caused
by the static window configuration for stream query engines. The adaptive query window

Sensors 2021, 21, 694 25 of 36

selector adapts the window size (i.e., increasing and/or decreasing window size according
to the fluctuating stream rates during day hours). To the best of our knowledge, there is no
open dataset of forest fire detection IoT based use case. The authors in [27] have developed
a system with secure communication which has been configured for monitoring different
variables of environments including temperature, humidity, CO, CO2 and wind speed.
They have taken into account Rule of 30 that considers zones characterized by temperatures
above 30 °C and humidity values below 30% as risk areas for forest fires. Authors in [25]
have considered the probability of forest fire changing with temperature.

Based on the proposed work in [25,27], we prepare a dataset having five weather sensors
including temperature, humidity, CO, CO2, and wind speed. The dataset is generated
using Rule 30 to bring it close to reality, for example by showing temperature goes higher
during the noon, late afternoon and lower after midnight [27,56] (https://en.wikipedia.
org/wiki/Rule_30), (http://www.auburn.edu/academic/forestry_wildlife/fire/weather_
elements.htm). However, the authors of [57] discussed the techniques and strategies for
greening IoT by reducing the pollution hazards. Furthermore, we use the standard European
Forest Fire Information System which describes the Forest Fire Danger Ratings into four
categories; Green, Yellow, Orange, and Red (http://effis.jrc.ec.europa.eu) to define alert types
thresholds for each sensor (see Figure 14). Our assumption for data generation is that each of
the sensors remains in the thresholds defined for each alert type, e.g., when the temperature
is less than 30, humidity is always greater than 30 and so on (see Table 4 and Figure 15).

In particular, we assume there are 100 nodes installed to produce weather sensor
values (i.e., temperature, humidity, CO, and CO2) depending on the alert type threshold.
For example, for green, yellow, orange and red, there are 2, 6, 12, and 60 values per minute
sent from sensors respectively (see Table 5). The day is divided into different sections
depending on the alert type, and in total there are 8 h of green, 7 h of yellow, 6 h of
orange and 3 h of red. The rationale behind this assumption is that the midnight and early
minoring hours are less likely to fire occurrences, i.e., green alerts. In contrast, the noon
hours are the high probability for fire occurrence, i.e., red alerts. The sample of generated
data for the weather variables values is provided in Table 6.

Substantially, high wind speed promotes supplying more oxygen from the surround-
ing environment. Therefore it increases the fire at a fast rate. Consequently, the wind
speed, which probably has the most significant impact on a wildfire’s behavior, is the most
unpredictable factor. Due to wind speed’s unpredictability during a day, we could not
generate a wind speed stream using Rule 30 to be close to reality. We generate it within the
speed range; between 1 and 20 km per hour [58].

https://en.wikipedia.org/wiki/Rule_30
https://en.wikipedia.org/wiki/Rule_30
http://www.auburn.edu/academic/forestry_wildlife/fire/weather_elements.htm
http://www.auburn.edu/academic/forestry_wildlife/fire/weather_elements.htm
http://effis.jrc.ec.europa.eu

Sensors 2021, 21, 694 26 of 36

Figure 14. Average of sensor value per day generated using rule 30 and the corresponding alerts in
uni-sensor environment: (a) temperature (b) humidity (c) CO (d) CO2.

Figure 15. Forest fire use case dataset generator flowchart.

Table 4. Weather variable alert thresholds.

Weather
Variables Green Yellow Orange Red

Temperature <30 ◦C ≥30 ≥37 ◦C ≥40 ◦C

Humidity >30% ≤30% ≤20% ≤10%

CO (ppm) <10 ≥10 ≥25 ≥50

CO2 (ppm) <350 ≥350 ≥2000 ≥5000

Sensors 2021, 21, 694 27 of 36

Table 5. The input and output stream rates per minute, the corresponding fire alert during day and
night hours for one node.

Fire Alert Type Hours Input Stream Rate Output Stream Rate

Green [0–4, 21–23] 2 4

Yellow [5–8, 18–20] 6 12

Orange [9–11, 15–17] 12 24

Red [12–14] 60 120

Table 6. Sample of weather variables values per day generated for one node using rule 30.

Hour Avg.
Temperature

Avg.
Humidity%

Avg.
CO (ppm)

Avg.
CO2 (ppm)

0 23 40 3 152

1 24 38 5 201

2 26 35 7 250

3 28 33 8 295

4 29 31 9 330

5 30 30 10 355

6 32 27 15 750

7 33 25 19 1191

8 35 23 23 1678

9 37 20 25 2986

10 38 16 36 3811

11 39 13 48 4750

12 42 10 57 5500

13 47 9 55 5150

14 41 10 50 5002

15 39 11 45 4730

16 38 14 33 3500

17 37 17 26 2870

18 35 21 21 1999

19 33 24 16 1112

20 32 28 11 560

21 29 32 8 340

22 27 36 6 290

23 25 37 4 210

6.2. Experimental Setup

We run six experiments for static window sizes including 1, 5, 10, 15, 30, and 60 s,
using a tumbling window and one experiment for dynamic window size. Static window
sizes experiments aim to show the static window’s impact and the stream rate changes on
the reported alerts including the reported alerts, missed alerts and latencies. According to
the latency setting, we ran a dynamic window size experiment to evaluate our proposed
technique by adapting window size between 60 s and 1 s based on the input stream rate
change. Then, we show the benefit of query window adaption in reducing the latency
of reporting time while discussing the trade-offs regarding the alert losing due to the
adaption process.

The conducted experiments execute a stream query that monitors alerts based on
sensors’ values and then reports an event that is the alert type. In particular, the stream
query joins two streams; weather stream including (temperature, humidity, CO, and CO2)

Sensors 2021, 21, 694 28 of 36

and wind speed stream. Since not only the pattern of weather sensors thresholds is used to
report the wildfires, the wind speed also is used to early notify the fires especially in case
of the wind excess the high range, i.e., 20 km/h.

For brevity and simplicity, we run our experiments by setting the data generator to
produce streaming data for 100 nodes within 24 min using the predefined stream rate of
24 h to make our experiments more tractable.

According to the listed experiments and the forest fire detection use case which
concerns timely danger rating alerts, we measure these matrices; (1) output stream rate
including the number of actual alerts, joined events/reported alerts, loss/missed alerts
for each alerting category, (2) timeline latencies including queuing time, processing time,
and end-to-end latency time (see Figure 16), (3) reduction of reporting time using dynamic
window selector. For the output stream rate, the actual alerts measure the expected
alerts resulted from join query based on the stream rate; the reported alerts measure the
Flink resulted joined tuples, the loss/missed alerts measure the alerts which pass their
time due to long waiting in Kafka queues. For the timeline latencies, the queuing time
measures the consumed times by Kafka in two intervals; the first interval is when the event
consumed from Kafka source (i.e., weather sensors) and the second interval is when the
joined events/reported alerts are sent from Flink until reported (i.e., stored into MongoDB).
The processing time measures when the event is ingested into Flink until the event was
sent to Kafka again. The processing time also includes Flink join processing time which
labels each event by the corresponding rating alert. The end-to-end latency time measures
the time from the event is generated until the event/alert is reported, e.g., sent to the forest
department authority.

Figure 16. Timeline of stream-stream joins in the conducted experiments.

6.3. Comparison of Different Static Window Sizes

The static window experiments that are conducted by fine-tuning the window sizes
such as 1, 5, 10, 15, 30, and 60 s. For each window size, we first measure the number of actual
alerts, joined events/reported alerts, loss events and the end-to-end latency time that can
be incurred for each window size. Figure 17 showcase the linear increase of the reported
alerts and decrease loss alerts for each type of alert concerning the actual alerts using
different window sizes. It is noted that the number of reported alerts converges towards
the number of the actual alert with window size increasing. In contrast, the number of loss
alerts has the opposite behavior. We attribute this incremental behavior of the reported
alerts to the increasing window size. More specifically, the large window size can hold
many ingested events to be joined within a window.

Similarly, the decrease of loss alerts concerning the increasing window size is that the
small window size fast joins the ingested events. Some queued events are lost by passing
their timeout due to the long wait and couldn’t be joined with next windows. Thereby,
the large window size can hold a larger number of input events that be joined and then
reported. It can be seen that the average of end-to-end latency times gradually increases
due to the increasing dormer size for each alert. For example, the green alert, which has the
lowest stream rate, has the shortest latencies with respect to the other alerts for all window
sizes. In contrast, the red alert, which has the largest stream rate, has the longest latencies

Sensors 2021, 21, 694 29 of 36

with respect to the other alerts for all window sizes. The long latency of red alerts happens
by increasing of stream rate over larger window size.

Figure 17. Comparison of static experiments for 100 nodes with respect to the number the reported
events, the number of loss events and the end-to-end latency time.

6.4. Comparison of Static and Dynamic Window Sizes Results

Based on the experimental results using static window sizes, we chose the static
window size experiment of 60 s to compare with a dynamic window selection experiment
which adapts the window size between 1 and 60 s. More specifically, this experiment has the
lowest number of loss alerts concerning the other static window size experiments, making
it the proper one to compare its performance with dynamic window selector performance.
As the IoT-based forest fire monitoring use case is considered one of the latency-sensitive
IoT-based application, the proposed dynamic window selector recommends the tumbling
window type based on the built knowledgebase. Accordingly, the window size is initially
configured using tumbling window and 60 s. The dynamic window selector slightly adapts
the window size to maintain timely reported alerts for various stream rate while keeping
the window type as tumbling because of its superiority for the latency reduction.

As can be seen, Figure 18a,b depict that the proposed window selector achieves lower
latencies to the static window size. By introducing a streaming data pipeline, it is noticed
that the latencies including queuing time, processing time and end-to-end latency time
are significantly reduced compared to the static window size experiment by dynamically
change window sizes for the sudden stream rates. Mainly, the dynamic window selector
gradually decreases the window size based on the stream rate increments. The lower
window size performs multiple short join intervals, leading to quickly consuming data
from Kafka and decreasing the queuing time (see Figure 18b).

Sensors 2021, 21, 694 30 of 36

Figure 18. Comparison of static and adaptive window sizes for queuing time, processing time,
end-to-end latency.

Considering the reality of the desired contribution, Figure 19a shows that our dynamic
window selector can adapt the window size according to time-varying input stream data
rates based on 24-h monitoring of weather conditions in the forestry areas. For afternoon
hours (i.e., 12, 13, and 14 o’clock) which are the most latency-sensitive for fire probabilities,
our dynamic window selector can achieve the highest reporting delay reduction relative
to the rest hours per day (see Figure 19b). Furthermore, Figure 19c shows the significant
end-to-end latency time, E2E, improvement relative to window size which leads to faster
alerting the forest department authority to protect the forests from fire spreading and
huge damages.

Figure 19. Dynamic experiment number 7. (a) Dynamic window size relative to input stream rate (b) dynamic window
size relative to reduction of reporting time for output alerts (c) dynamic window size relative to End-to-End latency time
improvement (E2ELatency).

In Figure 20, we analytically and experimentally summarize the performance gained
from window size adaptation, showing their superiority over the static window size
configuration for each danger rating alert. However, the results show the trade-off between
the end-to-end latency time improvements and the loss alerts ratios. For example, the red
alerts have the highest number of loss alerts concerning another type of alerts which is
on average is 85%. Still, its reporting time (i.e., end-to-end latency time improvement) is
reduced by 74%. In particular, the proposed dynamic window selector has deployed a
query with a smaller window size to perform fast joins using a smaller number of ingested
events to trigger the early red alerts. The early notification using a smaller number of
ingested events is better than deploying a query with a larger window size to perform
late joins using delayed events having similar sensors values. As the selected use case,
IoT-based forest fire detection, considered one of the latency-sensitive applications, we

Sensors 2021, 21, 694 31 of 36

believe that losing 85% of red alerts is still reasonable to provide a timely warning about
fires by using 15% of the expected alerts while reducing notification time to 74%. Finally,
our experimental results over the generated forest fire dataset confirm that the dynamic
window selector significantly reduces the end-to-end latency time for the reported fire
alerts by sending fast danger alerts even though there are many missed alerts during the
adaptation process.

Figure 20. Summary of end-to-end latency time improvement (E2E) and loss alerts ratios for each
alert type for adaptive window size experiment with respect to the static window experiment.

7. Discussion

To bring the static window size experimental investigation to reality, the weather
variables including temperature, humidity, CO, CO2 and wind, are considered relying
on the new technology of IoT, which can achieve 24-h monitoring of weather conditions.
From this experimental investigation, we learn that the large window size is suitable for
the low stream rate, which reports the green alerts in normal weather conditions. On the
other hand, the small window size which reports fast alerts is good for the high stream rate,
which leads to critical danger ratings (i.e., red alerts). In terms of forest fire detection, it is
a widely accepted view that relies on how difficult to detect forest fires accurately using
static streaming window configurations. Consequently, the window size needs to linearly
adapt according to the increasing stream rate to keep maintaining the critical alerts even
with a reasonable number of loss alerts that indicate forest fires. In particular, we need to
deploy a suitable dynamic streaming window configuration to maintain the weather data
changes’ stream rates to avoid the potential fires in the broad forestry areas, especially in
the summer season.

In summer times which are usually called fire seasons, more than 80% forest fire
occurred either in the spring or in the autumn with a slight increasing distribution due to
the drier weather conditions [25]. According to this work, the weather variables, including
temperature, humidity, CO, CO2, and wind, are considered relying on IoT’s new technology,
which can achieve 24-h monitoring of weather conditions in forestry areas. The joined
streaming results, which are the alerts, can illustrate the relationships between the weather
alert thresholds and the wind speed. Therefore, based on the findings using our proposed
dynamic window-based selection system, the reported alerts are very time-sensitive in
case of high wind speed. In particular, in the autumn with the drier weather conditions,
the orange alerts should be considered red alerts in high wind speed, which strongly warns
of danger fires igniting. Consequently, our proposed dynamic window selection system

Sensors 2021, 21, 694 32 of 36

can inform the forest fire authorities about the forest fires that rely on different weather
conditions even not fire seasons.

7.1. Challenges

In this paper, we present a novel dynamic query window-based processing system
to recommend the optimal window size and type based on the dynamic context of IoFT
applications. Regarding improving forestry 4.0 environmental sustainability, real-time
network connectivity of IoFT devices and decision making will enhance forest resources to
be continuously managed and monitored. Management of forestry 4.0 will be easy due to
reducing resource damages and wastes, while harvesting will be coordinate to minimize
gas emissions. Autonomous IoFT devices, vehicles and robots will improve safety and
also working environment. There are more complex queries with complex operations, e.g.;
multiple streams join since such cases/scenarios are non-trivial to solve and may consider
for future work. Furthermore, The delay of reporting time in case of missed and delayed
events could be reduced by identifying the optimal amount of resources to satisfy the
required processing delay under specific stream rate change [59]. In integration with other
adaptive streaming techniques, other adaptive techniques such as adaptive load shedding
for windowed stream joins [13] and dynamic batch sizing [17] can be integrated with our
proposed dynamic windowing based on stream rate change for industrial applications.
For stream processing platforms, the streaming data processing results should be on-the-
fly to support alerting applications that process new data at the speed with which it is
generated. Event streams are potentially unbounded, infinite sequences of records and
unpredictable that represent events or changes in real-time. Consequently, the in-memory
stream processing platforms must be both fast and scalable to handle billions of tuples every
second. Memory consumption is one of the scalability challenging aspects that affect stream
processing performance, especially for alerting applications, i.e., publishing notifications
to subscribers. The existing research of adaptive windowing lacks solutions that consider
memory consumption with the variable stream rates generated from the event sources
(e.g., applications and sensors) and the critical destinations such as an alerting system.
Regarding our proposed system, changing the window size can reduce the trade-offs with
memory consumption. For example, assigning small window sizes for high stream rates
helps avoid data drift problems (i.e., memory crash) and meet analytics requirements
such as latency constraints. For further investigation, we plan to address the bottleneck
and performance problems briefly due to memory consumption during streaming data
processing [60].

7.2. Opportunities

We believe that the proposed system has taken a number of steps in this direction.
Furthermore, the future work will take us much closer to comprehensive solutions for
variable size windowing over IoT-based stream rate change. Moreover, the proposed
system able to manage the sudden large change in stream rate to establish a set of early
warning mechanisms for the quick response for critical-latency applications. Gathering
data and producing accurate alert of fire detection in Forestry 4.0 requires to distribute
a massive number of smart devices and efficient processing techniques. Real-time fire
detection and management alert is a critical issue for improving Forestry 4.0 application
implementation. Therefore, this issue should be given high consideration to improve
treating with a real situation and supporting needed real remedies to situations in real-time.
Furthermore, distributed several kinds of smart devices could be used to monitor the
forest fire. Heterogeneous smart devices gather different data. Applying a multi-model for
gathered data is also a critical issue for forest fire detection and management.

Transmission gathered data for long-distance is a critical issue for improving Forestry
4.0 monitoring. Therefore, processing gathered data locally should be taken into consid-
eration for improving forest situation in real time. Another solution, drone technology
may be taken into consideration as edge station for gathering data from closed distance to

Sensors 2021, 21, 694 33 of 36

smart devices efficiently and line of sight [61,62]. Furthermore, drones can process data
nearest to smart devices and take action based on an algorithm implemented by using deep
learning and store in the drone. in this case, drones can produce alerts of fire detection in
forests. On the other hand, there is an opportunity to use edge technology to improve the
economy and manage wood production (i.e., drone edge intelligence for gathering data
from IoFT devices).

8. Conclusions

Industry 4.0 is gaining advantages from the implementation in different domains.
Therefore, the transformation of Industry 4.0 towards Forestry 4.0 in the forest domain
appears inevitable. The advantages of this transformation will significantly improve the
social, environmental and economical. Therefore, Forestry 4.0 is a promising sector of
Industry 4.0 to make a real sustainable revolution. We applied a dynamic window configu-
ration recommendation techniques to handle variable stream rate and build an optimal
query execution plan. This approach shows a significant enhancement on stream query
optimization. Furthermore, it presents additional modules, such as input stream monitor-
ing and creates an open knowledge base. This addition plays a vital role in evaluating the
optimal window configuration. Regarding forest fire detection and management by using
IoFT, we describe how IoFT generates streaming datasets for a rapidly changing ecological
environment. The forest fire dataset is evaluated using static and dynamic window sizes
configurations. The proposed dynamic window size selector shows its superiority to send
timely alarming alerts by adapting window size based on the sudden stream rate changes.

Forestry 4.0 has a bright and exciting future. In the future, the extent of this work will
be in the augment our approach within top distributed stream processing platforms. Build
an open knowledgebase/knowledge graph storing statistics of IoT devices’ performance.
Their stream rates can be utilized by multiple platforms and applications to build robust
and adaptive IoT applications. Memory consumption and connectivity among smart IoFT
devices are the limitation of our proposed approach. It will be our future direction to
improve sustainability impacts and manage fire detection before it occurs. On the other
hand, improving dynamic selectors to predict future environmental risks will help identify
and detect risk before it occurs by collecting large dataset from high input stream rates and
then applying powerful predictive analytics techniques such as deep machine learning.
Moreover, the combination of deep learning and blockchain technology can be used in
order to improve processing, resource utilization and connectivity among smart IoFT
devices. Blockchain is a decentralized technology for smart devices and makes decisions
locally instead of sending data to the center for analysis. While, deep learning can be
implemented in smart contracts to process data locally and make decision making based
on historical storage data in blockchain to produce fire alert immediately.

Author Contributions: R.S.: Conceptualization, Data curation, Formal analysis, Methodology, Soft-
ware, Writing–original draft, Writing–review & editing. S.H.A.: Conceptualization, Methodology,
Formal analysis, Writing–review & editing. J.G.B.: Conceptualization, Funding acquisition, Investiga-
tion, Project administration, M.I.A.: Conceptualization, Funding acquisition, Project administration,
Supervision. All authors have read and agreed to the published version of the manuscript.

Funding: This research has emanated from research supported by a research grant from Science
Foundation Ireland (SFI) under Grant Number SFI/16/RC/3918 (Confirm), and Marie Skłodowska-
Curie grant agreement No. 847577 co-funded by the European Regional Development Fund.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No Data available online. For further query email to corresponding
author (radhya.sahal@nuigalway.ie, radhya.sahal.dsi@gmail.com).

Acknowledgments: This work has emanated has emanated from research supported by a research
grant from Science Foundation Ireland (SFI) under Grant Number SFI/16/RC/3918 (Confirm),

Sensors 2021, 21, 694 34 of 36

and Marie Skłodowska-Curie grant agreement No. 847577 co-funded by the European Regional
Development Fund.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, K.; Yu, Y. A query–matching mechanism over out–of–order event stream in IOT. Int. J. Ad Hoc Ubiquitous Comput. 2013,

13, 197–208. [CrossRef]
2. Simmhan, Y.; Cao, B.; Giakkoupis, M.; Prasanna, V.K. Adaptive rate stream processing for smart grid applications on clouds. In

Proceedings of the 2nd International Workshop on Scientific Cloud Computing; ACM: New York, NY, USA, 2011; pp. 33–38.
3. Hochreiner, C.; Vögler, M.; Schulte, S.; Dustdar, S. Elastic stream processing for the internet of things. In Proceedings of the 2016

IEEE 9th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 27 June–2 July 2016; pp. 100–107.
4. Gama, J.; Gaber, M.M. Learning from Data Streams: Processing Techniques in Sensor Networks; Springer: Berlin/Heidelberg, Germany,

2007.
5. Sahal, R.; Breslin, J.G.; Ali, M.I. On Evaluating the Impact of Changes in IoT Data Streams Rate over Query Window Configurations.

In DEBS ’19: Proceedings of the 13th ACM International Conference on Distributed and Event-Based Systems; ACM: New York, NY,
USA, 2019; pp. 262–263.

6. Yu, Z.; Xugang, L.; Xue, G.; Dan, L. IoT forest environmental factors collection platform based on ZIGBEE. Cybern. Inf. Technol.
2014, 14, 51–62. [CrossRef]

7. Siry, J.P.; Cubbage, F.W.; Potter, K.M.; McGinley, K. Current perspectives on sustainable forest management: North America.
Curr. For. Rep. 2018, 4, 138–149. [CrossRef]

8. Schweier, J.; Magagnotti, N.; Labelle, E.R.; Athanassiadis, D. Sustainability impact assessment of forest operations: A review.
Curr. For. Rep. 2019, 5, 101–113. [CrossRef]

9. Tuomasjukka, D.; Martire, S.; Lindner, M.; Athanassiadis, D.; Kühmaier, M.; Tumajer, J.; Vis, M.; Spinelli, R.; Dees, M.; Prinz, R.;
et al. Sustainability impacts of increased forest biomass feedstock supply—A comparative assessment of technological solutions.
Int. J. For. Eng. 2018, 29, 99–116. [CrossRef]

10. Garrett, R.D.; Latawiec, A.E. What are sustainability indicators for? In Sustainability Indicators in Practice; Walter de Gruyter
GmbH & Co KG: Berlin, Germany, 2015; pp. 12–22.

11. Gingras, J.F.; Charette, F. FP innovations forestry 4.0 initiative. In Bangor: 2017 Council on Forest Engineering Annual Meeting; 2017.
Available online: http://cofe.org/files/2017_Proceedings/FPInnovations%20Gingras%20Charette%20Forestry%204.0%20for%
20COFE%202017.pdf (accessed on 8 May 2020).

12. Tatbul, N.; Çetintemel, U.; Zdonik, S.; Cherniack, M.; Stonebraker, M. Load shedding in a data stream manager. In Proceedings
2003 VLDB Conference; Elsevier: St. Louis, MO, USA, 2003; Volume 29, pp. 309–320.

13. Gedik, B.; Wu, K.L.; Yu, P.S.; Liu, L. Adaptive load shedding for windowed stream joins. In Proceedings of the 14th ACM
International Conference on Information and Knowledge Management, Bremen, Germany, 31 October–5 November 2005;
pp. 171–178.

14. Gedik, B.; Wu, K.L.; Philip, S.Y.; Liu, L. A load shedding framework and optimizations for m-way windowed stream joins. In
Proceedings of the 2007 IEEE 23rd International Conference on Data Engineering, Istanbul, Turkey, 17–20 April 2007; pp. 536–545.

15. Cervino, J.; Kalyvianaki, E.; Salvachua, J.; Pietzuch, P. Adaptive provisioning of stream processing systems in the cloud. In
Proceedings of the 2012 IEEE 28th International Conference on Data Engineering Workshops (ICDEW), Arlington, VA, USA, 1–5
April 2012; pp. 295–301.

16. Arasu, A.; Babcock, B.; Babu, S.; Cieslewicz, J.; Datar, M.; Ito, K.; Motwani, R.; Srivastava, U.; Widom, J. STREAM: The Stanford
Data Stream Management System. In Data Stream Management: Processing High-Speed Data Streams; Garofalakis, M., Gehrke, J.,
Rastogi, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 317–336. [CrossRef]

17. Das, T.; Zhong, Y.; Stoica, I.; Shenker, S. Adaptive stream processing using dynamic batch sizing. In Proceedings of the ACM
Symposium on Cloud Computing 2014, Seattle, WA, USA, 3–5 November 2014; pp. 1–13.

18. Zhang, Q.; Song, Y.; Routray, R.R.; Shi, W. Adaptive block and batch sizing for batched stream processing system. In Proceedings
of the 2016 IEEE International Conference on Autonomic Computing (ICAC), Wuerzburg, Germany, 17–22 July 2016; pp. 35–44.

19. Koliousis, A.; Weidlich, M.; Castro Fernandez, R.; Wolf, A.L.; Costa, P.; Pietzuch, P. Saber: Window-based hybrid stream
processing for heterogeneous architectures. In Proceedings of the 2016 International Conference on Management of Data; ACM:
New York, NY, USA, 2016; pp. 555–569.

20. Mayer, R.; Slo, A.; Tariq, M.A.; Rothermel, K.; Gräber, M.; Ramachandran, U. SPECTRE: Supporting consumption policies in
window-based parallel complex event processing. In Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference; ACM:
New York, NY, USA, 2017; pp. 161–173.

21. Tangwongsan, K.; Hirzel, M.; Schneider, S. Low-Latency Sliding-Window Aggregation in Worst-Case Constant Time. In DEBS
’17: Proceedings of the 11th ACM International Conference on Distributed and Event-Based Systems; ACM: New York, NY, USA, 2017;
pp. 66–77. [CrossRef]

22. Traub, J.; Grulich, P.M.; Cuellar, A.R.; Breß, S.; Katsifodimos, A.; Rabl, T.; Markl, V. Scotty: Efficient Window Aggregation for
out-of-order Stream Processing. In Proceedings of the 2018 IEEE 34th International Conference on Data Engineering (ICDE),
Paris, France, 16–19 April 2018; pp. 1300–1303.

http://doi.org/10.1504/IJAHUC.2013.055453
http://dx.doi.org/10.2478/cait-2014-0043
http://dx.doi.org/10.1007/s40725-018-0079-2
http://dx.doi.org/10.1007/s40725-019-00091-6
http://dx.doi.org/10.1080/14942119.2018.1459372
http://cofe.org/files/2017_Proceedings/FPInnovations%20Gingras%20Charette%20Forestry%204.0%20for%20COFE%202017.pdf
http://cofe.org/files/2017_Proceedings/FPInnovations%20Gingras%20Charette%20Forestry%204.0%20for%20COFE%202017.pdf
http://dx.doi.org/10.1007/978-3-540-28608-0_16
http://dx.doi.org/10.1145/3093742.3093925

Sensors 2021, 21, 694 35 of 36

23. Zhang, L.; Lin, J.; Karim, R. Sliding window-based fault detection from high-dimensional data streams. IEEE Trans. Syst. Man
Cybern. Syst. 2017, 47, 289–303. [CrossRef]

24. Alkhatib, A.A. A review on forest fire detection techniques. Int. J. Distrib. Sens. Netw. 2014, 10, 597368. [CrossRef]
25. Lin, H.; Liu, X.; Wang, X.; Liu, Y. A fuzzy inference and big data analysis algorithm for the prediction of forest fire based on

rechargeable wireless sensor networks. Sustain. Comput. Inform. Syst. 2018, 18, 101–111. [CrossRef]
26. Saeed, F.; Paul, A.; Rehman, A.; Hong, W.; Seo, H. IoT-based intelligent modeling of smart home environment for fire prevention

and safety. J. Sens. Actuator Netw. 2018, 7, 11. [CrossRef]
27. Toledo-Castro, J.; Santos-González, I.; Hernández-Goya, C.; Caballero-Gil, P. Management of Forest Fires Using IoT Devices. In

Proceedings of the Eleventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies,
Barcelona, Spain, 12–16 November 2017.

28. Alsamhi, S.H.; Ma, O.; Ansari, M.S.; Almalki, F.A. Survey on collaborative smart drones and internet of things for improving
smartness of smart cities. IEEE Access 2019, 7, 128125–128152. [CrossRef]

29. Alsamhi, S.H.; Ma, O.; Ansari, M.S.; Gupta, S.K. Collaboration of drone and internet of public safety things in smart cities: An
overview of qos and network performance optimization. Drones 2019, 3, 13. [CrossRef]

30. Reitz, J.; Schluse, M.; Roßmann, J. Industry 4.0 beyond the Factory: An Application to Forestry. In Tagungsband des 4. Kongresses
Montage Handhabung Industrieroboter; Springer: Berlin/Heidelberg, Germany, 2019; pp. 107–116.

31. Šulyová, D.; Koman, G. The Significance of IoT Technology in Improving Logistical Processes and Enhancing Competitiveness: A
Case Study on the World’s and Slovakia’s Wood-Processing Enterprises. Sustainability 2020, 12, 7804. [CrossRef]

32. Lasi, H.; Fettke, P.; Kemper, H.G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [CrossRef]
33. Müller, J.M.; Veile, J.W.; Voigt, K.I. Prerequisites and incentives for digital information sharing in Industry 4.0—An international

comparison across data types. Comput. Ind. Eng. 2020, 148, 106733. [CrossRef]
34. Lu, Y. Industry 4.0: A survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 2017, 6, 1–10. [CrossRef]
35. Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962. [CrossRef]
36. Garay-Rondero, C.L.; Martinez-Flores, J.L.; Smith, N.R.; Morales, S.O.C.; Aldrette-Malacara, A. Digital supply chain model

in Industry 4.0. J. Manuf. Technol. Manag. 2019. Available online: https://scholar.googleusercontent.com/scholar.bib?q=info:
yktkO-SABQ8J:scholar.google.com/&output=citation&scisdr=CgWyWyzeELOR3N1mb2Q:AAGBfm0AAAAAYAZjd2R-uzd8
wg8E83B16TUwPMo6WH3-&scisig=AAGBfm0AAAAAYAZjd7U2TV3NlmHL3DVsScyOdJvKpr4W&scisf=4&ct=citation&cd=
-1&hl=en (accessed on 8 May 2020). [CrossRef]

37. Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. A Review on Early Forest Fire Detection Systems Using
Optical Remote Sensing. Sensors 2020, 20, 6442. [CrossRef]

38. Müller, F.; Jaeger, D.; Hanewinkel, M. Digitization in wood supply-A review on how Industry 4.0 will change the forest value
chain. Comput. Electron. Agric. 2019, 162, 206–218. [CrossRef]

39. Salam, A. Internet of Things for Sustainable Forestry. In Internet of Things for Sustainable Community Development; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 147–181.

40. Feng, Y.; Audy, J.F. Forestry 4.0: A framework for the forest supply chain toward Industry 4.0. Gest Ao Produç Ao 2020, 27.
Available online: https://scholar.googleusercontent.com/scholar.bib?q=info:zhhFmlus_bQJ:scholar.google.com/&output=
citation&scisdr=CgWyWyzeELOR3N1svZI:AAGBfm0AAAAAYAZppZLxKYRPmSxr_jf4Vcns5sDHYU3B&scisig=AAGBfm0
AAAAAYAZppVjnYkHMyALnEIMC9ut_LRXU-HS1&scisf=4&ct=citation&cd=-1&hl=en (accessed on 8 May 2020).

41. Chandru, S.; Boopalan, E.; Periyathambi, P.; Ajith, S. Cloud Based Forest Fire Alert System using IoT. Int. J. Trend Sci. Res. Dev.
2020, 4, 650–652.

42. Rajkumar, D.M.N.; Sruthi, M.; Kumar, D.V.V. IoT based smart system for controlling Co2 emission. Int. J. Sci. Res. Comput. Sci.
Eng. Inf. Technol. 2017, 2, 284.

43. Hefeeda, M.; Bagheri, M. Wireless sensor networks for early detection of forest fires. In Proceedings of the 2007 IEEE International
Conference on Mobile Adhoc and Sensor Systems, Pisa, Italy, 8–11 October 2007; pp. 1–6.

44. Toledo-Castro, J.; Caballero-Gil, P.; Rodríguez-Pérez, N.; Santos-González, I.; Hernández-Goya, C.; Aguasca-Colomo, R. Forest
fire prevention, detection, and fighting based on fuzzy logic and wireless sensor networks. Complexity 2018, 2018, 1–17. [CrossRef]

45. Vierikko, K.; Vehkamäki, S.; Niemelä, J.; Pellikka, J.; Linden, H. Meeting the ecological, social and economic needs of sustainable
forest management at a regional scale. Scand. J. For. Res. 2008, 23, 431–444. [CrossRef]

46. Giessen, L.; Sarker, P.K.; Rahman, M.S. International and domestic sustainable forest management policies: distributive effects on
power among state agencies in Bangladesh. Sustainability 2016, 8, 335. [CrossRef]

47. Jonsson, R.; Blujdea, V.N.; Fiorese, G.; Pilli, R.; Rinaldi, F.; Baranzelli, C.; Camia, A. Outlook of the European forest-based sector:
Forest growth, harvest demand, wood-product markets, and forest carbon dynamics implications. iForest-Biogeosci. For. 2018,
11, 315. [CrossRef]

48. Hermann, M.; Pentek, T.; Otto, B. Design principles for industrie 4.0 scenarios. In Proceedings of the 2016 49th Hawaii
International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 3928–3937.

49. Sahal, R.; Breslin, J.G.; Ali, M.I. Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive
maintenance use case. J. Manuf. Syst. 2020, 54, 138–151. [CrossRef]

50. Lal, S.; Sharma, A.; Chaturvedi, K.; Farooqi, M.; Rai, A. Internet of Things in Forestry and Environmental Sciences. In Statistical
Methods and Applications in Forestry and Environmental Sciences; Springer: Berlin/Heidelberg, Germany, 2020; pp. 35–45.

http://dx.doi.org/10.1109/TSMC.2016.2585566
http://dx.doi.org/10.1155/2014/597368
http://dx.doi.org/10.1016/j.suscom.2017.05.004
http://dx.doi.org/10.3390/jsan7010011
http://dx.doi.org/10.1109/ACCESS.2019.2934998
http://dx.doi.org/10.3390/drones3010013
http://dx.doi.org/10.3390/su12187804
http://dx.doi.org/10.1007/s12599-014-0334-4
http://dx.doi.org/10.1016/j.cie.2020.106733
http://dx.doi.org/10.1016/j.jii.2017.04.005
http://dx.doi.org/10.1080/00207543.2018.1444806
https://scholar.googleusercontent.com/scholar.bib?q=info:yktkO-SABQ8J:scholar.google.com/&output=citation&scisdr=CgWyWyzeELOR3N1mb2Q:AAGBfm0AAAAAYAZjd2R-uzd8wg8E83B16TUwPMo6WH3-&scisig=AAGBfm0AAAAAYAZjd7U2TV3NlmHL3DVsScyOdJvKpr4W&scisf=4&ct=citation&cd=-1&hl=en
https://scholar.googleusercontent.com/scholar.bib?q=info:yktkO-SABQ8J:scholar.google.com/&output=citation&scisdr=CgWyWyzeELOR3N1mb2Q:AAGBfm0AAAAAYAZjd2R-uzd8wg8E83B16TUwPMo6WH3-&scisig=AAGBfm0AAAAAYAZjd7U2TV3NlmHL3DVsScyOdJvKpr4W&scisf=4&ct=citation&cd=-1&hl=en
https://scholar.googleusercontent.com/scholar.bib?q=info:yktkO-SABQ8J:scholar.google.com/&output=citation&scisdr=CgWyWyzeELOR3N1mb2Q:AAGBfm0AAAAAYAZjd2R-uzd8wg8E83B16TUwPMo6WH3-&scisig=AAGBfm0AAAAAYAZjd7U2TV3NlmHL3DVsScyOdJvKpr4W&scisf=4&ct=citation&cd=-1&hl=en
https://scholar.googleusercontent.com/scholar.bib?q=info:yktkO-SABQ8J:scholar.google.com/&output=citation&scisdr=CgWyWyzeELOR3N1mb2Q:AAGBfm0AAAAAYAZjd2R-uzd8wg8E83B16TUwPMo6WH3-&scisig=AAGBfm0AAAAAYAZjd7U2TV3NlmHL3DVsScyOdJvKpr4W&scisf=4&ct=citation&cd=-1&hl=en
http://dx.doi.org/10.1108/JMTM-08-2018-0280
http://dx.doi.org/10.3390/s20226442
http://dx.doi.org/10.1016/j.compag.2019.04.002
https://scholar.googleusercontent.com/scholar.bib?q=info:zhhFmlus_bQJ:scholar.google.com/&output=citation&scisdr=CgWyWyzeELOR3N1svZI:AAGBfm0AAAAAYAZppZLxKYRPmSxr_jf4Vcns5sDHYU3B&scisig=AAGBfm0AAAAAYAZppVjnYkHMyALnEIMC9ut_LRXU-HS1&scisf=4&ct=citation&cd=-1&hl=en
https://scholar.googleusercontent.com/scholar.bib?q=info:zhhFmlus_bQJ:scholar.google.com/&output=citation&scisdr=CgWyWyzeELOR3N1svZI:AAGBfm0AAAAAYAZppZLxKYRPmSxr_jf4Vcns5sDHYU3B&scisig=AAGBfm0AAAAAYAZppVjnYkHMyALnEIMC9ut_LRXU-HS1&scisf=4&ct=citation&cd=-1&hl=en
https://scholar.googleusercontent.com/scholar.bib?q=info:zhhFmlus_bQJ:scholar.google.com/&output=citation&scisdr=CgWyWyzeELOR3N1svZI:AAGBfm0AAAAAYAZppZLxKYRPmSxr_jf4Vcns5sDHYU3B&scisig=AAGBfm0AAAAAYAZppVjnYkHMyALnEIMC9ut_LRXU-HS1&scisf=4&ct=citation&cd=-1&hl=en
http://dx.doi.org/10.1155/2018/1639715
http://dx.doi.org/10.1080/02827580802284693
http://dx.doi.org/10.3390/su8040335
http://dx.doi.org/10.3832/ifor2636-011
http://dx.doi.org/10.1016/j.jmsy.2019.11.004

Sensors 2021, 21, 694 36 of 36

51. Hock, B.; Heaphy, M.; Evans, M.; Dunningham, A.; Graham, B. The internet of things for forestry: New concepts, new
opportunities. N. Z. J. For. 2016, 60, 25.

52. Patel, P.; Ali, M.I.; Sheth, A. From Raw Data to Smart Manufacturing: AI and Semantic Web of Things for Industry 4.0. IEEE
Intell. Syst. 2018, 33, 79–86. [CrossRef]

53. Bayne, K.; Damesin, S.; Evans, M. The internet of things—Wireless sensor networks and their application to forestry. N. Z. J. For.
2017, 61, 37–41.

54. Gabrys, J. Smart forests and data practices: From the Internet of Trees to planetary governance. Big Data Soc. 2020,
7, 2053951720904871. [CrossRef]

55. Maringer, J.; Wohlgemuth, T.; Hacket-Pain, A.; Ascoli, D.; Berretti, R.; Conedera, M. Drivers of persistent post-fire recruitment in
European beech forests. Sci. Total Environ. 2020, 699, 134006. [CrossRef] [PubMed]

56. Lecina-Diaz, J.; Alvarez, A.; Retana, J. Extreme fire severity patterns in topographic, convective and wind-driven historical
wildfires of Mediterranean pine forests. PLoS ONE 2014, 9, e85127. [CrossRef] [PubMed]

57. Alsamhi, S.H.; Ma, O.; Ansari, M.S.; Meng, Q. Greening internet of things for greener and smarter cities: A survey and future
prospects. Telecommun. Syst. 2019, 72, 609–632. [CrossRef]

58. Cheney, P.; Sullivan, A. Grassfires: Fuel, Weather and Fire Behaviour; Csiro Publishing: Collingwood, Australia, 2008.
59. Petrov, M.; Butakov, N.; Nasonov, D.; Melnik, M. Adaptive performance model for dynamic scaling Apache Spark Streaming.

Procedia Comput. Sci. 2018, 136, 109–117. [CrossRef]
60. Jiang, W.; Xu, L.G.; Hu, H.B.; Ma, Y. Improvement Design for Distributed Real-Time Stream Processing Systems. J. Electron. Sci.

Technol. 2019, 17, 3–12.
61. Alsamhi, S.; Ma, O.; Ansari, M. Predictive estimation of the optimal signal strength from unmanned aerial vehicle over internet

of things using ANN. arXiv 2018, arXiv:1805.07614.
62. Arabi, S.; Sabir, E.; Elbiaze, H.; Sadik, M. Data gathering and energy transfer dilemma in UAV-assisted flying access network for

IoT. Sensors 2018, 18, 1519. [CrossRef]

http://dx.doi.org/10.1109/MIS.2018.043741325
http://dx.doi.org/10.1177/2053951720904871
http://dx.doi.org/10.1016/j.scitotenv.2019.134006
http://www.ncbi.nlm.nih.gov/pubmed/31522049
http://dx.doi.org/10.1371/journal.pone.0085127
http://www.ncbi.nlm.nih.gov/pubmed/24465492
http://dx.doi.org/10.1007/s11235-019-00597-1
http://dx.doi.org/10.1016/j.procs.2018.08.243
http://dx.doi.org/10.3390/s18051519

	Introduction
	Contribution
	Paper Organization

	Related Work
	Industry 4.0 towards Forestry 4.0
	Forest Fire Detection Use Case
	Methodology
	The Importance of Dynamic Window Sizing over IoT-Based Stream Rate Change
	Data Stream Processing Pipeline
	IoT Streaming Data Pipeline over Apache Flink
	Query Window-Based Streaming Data
	Evaluating the Impact of Changes in IoT Data Streams Rate over Query Window Configurations

	Dynamic Query Window-Based Selector for Stream Rate Change
	Problem Formulation
	The Proposed Dynamic Window-Based Selector

	Experimental Setup and Evaluation
	Forest Fire Based on Climate Change Dataset
	Experimental Setup
	Comparison of Different Static Window Sizes
	Comparison of Static and Dynamic Window Sizes Results

	Discussion
	Challenges
	Opportunities

	Conclusions
	References

