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Abstract: Traffic sign recognition in poor environments has always been a challenge in self-driving.
Although a few works have achieved good results in the field of traffic sign recognition, there is
currently a lack of traffic sign benchmarks containing many complex factors and a robust network. In
this paper, we propose an ice environment traffic sign recognition benchmark (ITSRB) and detection
benchmark (ITSDB), marked in the COCO2017 format. The benchmarks include 5806 images with
43,290 traffic sign instances with different climate, light, time, and occlusion conditions. Second, we
tested the robustness of the Libra-RCNN and HRNetv2p on the ITSDB compared with Faster-RCNN.
The Libra-RCNN performed well and proved that our ITSDB dataset did increase the challenge in
this task. Third, we propose an attention network based on high-resolution traffic sign classification
(PFANet), and conduct ablation research on the design parallel fusion attention module. Experiments
show that our representation reached 93.57% accuracy in ITSRB, and performed as well as the newest
and most effective networks in the German traffic sign recognition dataset (GTSRB).

Keywords: traffic sign classification; attention; region-based; ice environment; ice traffic sign; recog-
nition benchmark; ice traffic sign detection benchmark

1. Introduction

The development of a high-precision automatic traffic sign recognition systems is
an important subject and is of great significance for self-driving and modern driving
assistance technologies. A traffic sign recognition system has two stages, detecting and
then classifying traffic signs, however, the traffic sign recognition (TSR) problem is typically
thought to be traffic sign classification, regarding how to classify traffic signs accurately,
some of which are quite similar in a large amount of categories.

Research for the detection and recognition of traffic signs began as early as Paclik’s
research in 1984. Several traffic sign detection and recognition datasets have been pro-
posed, including the German traffic sign detection and recognition dataset (GTSDB and
GTSRB) [1,2], which is the most popular dataset used in TSR research; Belgium Traffic Sign
Dataset (BTSD) [3]; Sweden Traffic Sign Detection Dataset STSD [4]; and Tsinghua-Tencent
100 K [5], which is one of the biggest realistic street photo datasets with many smaller signs
and so on. Based on the GTSRB and GTSDB, an International Joint Conference on Neural
Networks (IJCNN) competition was held to encourage researchers to come up with a more
accurate method for TSR. The methods proposed before can be divided into two categories,
the traditional feature extraction and classifier design methods and deep-learning methods.

Traditional methods [6–9] use dimension reduction methods, like principal component
analysis and the Karhunen–Loève transform, to extract effective and lower-dimension
features and select a corresponding classification method, like Fisher, support vector
machines (SVM), and multi-layer perceptron (MLP). Traditional methods require a smaller
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dataset and less computation; however, the accuracy relies on the data distribution and
is relatively lower. Deep-learning methods [10–14] employ neural networks to extract
features and loss functions and optimization algorithms to train a great classifier. Deep-
learning methods typically require more data and better computation machines, such as
a GPU, to train a model, and can obtain a higher accuracy. Many research teams began
to focus on the frontier of traffic sign recognition including the occlusion problem, angle
problem, and small targets, and to design specific networks for this.

However, the application of automatic classification technology for traffic signs in
harsh environments, such as ice and snow, is still insufficient. Due to the complexity and
diversity of the weather and lighting conditions, the harsh environment of winter driving
still makes related computer vision more difficult. Problems, such as the size and occlusion
of traffic signs in environments, makes it more difficult to obtain information from the
pictures, and presents greater challenges in the detection and classification of traffic signs.
A Russian team [15] published a Russian ice and snow environment automatic driving
dataset called IceVisionSet containing incomplete traffic sign annotations; however, the
research focused on the light effects on a traffic sign recognition model in ice and snow
environments and did not propose a useful model.

Currently, few teams have used advanced object detection and classification models to
conduct research and applications on this dataset, and the dataset also requires processing.
At the same time, the traditional method of simultaneous detection and classification is
often not effective in such cases. In this article, our research goal is to achieve a better
classification accuracy in the ice and snow dataset based on [15] through our design. The
contribution points of this article are as follows:

According to the traffic pictures collected under the ice and snow environment of [15],
we produced a more challenging ice and snow environment traffic sign detection dataset
(ice environment traffic sign detection benchmark (ITSDB)) and a snow and ice environ-
ment traffic sign classification dataset (ice environment traffic sign recognition benchmark
(ITSRB)) that both contain different sizes and complex environmental factors:

(1) We transplanted and trained the two newest detection networks, HRNetv2p [16] and
Libra-RCNN [17], and evaluated them on the ice and snow dataset, ITSDB, to verify
the robustness of the network and the challenges our dataset proposes.

(2) Based on the attention mechanism, we designed two types of attention modules and a
new type of traffic sign classification network called PFANet overcoming the complex
factors of the ice and snow environment, and we achieved the state-of-the-art 93.570%
accuracy with the ITSRB and verified its robustness on the public dataset.

The paper is organized into several sections. In Section 2, related works about classifi-
cation and detection and their application in traffic signs and the attention mechanisms
applied in these tasks is presented. Section 3 introduces two traffic sign datasets and the
traffic sign classification method with the attention mechanism we proposed. Section 4
presents the performance of some of the most advanced detection methods in our detection
dataset, and the experimental results of our method, including the comparison study
and ablation study. Finally, Section 4 is the discussion about the experiment results, and
Section 5 is our conclusions for the presented work.

2. Related Works
2.1. Classification of Traffic Signs

Before the improvement of the computation ability and the development of neural
networks, methods using a combination of selected feature representation, dimension
reduction, and classifiers were the most popular methods used in this topic. Han et al. [6]
focused on the feature exaction and proposed an advance speeded-up robust features
(SURF) algorithm with an extracting high priority matches selection strategy. Zaklouta
et al. [7] compared the K-d trees with random forest using four types of histogram of
oriented gradients (HOG) and distance transform and achieved the best accuracy with
tree classifiers. Maldonado-Bascón et al. [8] trained a shape-based support vector machine
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(SVM) on the distance to border vectors, and Fleyeh et al. [9] proposed a two stage SVM
method, with the first stage to classify the shape and the second stage to determine
the pictogram.

Due to convolutional neural networks’ greater performance on large datasets, tradi-
tional methods based on SVM are gradually being eliminated, and recognition problems in
special cases are gradually solved. Ciresan et al. [10] showed the better performance when
combining the CNNs and MLP as a committee. Sermanet et al. [11] changed the classifier
input with different scales of convolution features fed into the classifier instead of the only
high-level features. Instead of concatenating the different scale features, Ciresan et al. [12]
creatively added different branches of features after convolution together to enhance the
single scale convolution performance. Wong et al. [13] proposed a highly compact deep
convolutional neural network based on macroarchitecture design principles to decrease
the network parameters and make the network small. Li et al. [14] described an Efficient
CNN applying the Inception module to acquire different-level features and concatenated
them to strengthen the feature representation.

Other networks researched specific problems in the TSR field. Zhu et al. [5] proposed
the Tsinghua-Tecent100 K dataset for the problem of small traffic sign recognition and
added a category recognition branch on the basis of [18] to classify small targets more
accurately. Hou et al. [19] adopted the 1 v 1 method for blocked traffic signs, based on
the HOG feature of the block, and calculated the confidence level for classification. Khan
et al. [20] designed the dark area sensitive mapping (DASTM) technique to improve the
detector’s effect in low-light traffic sign recognition, reaching 100% in GTSDB.

2.2. Attention Mechanism and Applications in TSR

The attention mechanism was originally used to solve the word order problem of
machine translation and the problem of information association at the beginning of sen-
tences. In RNN and seq-to-seq, Bahdanau et al. [21] calculated the attention weight, Wa,
and optimized training through the hidden layer state and alignment of the input and
output sequences, and achieved good results. Subsequently, the attention model began to
be applied in computer vision, and achieved good results. Xu et al. [22] established a hard
attention mechanism and a soft attention mechanism by designing attention to a single po-
sition and a weighted φ function, which effectively reduced the number of parameters and
the calculation time of the traditional network leading an upsurge of attention mechanisms.

In 2015, Luong et al. [23] proposed an improved version of the global attention
mechanism that considered all the hidden states of the encoder and a local attention
mechanism that effectively reduced the amount of calculation and complexity. In view of
the long training time needed for RNN and seq-to-seq, Vaswani et al. [24] proposed the
transform model and self-attention mechanism to calculate the output and input without a
RNN, that is, the introduction of queries, keys, values, and scaling the dot product method
to calculate the attention weight. Comparing with operating on pixels, Hu et al. [25]
achieved the distribution of attention on the channel through squeeze and excitation, and
achieved the best results.

As it had shown great performance in other problems, researchers began to apply the
attention mechanism to the TSR problem. Arcos-Garcı’a et al. [26] combined the spatial
transform module and a classical CNN network and applied the spatial transform on the
input and convolution procedure to increase the spatial invariance of CNNs. Uittenbogaard
et al. [27] proposed a residual attention mechanism combined with dense concatenation and
multi-scale discriminators to preserve background information to improve the classification
ability. Zhang et al. [28] added a channel attention module acquiring global information
after region of interest (RoI) pooling to improve the ability to recognize small traffic signs.
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3. Materials and Methods
3.1. Benchmark
3.1.1. Data Collection

Unlike most datasets, such as ImageNet and COCO, which collect pictures through
online keyword indexing, or Tsinghua-Tencent 100 K, which collects pictures through
Tencent Street View, the original pictures of our dataset were selected from the traffic
photos marked IceVisonSet [15]. The picture of the sign lights and storage method is
from street views of the real snow and ice season in Russia. Compared with the pictures
collected separately, the pictures in our dataset are from continuous lossless video captured
by interval sampling. Shooting through a 2 K camera in a car better mimics the perspective
of a self-driving car. At the same time, through sports camera sampling, compared with
fixed point and fixed distance sampling, the dataset contains unified signs at different
distances and different angles, which is more challenging.

3.1.2. ITSDB

ITSDB is the traffic sign detection dataset under environments, which is used for the
task of traffic sign detection. The dataset contains pictures under various characteristics.
Under the premise of environments, the dataset contains various pictures under different light
conditions, time conditions, environmental factors, and occlusion conditions. At the same
time, the dataset contains traffic signs of different sizes. According to the size of the signs, we
divided the included traffic signs into small, medium, and large, as shown in Table 1.

Table 1. The quantity of icons of different sizes in the dataset.

Size Category Size ITSDB (Ours) GTSDB [2]

Small size ≤ 322 28,487 (65.8%) 8778 (16.9%)

Medium 322 ≤ size ≤ 962 11,916 (27.5%) 40,091 (77.3%)

Large size ≥ 962 2887 (3.7%) 2970 (5.7%)

The ice and snow environment is not only just a representative environment, but
also has a strong influence on the brightness, completeness, color saturation, and other
information of the picture, which have been proved to have a great impact on traffic sign
detection and classification [15,29]. The dataset includes these types of pictures and pictures
of day and night, shown in Figure 1, which are more challenging for TSR problem not
included in most public dataset like GTSRB. In addition, comparing with the most used
public dataset GTSRB, our dataset has much higher percentage of small targets. If one
model is trained and can achieve excellent results on this dataset, it may have a better
ability to overcome the influence of the environment.

As for the processing of the pictures, we converted the lossless pictures stored in the
“rgba” format and the front-end picture format FLIF, wrote a program to convert to the
general JPEG format, resized the pictures compressed to 1/2 the original size, and restored
the pictures according to the annotations. The dataset was also preprocessed to remove
unmarked pictures stored in the cloud server.

The dataset was divided according to the ratio of 8:2, the training set contained a total
of 5806 pictures, and the test set contained a total of 1452 pictures. The picture size was
2448 × 2048, and a total of 43,290 traffic signs were marked. The number of traffic signs
contained in each picture is uncertain. By disrupting the order of the pictures, the timing
information brought by the video frame collection is eliminated. Due to the three-level
classification of Russian traffic signs such as (1.2.12), the number of partial categories is
too small, and the sample imbalance leads to poor universality. We only considered the
first-level categories and merged the lower-level categories to merge the traffic signs, and
divided these into nine categories. We used the COCO2017 object detection annotation
format for annotation. The dataset composition was divided into a picture folder consisting
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of training pictures and detection pictures according to the format and the corresponding
annotation file in JSON format.
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3.1.3. ITSRB

ITSRB is the traffic sign recognition dataset under an ice and snow environment,
which was used for the classification task of traffic signs. The dataset images are cropped
from the image in the ISTDB with bounding boxes in the annotation, only including the
traffic sign and, thus, containing all the influencing factors in ITSDB, which poses great
challenges to the classification network. Each picture contains only one traffic sign. In
addition to the traffic sign, each picture also contains some environmental background
information near the traffic sign.

The dataset was divided according to an 8:2 ratio, the training set contained 34,577 pic-
tures, and the test set contained 8709 pictures. Pictures in the dataset were of different
pixels as shown in Table 1. The original three-level classification method contained more
than 130 categories, which is inconsistent with the number of samples and is prone to
problems, such as non-convergence or oversaturation, and so that the training is of little
significance. We mainly focused on the impact of the ice and snow environment on the data,
and therefore we used the same merging method as the detection dataset, and obtained
nine categories of traffic signs. The data distribution of the different categories is shown in
Figures 2 and 3.
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3.2. Method
3.2.1. Attention Module

First, we introduce the attention modules we designed in the PFANet. The two PFAN
modules we designed were inspired by [24,30]. They inherited the scaled dot production
attention with query, value, and key, and also have several innovations more suitable for
this problem detailed below. With PFAN-A module, network can extract more information
during feature extraction for classification, and PFAN-B module can gain more useful
features during feature fusing between different resolution feature maps, both have been
proved in our ablation study. Moreover, we propose combining both modules in the parallel
structure network, which is also proved to achieve great performance in complicated ITSRB
and GTSRB.

PFAN-A is a new type of self-attention. It takes only one feature map Cf as input. By
one convolution operation, we first find the query and key matrix, which will be used
to generate the attention matrix later. Then, with the scaled dot operation, the attention
weight matrix Tem is generated and is applied by a scaled dot operation again in the input,
which can be thought as the value, to find the basic attention output. Finally, we add the
basic attention output to the input to obtain the final attention output Hf, which originated
from the Resnet [31] and can improve the feature performance.

In the PFAN-A, different from Wk and Wa used to generate the weight matrix, Wv is
used to extract features from the input and values, increasing the network depth. PFAN-B
is a type of cross attention, and most operations are the same as PFAN-A. PFAN-B has two
inputs, down-sampled Hk as the query and key input, and Hk+1 as the key input. As Hk has
twice the resolution of Hk+1 and the scaled dot operation requires the same scale of inputs,
a down-sample operation is applied in the Hk. Then, the same operations are applied to
obtain the final attention output Dk+1 of PFAN-B, in which Wv is still used to extract the
features from the input and values, increasing the network depth.

Different from [24,29], in the PFAN-A structure (shown in Figure 4a), the query, value,
and key are the same (such as C1, C2 . . . C4 in Figure 4). We designed the structure to take
advantage of the correlations of each part in the feature map at a resolution, to find and
highlight features with high correlation with the classification category, and to give higher
weights. For the design of the PFAN-B structure (shown in Figure 4b), we considered the
characteristics of high-resolution preserving networks to extract features of different sizes,
input different semantic and category information extracted from feature maps of different
sizes into PFAN-B, and output Hk query by the hidden layer with high resolution, using
the value and key of the output Hk+1 from the low-resolution hidden layer to query and
highlight the features related to classification in the feature maps of different resolutions.
Both designs have been shown to have significant effects in ablation experiments.

3.2.2. Parallel Fusion Attention Network

An overview of our architecture is shown in Figure 5. The architecture includes a
down-sampling parallel network that maintains high resolution (including HRNet and a
parallel convolution to extract features) and three fusion attention modules. The input is a
3 × 224 × 224 picture. The output is Dn belonging to the space Rc×1, and c is the category
of the dataset. The output is a nine-dimension tensor, with each representing the possibility
of belonging to this category. Before the network computation, data preprocessing will be
operated on the image, including the normalization and resizing.

The PFANet consists of two parts, the parallel feature extraction part and parallel
fusion attention part. For the parallel feature extraction part, we employed the HRNet [16]
to extract four feature maps of different scales. HRNet is well known for its high perfor-
mance in human pose estimation, as well as object detection, classification, and instance
segmentation. Different from traditional feature extraction method relying on a high-to-low
and low-to-high framework or continuously down-sampling, HRNet keeps the high-to-low
produced subnet in parallel in the network instead of in series.
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With repeated multi-scale fusion between high-resolution and low-resolution rep-
resentations, more information is obtained, increasing the accuracy. For our topic, it is
essential to obtain richer information from limited resolutions. HRNet-w18 was employed
to extract the features of the images shown in the dashed rectangle for the following atten-
tion and fusion operation. There are four stages increasing the branches from 1 to 4, the
channels of which are 32, 64, 128, and 256, and the size of the feature map on nth branch is
(224 × 224)/2n−1. The first two stages only have one module, and the last two have four
and three modules.
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Each module is composed of two blocks, and there are two kind of blocks, bottleneck
and basic block, as designed in [30]. In the first stage, all the blocks are bottleneck, and the
other stages use the basic block. Multi-scale fusion is operated between modules in each
stage but is omitted in Figure 5 for simplification. After the different resolution extraction,
four sizes of resolution feature maps are resized to fixed channels by convolution for further
feature extraction, highlight, and fusion.

After acquiring the four feature maps, to help the parallel classification network
extract more spatial information and better output results, we designed the parallel fusion
attention module. The module contains input Cf extracted by HRNet, hidden layer output
Hm, and output Dn. First, PFAN-A is operated on each input Cf to highlight the features
related to the classification in different resolution feature maps, and the hidden layer output
Hf is obtained. The PFAN-A operation is performed on Cf only once. Then, from the top to
the bottom, every two adjacent hidden layer outputs Hk and Hk+1 are used as the input of
PFAN-B to obtain a feature map with the cross attention.

Specifically, Hk is used as a query in the PFAN-B module to find the effective classi-
fication features in Hk+1. After this, we add the down-sampled input Hk to the output of
PFAN-B, and find the final output of these two branches. This operation is repeated three
times, decreasing the branches to 1. When the branch is waiting for the PFAN-B operation
with the previous branch, one convolution operation is applied in this branch to maintain
the network depth. The working process of this module is shown below. With more
comprehensive and accurate spatial features, a fusion attention mechanism that combines
multi-resolution features significantly improves the accuracy of classification prediction:

H f = ϕ1

(
C f

)
. (1)

Dk+1 = F(Hk) + ϕ2(Hk, Hk+1). (2)

Among them, ϕ1(∗) represents the PFAN-A operation, ϕ2(∗) represents the PFAN-B
operation, and F(∗) represents the down sampling operation, implemented with MaxPooling.

4. Results
4.1. Evaluation Metrics

In this paper, to evaluate and compare the performance of the advanced detection
method in ITSDB comprehensively with different sizes of targets and average performance,



Sensors 2021, 21, 686 10 of 19

the metrics (3–8) given below were used. In the comparison between the proposed method
and other classification models, accuracy is employed to evaluate their performance,
defined in metric (9).

Before defining the metrics used in the experiments, some basic metrics are defined below:

• IoU is the ratio of intersection and union of the predicted bounding box and the true
bounding box. The mathematic form is shown as:

IoU =
Intersection

Union
. (3)

• Precision is defined as the ratio of true detected items in all the detected items. Let
True denote the true classification and Positive denote detected. The mathematic form
is shown as:

Precision =
TruePositive

TruePositive + FalsePositive
(4)

• Recall is defined as the ratio of true detected items in all the items that should be
detected. The mathematic form is shown as:

Recall =
TruePositive

TruePositive + FalseNegative
(5)

• Average Precision (AP) is defined as the average of the average precision value when
the recall value ranging from 0 to 1.00 by 0.01 with ten different thresholds for the IoU
(Intersection over Union) ranging from 0.5 to 0.95 by 0.05. The mathematic form is
shown as:

AP =
1
10 ∑

con f = 0.5,
0.55 . . . 0.95

1
100 ∑

r = 0, 0.01
. . . 1.00

Precision(recall). (6)

where r denotes the recall value and conf denotes the threshold set.

• APS, APM, and APL are defined the same as AP, while only accounting for objects of
fixed size including Small (denoted as S), Medium (denoted as M), and Large (denoted
as L) instead of all objects detected. The mathematic form is shown as:

APt =
1

100 ∑
rt = 0, 0.01

. . . 1.00

Precisiont(recallt), t ∈ {S, M, L} (7)

where t denotes the type of objects considered and rt denotes the recall value of t types
of objects.

• AP50, and AP75 are defined the same as AP, while only taking the threshold of 0.5 and
0.75 into account instead of averaging the corresponding value of threshold from 0.5
to 0.95. The mathematic form is shown as:

APc =
1

100 ∑
rc = 0, 0.01

. . . 1.00

Precisionc(recallc), c ∈ {50, 75} (8)

where c denotes the specific threshold set and rc denotes the corresponding recall value.

• Accuracy is defined as the percentage of correctly predicted samples among the whole
sample set. The mathematic form is shown as:
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Accuracy =
correct prediction

all samples
. (9)

#Params is the whole set of hyper-parameters for the model, which can be used to
evaluate the complexity and performance of the model from a real-time perspective.

4.2. Detection

In this part, the dataset and hyper-parameters used in the traffic sign detection are
presented as well as the performance of each model.

4.2.1. Experiment Description

The traffic sign detection task requires the detection of the location of the traffic sign
in the picture, while we simultaneously detect and classify the location. The dataset we
selected is the ITSDB dataset for traffic sign detection under the ice and snow environment,
and we chose the Libra-RCNN [8] network proposed by CVPR in 2019, which obtained
the best results in COCO and the best performance in ImageNet, and the HRNetv2p-w18
detection network [7], which is also one of the advanced networks to test on our dataset to
verify the robustness and our dataset’s challenge.

We trained the model on the ITSDB of the original network for a fair comparison. We
used Faster-RCNN as the baseline, set the model training epoch to 12, and set the batch
size to 1. The initial learning rate was 0.025, and, when the epoch was 8 and 11, it decreased
ten times and compared when the threshold was 0.5.

4.2.2. Performance Comparison

Table 2 shows the different types of Average Precision of three classical methods on
ITSDB. Figures 6–8 shows a visualization of the detection results of methods.

Table 2. Test results on ice environment traffic sign detection benchmark (ITSDB) with HRNet and
Libra-RCNN under the Faster-RCNN architecture.

Backbone AP AP50 AP75 APS APM APL

Faster-RCNN [32] Resnet-50 46.5 66.6 53.8 33.1 71.5 89.3

HRNetv2p-w18 [16] - 29.8 40.3 33.6 11.5 65.0 87.7

Libra-RCNN [17] Resnet-50 47.0 64.4 54.8 34.0 70.7 90.4

4.3. Classification

In this part, we present the dataset and hyper-parameters used in the traffic sign
recognition as well as the performance of each model with detailed tables and figures.

4.3.1. Experiment Description

The traffic sign recognition task requires accurate identification of the type of each
traffic sign. In the common public dataset, GTSRB under a common environment, the
category, train, contains 39,209 pictures, val contains 12,630 pictures, and each contains
43 categories. In the experiment, we trained our model both on our proposed dataset ITSRB
and the public dataset GTSRB, and compared with other traffic sign classification networks.
To make a fair comparison, we used single-crop testing in all tests, with Accuracy as the
evaluation indicator.

We used two NVIDIA-P40 GPUs for training and testing, resized the dataset image
to 224 × 224, made the normalization, and trained 60 epochs with a batch size of 32 × 2.
The initial learning rate was 0.05, and it decreased by 10 times when the epoch was 30.
The weight decay of the stochastic gradient descending parameter (SGD) was 0.0001, and
the momentum was 0.9. We tested on the proposed ITSRB and GTSRB, and designed an
ablation experiment on the public dataset GTSRB, which has a larger amount of data and
more categories, challenging the classification ability more.
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4.3.2. Performance Comparison

Following the above experiment settings, we obtained the results of our proposed
PFANet and other advanced methods on ITSRB and GTSRB. The results are shown in
Tables 3 and 4. The PFANet we proposed performed the best in the ITSRB with an Accuracy
of 93.57%—the highest among the four methods—and had the best performance in the
public dataset GTSRB with an accuracy of 97.21%.

Table 3. The recognition results on ITSRB (proposed dataset).

Method #Params. Data Augmentation Input Size Epoch Accuracy

HRNet-w18 [16] 19.3 M × 224 × 224 × 3 60 93.42

EfficientNet [14] 0.95 M × 48 × 48 × 3 60 84.04

MicroNet [13] 0.51 M × 48 × 48 × 3 60 83.72

PFANet (ours) 27.6 M × 224 × 224 × 3 60 93.57

Table 4. The recognition results on German traffic sign recognition dataset (GTSRB) (public dataset).
“*” represents result of the method is drawn from the literature, and without “*” represents the result
is obtained from the re-trained model.

Method #Params. Data Augmentation Input Size Epoch Accuracy

sermanet * [11] ×
√

32 × 32 × 3 × 99.17

IDSIA * [10] ×
√

48 × 48 × 3 × 99.46

HRNet-w18 [16] 19.3 M × 224 × 224 × 3 100 96.80

EfficientNet [14] 0.95 M × 48 × 48 × 3 100 94.14

MicroNet [13] 0.51 M × 48 × 48 × 3 100 97.02

PFANet (ours) 27.6 M × 224 × 224 × 3 100 97.21



Sensors 2021, 21, 686 14 of 19

The experimental details are shown in Figures 9 and 10, including the loss curve
and accuracy curve. PFANet had a higher initial accuracy and lower loss compared with
the HRNetv2p-w18 and Efficient CNNs. Before the 30th epoch, PFANet oscillated more
than the HRNet and Efficient CNNs in both loss and accuracy but also obtained better
performance. After the 30th epoch, the oscillation was small, and it converged fast with a
small learning rate. PFANet had the best performance model between the 50th and 60th
epoch in ITSRB.
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4.4. Ablation Study

In the experiments, we also performed a necessary ablation study to verify the modules
we designed and applied in the PFANet. We followed the pipeline where each time we
added one module into the network and tested its contribution to the whole performance,
and compared its accuracy, GFLOPs and parameters with the baseline.

To verify the robustness, we ran the experiments on the widely-used open traffic
dataset GTSRB. The input size was set to 224 × 224, the training epoch was 100, and the
learning rate was 0.05 decreased by 10 times when the epoch was 30, 60, 90.

The results are shown in Table 5. Compared with the baseline, both the PFAN-A
and PFAN-B module improved the performance, separately increasing the accuracy by
0.286 and 0.216. The proposed PFANet reached the state-of-the-art obtaining 97.213%
accuracy. Compared with the results on ITSRB, all the networks had higher performance,
implying the benchmark we made deserves more and deeper research, due to the lack of the
environment and size complexity etc. Both attention modules increased the computation
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and parameters slightly. Both increased the parameters of 2.2 M, and PFAN-B increased
the GFLOPs by 0.57, while the PFAN-B increased the GFLOPs by 0.43, lower than PFAN-B.

Table 5. The ablation experiment results of the proposed modules on the GTSRB val dataset, PFAN-A
stands for the PFAN-A module, PFAN-B stands for the PFAN-B module, PFAN-1 stands for the
baseline, and PFAN-4 stands for the proposed PFANet.

Method PFAN-A PFAN-B #Params. GFLOPs Accuracy

HRNet [16] × × 21.3 M 3.99 96.80

PFAN-2
√

× 23.5 M 4.56 97.09

PFAN-3 ×
√

23.5 M 4.42 97.02

PFANet (ours)
√ √

27.7 M 4.99 97.21

The loss curve and accuracy curve during training are drawn in Figures 11 and 12.
From the curves, both the PFAN-A and PFAN-B module could accelerate the convergence
and obtain higher accuracy earlier than the baseline on GTSRB.
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ronment and size complexity etc. Both attention modules increased the computation and 
parameters slightly. Both increased the parameters of 2.2 M, and PFAN-B increased the 
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Table 5. The ablation experiment results of the proposed modules on the GTSRB val dataset, 
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Method PFAN-A PFAN-B #Params. GFLOPs Accuracy 
HRNet [16] × × 21.3 M 3.99 96.80 

PFAN-2 √ × 23.5 M 4.56 97.09 
PFAN-3 × √ 23.5 M 4.42 97.02 

PFANet (ours) √ √ 27.7 M 4.99 97.21 

The loss curve and accuracy curve during training are drawn in Figures 11 and 12. 
From the curves, both the PFAN-A and PFAN-B module could accelerate the convergence 
and obtain higher accuracy earlier than the baseline on GTSRB. 
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5. Discussion

First, from the results in Section 4.2, Libra-RCNN’s unbalanced design allowed it to
perform better under small targets and high IoU requirements, acquiring the highest AP75,
APS, and APL, while HRNet presented worst performance in all metrics on ITRDB. Under
same computation amount, HRNet performed even worse than the Fast-RCNN. There
might be two main reasons for this. First, HRNet may not overcome the unbalanced dataset
in terms of category and size. It mainly takes the feature level unbalance into consideration
and improves it by proposed multi-scale fusion. Second, under the same parameters,
HRNet may be limited to find both useful bounding boxes prediction and classification
features, especially in small target detection even with occlusion and light problems.

However, the Libra-RCNN proposed IoU-balanced sampling, balanced feature pyra-
mid, and balanced L1 loss, overcoming the unbalance problem in data, objective, and
feature level; therefore, it had better robustness under the ITSDB environment light factor
and another complex, small target majority dataset. Compared with these models’ perfor-
mance in their original papers in the COCO dataset, which is a larger dataset compared
with ITSDB [16,17], they did not show any improvement. Therefore, this reveals that the
ITSDB benchmark that we proposed is suitable for the robustness evaluation of models
from the unbalance, which is quite close to reality.

Discussion regarding the main contribution, the attention modules and network we
proposed in this paper based on the ablation study in the working mechanism and module
comparison is presented as follows. PFAN-A is designed to highlight the underlying
information in a feature map, which may be helpful for classification, especially under
snow and ice environments. The design of PFAN-B compares the feature information
between different feature maps by querying to highlight the intersection between different
resolution feature maps of the same picture information. This part of the information is
deep attribute information after extracting different semantic information and external
information, and this is the main category information for traffic signs.

We hope to solve the information interference caused by the environment, time, light,
occlusion, etc. in ice and snow environments through this design to find and pay attention
to the most effective information in the picture and solve the information coverage and
fusion caused by the pure fusion of different resolution maps at the baseline. Our compre-
hensive design was able to learn deep feature representations under multiple interferences.

As shown in Table 4, the PFAN network with one of these structures added alone had
only a slight improvement over the baseline. For PFAN-1, the main reason is that direct
fusion leads to PFAN-A highlighting the weight of possible favorable classification infor-
mation in a single feature map, which is diluted in the fusion by the feature information of
another feature map that is not highlighted, thereby, reducing the effect but still remaining
slightly better than PFAN-2. For PFAN-2, the main reason is that direct convolution does
not pre-select possible advantageous features, resulting in PFAN-B only exerting the effect
of increasing the network depth.

Compared with the baseline, PFANet improved the accuracy by 0.4 while increas-
ing PFAN-A and PFAN-B. This confirms that repeating the structure of pre-selecting
feature information through PFAN-A, selecting feature information through PFAN-B
cross-comparison, and then fusing can produce more effective classification information.
Therefore, we added both modules in the final network, which indeed learned deep feature
representations under multiple interferences under a snow and ice environment.

In Section 4.3, from the two line-charts, PFANet oscillated more than the other models.
From the previous studies, this may be caused by the extra computation added by the
attention modules. When optimizing the result, the extra paraments required optimization
and differed a great deal. After 30 epochs, both converged, and PFANet reached higher
performance by finding the essential features even in the ITSRB, showing outstanding
robustness. However, the previous models, Efficient CNN and MicroNet, only had accura-
cies lower than 85%, and MicroNet even had severe oscillation in ISTRB. This is because
their networks are weak in extracting useful features under the effects of the environment.
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PFANet also achieved the highest accuracy in GTSRB, whose images were collected under
a normal environment, intuitively showing its robustness.

Comparing the results on the ITSRB and GTSRB, all the networks reached lower
accuracy than on GTSRB as there were more occluded or including environment factors in
the images compared with in the benchmark ITSRB, although both show some robustness.
This also reveals, from another angle, that our ITSRB has greater challenges and can be used
to train models overcoming ice environment influences applied in real time self-driving.

In the future, we will investigate the main reason for the oscillation of PFANet at the
beginning, attempt to decrease the parameters to obtain a smaller network, and focus on
improving the performance of recognition under further special environments in addition
to light, occlusion, etc. with advanced mechanisms. We hope to apply these findings in
automobiles to improve their intelligence.

6. Conclusions

In this article, we proposed a new traffic sign detection dataset (ITSDB) under an ice
and snow environment and a new traffic sign classification dataset (ITSRB) under an ice
and snow environment. Compared with the previous dataset, our dataset contains pictures
of different sizes, ice and snow environments, and occlusion, with greater flexibility and
presents a greater challenge for traffic sign recognition. We also put forward a parallel
attention network, PFANet, which can extract more effective features through the combina-
tion of two attention modules, PFAN-A and PFAN-B, to overcome recognition difficulties
caused by the complex factors in the ice and snow environment.

PFANet achieved the best performance of 93.570% accuracy on ITSRB and 97.21% on
GTSRB without data augmentation, which verifies our design concept. We trained two
of the newest networks that simultaneously detect and classify on ITSDB and found that
Libra-RCNN was more robust. We proposed possible reasons for this in the discussion. In
the future, we will continue to explore in-depth automated traffic sign recognition methods.
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