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Abstract: Although plastic scintillation detectors possess poor spectroscopic characteristics, they are
extensively used in various fields for radiation measurement. Several methods have been proposed to
facilitate their application of plastic scintillation detectors for spectroscopic measurement. However,
most of these detectors can only be used for identifying radioisotopes. In this study, we present a
multitask model for pseudo-gamma spectroscopy based on a plastic scintillation detector. A deep-
learning model is implemented using multitask learning and trained through supervised learning.
Eight gamma-ray sources are used for dataset generation. Spectra are simulated using a Monte Carlo
N-Particle code (MCNP 6.2) and measured using a polyvinyl toluene detector for dataset generation
based on gamma-ray source information. The spectra of single and multiple gamma-ray sources
are generated using the random sampling technique and employed as the training dataset for the
proposed model. The hyperparameters of the model are tuned using the Bayesian optimization
method with the generated dataset. To improve the performance of the deep learning model, a deep
learning module with weighted multi-head self-attention is proposed and used in the pseudo-gamma
spectroscopy model. The performance of this model is verified using the measured plastic gamma
spectra. Furthermore, a performance indicator, namely the minimum required count for single
isotopes, is defined using the mean absolute percentage error with a criterion of 1% as the metric to
verify the pseudo-gamma spectroscopy performance. The obtained results confirm that the proposed
model successfully unfolds the full-energy peaks and predicts the relative radioactivity, even in
spectra with statistical uncertainties.

Keywords: plastic gamma spectrum; photopeak; full-energy peak unfolding; relative radioactivity
prediction; deep learning; multitask model

1. Introduction

Gamma spectroscopy is the quantitative study of the energy spectra of gamma-ray
sources. Major applications of gamma spectroscopy include the identification and quan-
tification of gamma-ray sources by analyzing their energy spectra. The full-energy peaks
(FEPs), which correspond to the photon incident energy in the energy spectra, are typically
used for the identification and quantification of gamma-ray sources.

Plastic scintillation detectors are low cost, easy to be manufactured in large volumes,
and produce rapid measurements. They are also capable of neutron detection, which is
one of the key points in radiation portal monitors for homeland security. This capability is
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very limited to the inorganic scintillators or silicon detectors. However, they exhibit poor
spectroscopic characteristics, poor energy resolution, and lack FEPs in their spectra. There-
fore, when analyzing the plastic gamma spectra, the Compton continuum is considered
as the region-of-interest in pseudo-gamma spectroscopy, unlikely in general-gamma spec-
troscopy. Pseudo-gamma spectroscopy is defined as the identification and quantification
of gamma-ray sources through the analysis of the Compton continuum in energy spectra.

Despite their disadvantages, plastic scintillation detectors are extensively used in
radiation monitoring systems. Several studies have investigated the enhancement of the
spectroscopic capabilities of plastic scintillators by employing signal processing [1–9] or
pattern recognition techniques [10–14]. Most of these techniques can only identify the
radioisotopes in the plastic gamma spectra, with the exception of two approaches. One
approach involves the application of the inverse of the transfer matrix to unfold FEPs [8].
However, this method cannot be applied to spectra with poor counting statistics. The other
approach, as presented in our previous study, involves the reconstruction of Compton
edges using an autoencoder [14]. Unlike the former approach, this method can identify the
energy of the incident gamma rays from the reconstructed Compton edges, even in spectra
with poor counting statistics. However, this method does not permit the quantitative
analysis of gamma ray sources.

In this study, we present a deep learning model that unfolds FEPs and predicts
the relative radioactivity of the isotopes in the plastic gamma spectra using a multitask
learning (MTL) scheme. Plastic gamma spectra are simulated using a Monte Carlo code
and measured using a polyvinyl toluene (PVT) detector. The dataset is generated using
a random sampling technique, similar to the procedure followed in our previous study.
Furthermore, we implement a multitask model and perform hyperparameter tuning using
Bayesian optimization. The performance of our model is verified for the measured spectra,
and it is confirmed that the proposed model can unfold FEPs and predict the relative
radioactivity of isotopes, even in spectra with statistical uncertainties, unlike in the inverse
matrix approach.

2. Materials and Methods
2.1. Deep Learning Model
2.1.1. Multitask Learning (MTL)

MTL is a learning method applied for building a machine learning or deep learning
model to perform multiple tasks simultaneously. It has been used successfully in various
machine learning applications, including language processing and computer vision [15–19].
A well-known advantage of MTL is the synergic effect among tasks, which is related to the
performance of the deep learning model. Features that cannot be determined by training a
model with a dataset for a single task can be determined by training a model with datasets
for multiple tasks, thereby improving the performance of the model. This effect is known
as the synergic effect among tasks, and these features are called synergic features.

To identify and quantify gamma-ray sources, it is sufficient to unfold the FEPs in the
plastic gamma spectra because gamma spectroscopy is generally performed by analyzing
the FEPs in the energy spectra. In addition to being a promising tool for the unfolding
of FEPs, MTL is convenient and suitable for estimating the radioactivity of gamma-ray
sources in gamma spectroscopy. Our model utilizes MTL for both tasks, achieving better
performance than when using independent models for each task. The main advantages
of MTL are its synergic effect, as discussed above, and overfitting robustness. Overfitting
robustness is dependent on the number of tasks, and may not be realized in our case,
wherein the number of tasks is only two. However, the synergic effect can be realized. Of
the advantages of MTL, the synergic effect is more important than the overfitting robustness
because synergy directly affects the model performance while there are several techniques
to prevent the overfitting issues.

An autoencoder [20–22] is a generative model used in artificial neural networks, which
generates an output signal whose dimension is identical to that of the input signal. It is
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comprised of two parts: An encoder and a decoder. In the encoder, the inputs are encoded
into vectors of reduced dimensions called bottlenecks. In the decoder, the bottlenecks
are decoded into the reconstructed signal. Autoencoders have been extensively used for
dimension reduction in many applications [23,24]. Furthermore, they can be used for noise
rejection. If noise signals are added to the training data used for training an autoencoder to
reconstruct an input signal without noise, the autoencoder can be optimized to generate a
function to reject noise signals.

We employed the autoencoder structure as the skeleton of our baseline model to
facilitate the generation of FEPs from plastic gamma spectra. In the encoder, the input
plastic gamma spectrum is encoded in the bottleneck, which is connected to the decoder
to generate the FEP spectrum. Another neural network is used for predicting the relative
radioactivity of the gamma-ray source. The losses in training the MTL model are indepen-
dently defined for each task: One is the generation loss in FEP unfolding, and the other is
the regression loss in the relative radioactivity. As the encoder layers are shared for both
tasks, the shared encoder is trained to minimize the generation and regression losses. The
decoder layers and regression layers are trained to minimize the generation and regression
losses, respectively. Figure 1 illustrates the overall configuration of the baseline model.
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Figure 1. Configuration of the baseline model.

2.1.2. Weighted Multi-Head Self-Attention

A deep learning model called the Transformer [25], first proposed for natural language
processing, has been used in various machine learning applications [26–29]. The core
modules in the Transformer model are multi-head attention and skip connection [30],
denoted by ADD and NORM, respectively.

The attention mechanism attends to features that have the greatest influence on the
results. In multi-head attention, multiple attention layers are arranged in parallel, and
each layer is called an attention head. Multi-head attention ranks or assigns weights to
the multiple features that influence the results. In multi-head self-attention, the results
may not be meaningful, if the same inputs are provided to each attention head because the
attention score is not trainable, but deterministically calculated. Such meaningless results
are particularly noticeable when the input includes one-dimensional data, and this effect
can be noticeable because less information is contained than multidimensional data. To
prevent this issue, we propose weighted multi-head self-attention in which the output of
each attention head is multiplied by head weights, which are trainable parameters in a
neural network. With such multiplication, the attention scores from each attention head
are selectively utilized, rendering the results of multi-head self-attention more meaningful.
Figure 2 depicts a weighted multi-head self-attention module.
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2.2. Dataset Generation
2.2.1. Experimental Environment

As the plastic scintillation detector, a PVT crystal (EJ-220, EJ technology, Texas, United
States) coupled with a photomultiplier tube (PMT; R2228, HAMAMATSU Photonics,
Shizuoka, Japan), and socket assembly (E990-501, HAMAMATSU Photonics) were used.
The used PVT crystal was cylindrical with a diameter of 30 mm and height of 50 mm.
Optical grease was applied to the junction of the PVT and PMT, and the detector was
wrapped in Teflon and black friction tape for optical shielding. For signal processing, an
integrated pulse processor (DP5G, Amptek, Bedford, United Kingdom) that included a
preamplifier, a shaping amplifier, and multichannel analyzer functions was used. Operating
power was supplied by a high-voltage supplier (NHQ 224M, ISEG, Bautzen, Germany).

An aluminum dark box, with an internal width of 590 mm, height of 430 mm, and
length of 890 mm, was used to reduce background gamma-ray radiation. The thickness of
the aluminum layer was 5 mm. The detector was placed on the bottom plate of the box.
As gamma ray sources, 22Na, 54Mn, 57Co, 60Co, 109Cd, 133Ba, 137Cs, and 152Eu (isotope
products by Eckert and Ziegler) were used. Table 1 presents detailed information on the
used gamma-ray sources. The sources were placed 1.25 cm away from the detector window
and measured for various measurement periods. Energy calibration of the measured
spectra was performed using the parametric optimization method [31].

2.2.2. Monte Carlo Simulation

The general-purpose Monte Carlo N-Particle code MCNP 6.2 [33] was used for sim-
ulating plastic gamma spectra. The experimental environment, described above, was
replicated in the simulation geometry, and the composition and densities of the materials
were defined with reference to the material data report [34]. Pulse height tally along with
a Gaussian energy-broadening (GEB) card was used to simulate the distribution of the
energy deposition in the plastic scintillation detector. The GEB coefficients were calculated
through parametric optimization [31] using the experimental spectra for a measurement
period of one hour. Three cases of GEB coefficients were used: case 1: 0.0004 for “a”, 0.3704
for “b”, and −0.4999 for “c”; case 2: −0.0007 for “a”, 0.3944 for “b”, and −0.4999 for “c”;
case 3: 0.0006 for “a”, 0.3548 for “b”, and −0.4999 for “c”. For these cases, the generated
dataset was robust against slight variations in the shape of the plastic gamma spectra.
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2.2.3. Dataset Generation

A dataset for training, validation, and testing the developed model was generated
by the random sampling technique using plastic gamma spectra, which are spectra with
energy-broadening effects. To measure and simulate such spectra, eight gamma-ray sources
were used. In the case of 54Mn, 57Co, and 109Cd, the spectra were measured for 24 h because
of their low remaining radioactivity. For the other sources, the spectra were measured
for one hour. All spectra were simulated with a history number of 109. FEP spectra were
generated based on the gamma-ray source information summarized in Table 1.

The dataset was generated using the measured, simulated, and FEP spectra, and the
synthesis ratios were randomly determined as described below. The measured, simulated,
and FEP spectra were normalized by dividing by their integral values to produce normal-
ized spectra that exhibit the characteristics of probabilistic density functions (PDFs). The
normalized measured and simulated spectra were utilized for the libraries of the GEB
cases, and the normalized FEP spectra were utilized for the libraries of the ideal cases. The
dataset was generated as per the following procedure using the prepared PDF libraries.
The dataset generation procedure is depicted in Figure 3 as a flowchart.

Table 1. Details of the used gamma-ray sources.

Source Activity
(kBq)

Reference
Date *

Estimated
Activity **

(kBq)

Gamma
Energy
(MeV)

Emission
Intensity (%)

22Na 385.5 1 June 2017 169.48
0.511 180.76
1.275 99.94

54Mn 341.3 1 June 2017 28.04 0.835 99.98

57Co 395.2 1 June 2017 22.37
0.014 9.16
0.122 85.6
0.137 10.68

60Co 380 1 June 2017 263.42
1.173 99.9
1.333 99.98

109Cd 346.1 1 June 2017 64.04 0.088 3.64

133Ba 370 1 June 2017 301.89

0.081 32.9
0.276 7.16
0.303 18.34
0.356 62.05
0.384 8.94

137Cs 378.1 1 June 2017 352.15 0.662 85.1

152Eu 385.2 1 June 2017 328.92

0.122 0.87
0.245 0.96
0.344 1.09
0.411 1.09
0.444 1.11
0.678 1.29
0.779 1.41
0.867 4.25
0.964 14.6
1.086 10.21
1.09 1.73
1.112 13.64
1.299 1.62
1.408 21

* Reference date is the date when the radioactivity was measured by the manufacturer. ** Estimated activity is
the calculated radioactivity from the date of measurement. The estimated activities were calculated using Rad
pro [32].
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spectra for the Gaussian energy-broadening (GEB) case, 200,000 spectra for the full-energy peaks
(FEP) case, and 200,000 relative ratios were generated and used as a dataset.

1. Determination of synthesis ratios

The PDF synthesis ratios were selected by dependent random number generation.
Here, the dependent random number maintains the sum of the random ratios at unity to
preserve the characteristics of the synthesized PDFs. For example, if the ratio for 22Na
was determined as 0.22, the sum of the ratios of the others should be 0.78; if the ratio of
57Co was determined as 0.51, the others should exist in the range of 0–0.27. The number
of radioactive sources and their synthesis ratios were determined using this dependent
random number generation procedure. The synthesis ratios were stored in a dataset for
relative ratios.

2. PDF synthesis with the determined ratios

The PDFs were determined using dependent random number generation to ensure
that the synthesized PDFs retained the PDF characteristics, i.e., the sum of the synthesized
PDFs was unity.

3. Random sampling for spectrum generation

The synthesized PDFs of the FEP spectra were used without changes, and those of
the measured or simulated spectra were used for spectrum generation, performed in this
step. The number of samplings to be performed was randomly selected in the 50,000–
100,000 range using a uniform random number generator. Subsequently, a spectrum was
generated through random sampling for the determined sampling number. As a result, a
spectrum was generated with statistical uncertainties, and the total count of the spectrum
was identical to the determined number of samplings.

4. Normalization

The spectrum generated in Step 3 was divided by its integral value and multiplied by
100. The generated GEB spectrum represents the interaction probabilities of each bin on
a percentage scale. The FEP spectrum was multiplied by 104 to represent the interaction
probabilities on a scale of basis points, i.e., per ten thousand. The magnitudes of the
multiplication factors for the GEB and FEP spectra were determined by trial and error. The
generated GEB and FEP spectra were stored in a GEB and FEP case datasets, respectively.

By iterating the entire procedure 200,000 times, a paired dataset was generated, com-
prising 200,000 GEB spectra, 200,000 FEP spectra, and 200,000 relative ratios. Of the
generated datasets, 160,000 were used as the training set, 30,000 were used as the validation
set, and the remaining 10,000 were used as the test set.
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2.3. Implementation of a Deep- Learning Model
2.3.1. Baseline Model Implementation

An MTL model was implemented in the Python environment using the Tensorflow
2.0 library [35]. Mean averaged percentage error (MAPE) was used as the loss function for
both tasks because it showed the best performance among the options considered (other
loss functions considered included squared errors, logarithmic errors, categorical errors,
and cross entropies) The Adam optimizer [36] was used to train the MTL model, and the
number of epochs was set to 300. Furthermore, a check point function, which saves the
best model during epochs by monitoring the validation loss, was implemented to prevent
overfitting. Batch normalization layers [37] were added after each hidden layer to avoid
the gradient-vanishing effect. For the baseline model, shown in Figure 1, hyperparameter
tuning was performed using an open-source code for Bayesian optimization [38]. Table 2
presents a summary of the hyperparameter tuning results.

Table 2. Hyperparameter tuning results.

Parameter Type Range Final Value

Depth of the encoder and decoder layers Continuous 2–8 6
Decreasing and increasing rates for the # of

neurons Continuous 0.5–0.98 0.836

Regressor layers depth Continuous 1–4 2
# of neurons in the regressor layers Continuous 10–300 180

Activation functions in the hidden layers Discrete Relu, Sigmoid Relu
Activation function in the last decoder layer Discrete Linear, Sigmoid, Tanh, Exponential Exponential

The baseline model, with the optimized hyperparameters, was trained using the
generated training and validation sets during 300 epochs. As the shared encoder, decoder,
and regressor were trained with the total, generation, and regression losses, respectively,
we implemented a code-level training procedure. After activating the model check point
function, the model with the minimum validation loss was saved and used as the final
model. Figure 4 shows the training curve of the baseline model. Although MTL is known
to be robust against the overfitting issues, overfitting occurred as shown in the figure. This
was expected because the model was designed for only two tasks, and MTL overfitting
robustness improves with more tasks. Therefore, we confirmed that it was necessary to use
the model check point function. The trained model was evaluated using the test set. The
evaluation results were 310.687% for the generation task and 34.225% for the regression
task.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 21 
 

 

more tasks. Therefore, we confirmed that it was necessary to use the model check point func-
tion. The trained model was evaluated using the test set. The evaluation results were 310.687% 
for the generation task and 34.225% for the regression task. 

  
(a) (b) 

Figure 4. Training curves of the baseline model. Each figure represents training curve of (a) generation task; (b) regression 
task. 

2.3.2. Model Enhancement 
To improve the performance of the MTL model, we considered the application of 

deep learning modules such as the convolutional neural network (CNN), attention, resid-
ual connection, multi-head self-attention, and weighted multi-head self-attention. All 
these modules, except the CNN, can be applied to a model whose hidden layer dimen-
sions are identical to one another. Therefore, the deep learning modules were considered 
attached after the bottleneck, i.e., at the beginning of each task-specific layer. Figure 5 de-
picts the structure of our model for model enhancement, and the locations at which the 
deep learning modules are attached. 

 

Figure 4. Training curves of the baseline model. Each figure represents training curve of (a) generation task; (b) regression
task.



Sensors 2021, 21, 684 8 of 20

2.3.2. Model Enhancement

To improve the performance of the MTL model, we considered the application of deep
learning modules such as the convolutional neural network (CNN), attention, residual
connection, multi-head self-attention, and weighted multi-head self-attention. All these
modules, except the CNN, can be applied to a model whose hidden layer dimensions are
identical to one another. Therefore, the deep learning modules were considered attached
after the bottleneck, i.e., at the beginning of each task-specific layer. Figure 5 depicts
the structure of our model for model enhancement, and the locations at which the deep
learning modules are attached.
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Figure 5. Structure of the baseline model for model enhancement (The red circles indicate the
locations at which the deep learning modules are attached).

3. Results
3.1. Model Enhancement

To validate the performance of the baseline model with deep learning modules,
the following models were implemented: Deep neural network (DNN; baseline), DNN
with attention, DNN with attention and skip connection, DNN with multi-head self-
attention and skip connection, and DNN with weighted multi-head self-attention and skip
connection (proposed). For the multi-head self-attention, the number of heads was set to
five, and the dimension of the sublinear layers was set to 34. Furthermore, the following
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CNN models were implemented: CNN, CNN with attention, CNN with attention and
skip connection, CNN with multi-head self-attention with skip connection, and CNN with
weighted multi-head self-attention and skip connection (proposed). The length of the
convolution filter was set to 25, and the number of convolution filters was set to 500. Global
max pool layers were attached to each even-numbered hidden layer in the encoder with a
pool size of two. Up-sampling layers were attached to each even-numbered hidden layer
in the decoder with an up-sample size of two. The training setup for the above models
was identical to that of the baseline model. To confirm the synergic effect among tasks,
independent models for both tasks were implemented with identical hyperparameters as
follows: DNN (two models) and DNN with the proposed module and skip connection
(two models). The evaluation results using the test set for the implemented deep learning
models are summarized in Table 3. DNN with the proposed module has the minimum
generation loss among the implemented models. In the case of regression loss, the CNN
model has the minimum value, but the generation loss of the CNN model is higher than
that of the other DNN models. Therefore, DNN with the proposed module was selected as
the final MTL model, even though it had the second lowest regression loss. In addition,
the synergic effect was verified. As shown in Table 4, independent models of the DNN
and DNN with the proposed module have higher losses in the generation and regression
tasks compared to the MLT models of the DNN and DNN with the proposed module.
Figures 6 and 7 depict examples of the generation and regression results for the generated
spectra in the test set, and for the measured spectra using the final MTL model, respectively.

Table 3. Evaluation results using the test set for the baseline model with deep learning modules. Deep neural network (DNN) with the
proposed module was selected as the final multitask learning (MTL) model.

Model Generation Loss (%) Regression Loss (%)

DNN (Baseline) 310.678 34.225
DNN + Attention 67.987 34.201

DNN + Attention + Skip 58.704 34.797
DNN + Multi-head self-attention + Skip 124.351 34.397
DNN + Proposed + Skip -> Final model 37.597 34.146

CNN 251.524 34.003
CNN + Attention 82.609 34.148

CNN + Attention + Skip 68.262 34.651
CNN + Multi-head self-attention + Skip 109.087 38.017

CNN + Proposed + Skip 80.216 34.973
DNN (two models) 881.641 34.285

DNN + Proposed + Skip (two models) 309.856 34.148

Table 4. Evaluated minimum required counts (MRCs) of both models for the generation and regres-
sion tasks.

Source
MRC for Generation MRC for Regression

Baseline MTL Final MTL Baseline MTL Final MTL
22Na 7820 ± 89 10,270 ± 102 9070 ± 96 7670 ± 88
54Mn 6410 ± 80 6870 ± 83 11,130 ± 105 11,130 ± 106
57Co 18,640 ± 137 17,990 ± 135 22,510 ± 150 19,540 ± 140
60Co 14,980 ± 23 5310 ± 73 15,130 ± 123 7420 ± 87

109Cd 19,990 ± 142 18,590 ± 137 26,710 ± 164 19,240 ± 139
133Ba 12,430 ± 112 3960 ± 63 12,430 ± 112 3960 ± 63
137Cs 14,330 ± 120 8970 ± 95 14,330 ± 120 8970 ± 95
152Eu 16,940 ± 131 15,080 ± 123 16,940 ± 131 15,080 ± 123
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5.208 × 10−1; (b) 2.963 × 10−2 and 0.557; (c) 3.974 × 10−1 and 3.735; (d) 2.331 × 10−1 and 6.890.
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3.2. Minimum Required Counts

One of the major performance parameters of radiation measurement systems is the
minimum counts or radioactivity required to produce a sufficiently accurate result [13,39,40].
In this study, we defined the minimum required count (MRC) required by our MTL model
to perform each task correctly. For the generation task, the MRC was defined as the
minimum counts required by the proposed model to generate the correct FEPs from the
measured spectrum of a single gamma-ray source. For the regression task, the MRC was
defined as the minimum counts required by the proposed model to correctly predict the
relative activity of a single gamma-ray source. To evaluate the MRC of each task, the
evaluation set was generated as follows.

1. PDF calculation for the evaluation set

The measured spectrum of each gamma-ray source was normalized by dividing it by
its integral value, and defined as the PDF for the evaluation set. For 54Mn, 57Co, and 109Cd,
spectra with a measurement period of 24 h were used to calculate the PDFs because of their
low remaining radioactivity. For the other sources, spectra with a measurement period of
1 h were used to calculate the PDFs.

2. Definition of the generation reference

For the measured spectra used in the PDF calculation, FEP generation was performed
using the MTL model, and the results were defined as the generation reference for each
gamma-ray source. The relative activity, set to unity for each gamma-ray source, was used
as the regression reference.

3. Evaluation set generation

The spectra for the evaluation set were generated by random sampling using the
PDFs calculated from the measured spectra. The number of samplings was in the range of
100–200,000 with an interval of 10. For each sampling set, 100 spectra were generated and
used as the evaluation set.

For the generated evaluation set, FEP generation and relative activity regression were
performed using the developed MTL models. The MRC of each model was defined by
evaluating the success rates for each sampling number as follows. The correct generation
and regression results among 100 spectra were counted for each sample number, and
the metric of correctness was defined using the MAPE with a criterion of 1%. That is,
spectra whose MAPEs for the generation and regression results were less than 1% were
considered successful. After the success rates for all the sampling numbers were calculated,
the minimum sampling number with a success rate greater than 95% was considered as
the MRC. For both tasks, the MRCs were evaluated for each gamma-ray source using the
above procedure. To confirm that the proposed deep learning module, called weighted
multi-head self-attention, contributed to performance improvement, we evaluated the
MRCs for both the baseline model and our final MTL model. Figure 8 shows the success
rates with the evaluation sets for both models in both tasks. The evaluated MRCs are
summarized in Table 4.

As shown in Table 4, the MRCs of our final MTL model are generally lower than the
baseline MTL model for both tasks. The MRCs differ slightly according to the task. For
the baseline MTL model, the MRCs for the generation task were in the following order:
54Mn < 22Na < 133Ba < 137Cs < 60Co < 152Eu < 57Co < 109Cd. For the final MTL model, the
MRCs for the generation task were in the following order: 133Ba < 60Co < 54Mn < 137Cs <
152Eu < 22Na < 57Co < 109Cd. The MRCs of the final MTL model were lower than that of
the baseline MTL model for most of the gamma-ray sources, except for 22Na and 54Mn. In
the case of the regression task, the MRCs of the baseline MTL model were in the following
order: 22Na < 54Mn < 133Ba < 137Cs < 60Co < 152Eu < 57Co < 109Cd. The MRCs of the final
MTL model were in the following order: 133Ba < 60Co < 22Na < 137Cs < 54Mn < 152Eu <
109Cd < 57Co. The MRCs of the final MTL model were lower than that of the baseline MTL
model for most of the gamma-ray sources. In the case of 54Mn, the MRCs of the baseline
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and the final MTL models were identical. In both tasks, the MRCs for 57Co and 109Cd were
relatively high. This may be because these gamma-ray sources emit low energy (below 100
keV) gamma rays. Because of the poor energy resolution of plastic gamma spectra, these
low energy gamma rays are difficult to distinguish.
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The gamma-ray sources with low MRCs differed slightly based on the task and model.
Although each of these gamma-ray sources emits its own gamma-ray energy and their
spectra can be clearly distinguished from the others, differences in the MRCs may arise
due to the feature representations in the deep learning model.

To assess the MRC evaluation results, the background spectrum and the spectrum
of each gamma-ray source were measured for 1–330 s corresponding to each MRC. FEP
generation and relative activity regression were then performed by our MTL model. The
measurement periods were adjusted such that the total net count of each background-
subtracted spectrum was similar to each MRC within the statistical uncertainties.

Figures 9 and 10 show the FEP generation and relative activity regression results,
respectively, for the measured spectra with different measurement periods corresponding
to each MRC.
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Figure 9. FEP generation results for the measured spectra at each MRC. For the eight gamma−ray sources, the MAPEs are
(a) 3.999 × 10−1 for 22Na; (b) 1.999 × 10−1 for 54Mn; (c) 5.999 × 10−1 for 57Co; (d) 3.999 × 10−1 for 60Co; (e) 1.999 × 10−1

for 109Cd; (f) 1.999 × 10−1 for 133Ba; (g) 1.999 × 10−1 for 137Cs; and (h) 2.799 × 10−1 for 152Eu.
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3.3. Performance Comparison

In pseudo-gamma spectroscopy studies, the inverse of the transfer matrix [8] is used
to unfold FEPs, and thus identify and quantify the gamma-ray sources in plastic gamma
spectra. To compare the unfolding performances of the developed MTL model with that
of the inverse of the transfer matrix, we performed FEP unfolding using both methods.
Figure 11 depicts several unfolding results using the inverse of the transfer matrix and the
final MTL model for fine measured spectra from single to multiple gamma-ray sources.
As shown in the figure, both models successfully unfolded the FEPs from plastic gamma
spectra. The inverse of the transfer matrix unfolded FEPs with lower MAPE, indicating
that the inverse of the transfer matrix unfolds FEPs more accurately.
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133Ba and 137Cs. The MAPEs of the inverse of the transfer matrix and final MTL model, respectively, are (a) 1.428 × 10−6

and 1.538 × 10−2; (b) 3.044 × 10−5 and 1.486 × 10−1; (c) 3.277 × 10−5 and 5.752 × 10−2; (d) 2.590 × 10−5 and 6.046 × 10−2.

Although the inverse of the transfer matrix unfolds FEPs more accurately than the
final MTL model, it cannot be applied to spectra with counting fluctuations. To confirm this,
we performed FEP unfolding for the measured spectra whose total net counts (background-
subtracted counts) were the evaluated MRCs for the generation task, using both methods.
Figure 12 shows several unfolding results for measured spectra having counting fluctua-
tions. Although the MRCs of the gamma-ray sources in Figure 12 were relatively high, the
inverse of the transfer matrix failed to unfold the FEPs from measured gamma spectra with
counting fluctuations while the final MTL model successfully unfolded the FEPs. Therefore,
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it was verified that the developed MTL model overcomes this limitation of the inverse of
the transfer matrix method, i.e., inapplicability to spectra having counting fluctuations.
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4. Discussion and Conclusions

In this study, we introduced a deep learning model with MTL for unfolding FEPs
and predicting the relative activities of the gamma-ray sources in plastic gamma spectra.
To train the deep learning model, we prepared a dataset containing training, validation,
and testing sets paired with GEB and FEP spectra. The GEB spectra were generated
through MCNP simulation, spectral synthesis, and the random sampling method, whereas
the FEP spectra were generated using the gamma energies and their isotope emission
intensities. We optimized the hyperparameters of the deep learning model using the
Bayesian optimization method. In addition, we proposed a deep learning module. The
performance of the final model was verified using the simulated and measured plastic
gamma spectra. The results showed that our model successfully unfolded the FEPs and
predicted the relative activities of the gamma-ray sources in the simulated and measured
plastic gamma spectra.

Moreover, we evaluated the MRCs of each gamma-ray source for both tasks using a
dataset generated in the same manner as the dataset created for training the MTL model
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using the MAPE metric with a criterion of 1%. To confirm the effectiveness of the proposed
deep learning module, the MRCs were evaluated and it was confirmed that the final MTL
model had generally lower MRCs for both tasks compared to the baseline model. The
evaluated MRCs for the final model were 10,270 for 22Na, 6870 for 54Mn, 17,990 for 57Co,
5310 for 60Co, 18,590 for 109Cd, 3960 for 133Ba, 8970 for 137Cs, and 15,080 for 152Eu. The
MRCs for 57Co and 109Cd were relatively high, possibly because of to the low-energy
gamma-ray emission (below 100 keV) of these gamma-ray sources and because 57Co and
109Cd have highly similar spectra. Owing to the poor energy resolution of the plastic
gamma spectra, these low-energy gamma rays are difficult to distinguish.

While it was demonstrated that the proposed MTL model successfully unfolded FEPs
and predicted the relative activities of gamma-ray sources from plastic gamma spectra, we
are aware of the following limitations in our model: (i) As the machine learning approach
is a data-driven method, its effectiveness depends on the dataset. Our model was trained
using the generated plastic spectra for eight gamma-ray sources. For the spectrum of an
untrained gamma source, our model generated incorrect FEPs and predicted incorrect
relative activities corresponding to one or a combination of the trained gamma-ray sources.
(ii) The MRCs may vary with the addition of gamma-ray sources. As mentioned above, the
MRCs for 57Co and 109Cd were significantly higher than those of the other sources, possibly
due to their highly similar spectra. Hence, if gamma-ray sources with highly similar spectra
are included in the dataset, the MRCs of all such sources may increase because more counts
are necessary to differentiate between them. (iii) The model performance may depend
on the experimental environment. This study addressed the unfolding of FEPs and the
prediction of the relative activities of gamma-ray sources from plastic gamma spectra
in specific cases where the spectra used for the dataset were simulated and measured
in a strictly controlled environment in which there were no temperature variations; the
experimental setup was fixed and bare sources were used. In practical situations, the
spectra may change because of the surrounding materials in the environment. Furthermore,
temperature variations may cause gain shifts in the measured spectra. As indicated in
the MRC evaluation results, our model requires a greater number of counts to distinguish
similar spectra. Therefore, such gain shifts may decrease the performance of our model.
The development of gain shift correction methods [41] could assist in mitigating this
shortcoming. Further investigation is required to address these limitations before practical
application in radiation portal monitors, radiation monitoring systems, and radiation
dosimeters is realizable.
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