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Abstract: In this paper, a novel measurement system based on Quartz Crystal Microbalances is
presented. The proposed solution was conceived specifically to overcome the measurement problems
related to Quartz Crystal Microbalance (QCM) applications in dielectric liquids where the Q-factor
of the resonant system is severely reduced with respect to in-gas applications. The QCM is placed
in a Meacham oscillator embedding an amplifier with adjustable gain, an automatic strategy for
gain tuning allows for maintaining the oscillator frequency close to the series resonance frequency of
the quartz, which is related in a simple way with the physical parameters of interest. The proposed
system can be used to monitor simultaneously both the series resonant frequency and the equivalent
electromechanical resistance of the quartz. The feasibility and the performance of the proposed
method are proven by means of measurements obtained with a prototype based on a 10-MHz
AT-cut quartz.

Keywords: QCM sensors; in-liquid measurements; bridge oscillators

1. Introduction

In-liquid measurements with quartz-based sensors are used in many different ap-
plication fields, among which are chemical sensing, biosensing and viscosity measure-
ments [1–4].

Sensing systems based on quartzes exploit their electromechanical resonant behavior:
their piezoelectric properties provide a transduction of mechanical quantities into electrical
quantities, whereas the pure elastic behavior of the quartz, which is an almost ideal
resonator, is extremely sensitive to the changes of mechanical properties (mass, stiffness
and damping). These particular properties have been exploited to obtain many different
sensors: the most traditional ones are Quartz Crystal Microbalances (QCM), operating as
mass sensors with resolutions down to a few nanograms [5–8], although, if used in liquid
environments, it is possible to employ resonant measurement systems to characterize liquid
viscosity and density. In this contest, the use of resonant structures is widely diffused and
spread in different applications. Just to mention a couple, García-Arribas et al. developed a
magnetoelastic sensor to sensitively measure the viscosity of fluids, aimed at developing
an online and real-time monitoring of the lubricant oil degradation in machinery [9],
and Zang et al. used a self-oscillating tuning fork device to perform fast measurements
of viscosity and density, with the aim of characterizing different phases of liquids in a
multiphase flow [10]. Moreover, in several applications, the research interest is focused on
the realization of distributed sensor networks using sensor fusion techniques [11–13].

The basic structure of a quartz-based chemical or biosensor is the QCM, which is
usually an AT-cut quartz disk operating in the MHz range provided by two electrodes
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on the two opposite surfaces. When the quartz vibrates in air, it is possible to assume no
damping, and the modal frequencies of the device are set by the disk thickness [14]. In
particular, it can be written [15]:

fs N ≈ N
1
2t

√
µQ

ρQ
(1)

where fs N represents the N-th modal frequency, N ∈ ℵ and N odd and t is the thickness of
the quartz, whereas ρQ and µQ are the quartz density and shear modulus.

A mass sensor is obtained by functionalizing one of the quartz surfaces with a material
providing the selective adsorption of a target species. If, due to functionalization and to
adsorption, a small additional mass (∆m) is deposited on one of the quartz surfaces, by
assuming that the mechanical properties of the added layer are the same as those of the
quartz, then the effect changes the resonator thickness and, accordingly, shifts the modal
frequencies of a quantity (∆ fsN) related to the added mass:

∆ fsN = − fsN
∆t
t

= − fsN
∆m
mQ

(2)

where mQ is the quartz mass, and the linear relation stems from the assumption of small
thickness variations. Notice that Equation (2), written in a different form, is also known as
the Sauerbrey equation [16].

By means of the piezoelectric effect, the mechanical vibrations are converted into an
electrical charge or voltage signal. Therefore, a QCM is, in principle, a linear mass sensor
providing the frequency as an output quantity. A typical 10-MHz AT-cut QCM provides,
theoretically, a response of ∆ fs1(Hz) = −0.8 ∆m (ng) [17].

A complete sensing system can be obtained by inserting the quartz into an electronic
circuit providing the frequency metering [1].

Indeed, the measurement problem is far more complex [1,18]. First of all, the elec-
tromechanical vibrations can shift frequency not only due to the added mass (desired effect)
but, also, due to the unwanted mechanical damping caused by the added layer, which has
usually different and worse mechanical properties with respect to the quartz, especially
in biosensors, where it consists of a lossy viscoelastic functionalization film and of the ad-
sorbed target species (biological targets). Moreover, and more importantly, differently from
AT-cut quartz oscillating in the air, where the surrounding medium can be well-described
as an ideal fluid, and the standing elastic wave causing the vibration is confined in the solid
disk, for in-liquid sensors, the surrounding medium is better described by a Newtonian
fluid. In this case, part of the shear vibration can be transferred to the liquid and part of the
elastic energy dissipated. The interaction with the fluid is, in this case, a non-negligible
mechanical load (with both dissipative and conservative characteristics) that causes very
large frequency shifts (up to hundreds of ppms). Due to this fact, some sensing systems
exploit the dependency of the modal frequency of the quartz on the characteristics of the
surrounding fluid to obtain viscosity measurements [14,19,20].

As a consequence, QCM-based measurement systems operating in liquid often couple
the modal frequency shift assessment with the evaluation of the viscoelastic characteristics
of the added layer through the monitoring of other dynamic parameters, such as the
dissipation coefficient δ or, equivalently, the Q-factor [21,22]. This could unravel the inertial
and dissipative behaviour of the ad-layer and enable distinguishing between the added
mass and the surrounding liquid effects.

To continue with the issues related to the QCM-based measurements, it must be
underlined that the way in which the vibrations are generated and measured can influence
their frequency, which can be different from the searched modal frequency: for instance,
the front-end circuit loads and influences the electromechanical resonance [1].

In a typical QCM system, the quartz is embedded in the feedback network of an
oscillator circuit, and its output frequency is measured by, e.g., a digital frequency meter.
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QCM systems with dissipation monitoring (D-QCM) also provide a measurement of the
dissipation factor δ (equivalent to the Q-factor) by inducing transients, e.g., disconnect-
ing the feedback loop [23] and evaluating the transient decay duration. This allows for
assessing the damping coefficient of the resonant electromechanical system.

In this paper, the problems related to measurements based on QCM in in-liquid appli-
cations are summarized, and a novel system based on a Meacham oscillator embedding an
amplifier with adjustable gain is proposed. An automatic strategy is described that allows
for gain tuning and maintaining the oscillator frequency close to the modal resonance of
the quartz. From the adjusted gain value, an estimation of the series electromechanical
resistance can be obtained, providing also the monitoring of the dissipative behavior of the
electromechanical system through a robust estimation technique.

This paper is organized as follows: in Section 2, the operation of quartzes in liquid is
presented, and the main measurement problems are discussed. In Section 3, the proposed
oscillator topology, the series resistance estimation technique and the gain adjustment
strategy are described. In Section 4, a prototype system, used to verify the proposed
solution, is described, whereas Section 5 shows and discusses the experimental results. The
conclusions are drawn in Section 6.

2. In Liquid Measurements Based on QCM and Oscillators

In-liquid quartz resonators can be used either to assess the viscoelastic properties
of a liquid or to measure the mass of a target biological species. In the latter case, a
functionalization layer is deposited over one of the quartz surfaces, ensuring the selective
adsorption of the target. The target species are usually dispersed in a liquid; therefore, in
both cases, the pristine or functionalized surface of the quartz is in contact with a liquid
medium. A general model for this kind of measurement set-up is represented in Figure 1,
where the lumped parameter electrical equivalent circuit (Butterworth-Van Dyke) of a
QCM operating at the first modal resonance, fs1, is shown [1].
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The equivalent circuit is the parallel of the purely electrical branch (C0) and of the
electromechanical branch, which is a series resonant circuit, representing with inductances
the inertial properties of the mechanical system, with capacitance its elastic properties and,
with resistances, viscous losses.

Each component of the mechanical system (quartz, additional layer and nonideal
liquid) is represented in the electrical domain by the appropriate equivalent components.

In the circuit shown in Figure 1, the functionalization layer is modeled as an additional
rigid layer (mass load), but if needed, the model can be refined simply accounting also for
its viscoelastic behavior, introducing a further resistor describing the viscous losses. The
Newtonian fluid is represented by an inertial load and by a dissipative element.

More in detail, considering an AT-cut quartz with electric permittivity εQ = ε22, shear
modulus µQ = c66, density ρQ, piezoelectric coefficient d26, electrode area Ae, viscosity

coefficient ηQ and mass mQ, the quartz is represented by the series of CQ1 = 8 d2
26µQ Ae

π2t ,

LQ1 =
ρQt3

8µ2
Q Aed2

26
and RQ1 =

ηQ
µq CQ1

and by the electrical branch consisting only of the

electrical capacitance, which, in air, is C0 =
εQ Ae

t . C0 can take a slightly different value
in-liquid, due to a fringe electric field in the surrounding medium.

The presence of the additional layer (functionalization and adsorbed target species)
with mass ∆m is modeled while adding in the series an inductance LMass = ∆m t2

8µ2
Q A2

e d2
26

.

Finally, the effect of the Newtonian fluid with a density ρL and viscous coefficient
ηL is represented by a series of a resistor and a nonideal inductors with a resulting
impedance [24]:

ZL = t2 1 + j
µ2

q Aed2
26

√
π f ρLηL (3)

Usually, since the quartz operates in a small frequency range close to fs1, in Equa-
tion (3), it can be assumed that f = fs1.

Therefore, we get:

LL =
t2

µ2
q Aed2

26

√
ρLηL
4π fs1

and RL = 2 π fs1 LL (4)

Defining Lm, Cm and Rm, as shown in Figure 1, the impedance of the circuit shown in
Figure 1 presents a series resonance fs = 1

2π
√

LmCm
corresponding to the first mechanical

modal frequency fs1 and a parallel one fsp = 1
2π

√
Cm+C0√

Lm(CmC0)
.

The two resonances are very close, because C0 is always much larger than Cm.
It can be seen that the series resonance depends only on the mechanical property of

the quartz, whereas the parallel resonance depends also on C0; therefore, it is influenced by
the parasitic components due to, for instance, the read-out circuit.

In detail, the series frequency changes due to the presence of an additional mass (and
this is the working principle of a microbalance), since the inductance LMass contributes
to the overall inductance, but, even in the absence of an added mass, the presence of a
Newtonian liquid causes a modal frequency shift, due to LL.

The shift in this case can be described by the equation derived by Kanazawa and
Gordon [25]:

∆ fs ≈ −
fs

2
LL

LQ1
≈ − f

3
2

s

√
ηLρL

πρQµQ
(5)

However, only under the assumption of LL
LQ1
� 1. Note that this equation holds only

for very small changes of Lm, which is not the case when passing from air to water.
It is well-known that, when placed in an oscillator circuit, the quartz vibrates at

a frequency comprised between the series and the parallel resonance frequencies, and
the actual oscillation frequency within this range depends on the circuit topology and
components.
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From the above discussion, it can be concluded that the mechanical properties of the
resonator are related by known relationships to the series resonance frequency. Therefore,
to obtain information about the mechanical properties either of the fluid or of the added
mass exploiting a QCM-based oscillator, the oscillator should operate at a frequency as
close as possible to the series resonance of the quartz in any conditions; otherwise, the
observed frequency shifts cannot be easily interpreted and related to the variations of the
mechanical quantities of interest.

To clarify the above discussion, the different impedances of the same 10-MHz AT-cut
quartz in air, water and in a solution of water and 20% glycerol are shown in Figure 2.
The plots are obtained using values for the different components of the equivalent circuit
in Figure 1 assessed either from the theoretical model presented in this section or using
experimental data [17]. As expected, beyond shifting the series frequency about 2 kHz,
the effect of pure water is to dramatically reduce the Q-factor due to the dissipative effect
represented by RL, which takes quite a large value (more than ten times the resistance in
air). This reduction leads to a less stable behavior and opens many problems in the design
of oscillators. In this respect, it must be remembered that these kinds of quartzes are used
to measure very small masses. The typical needed mass resolution is in the order of a few
nanograms; therefore, the frequency relative resolution has to be smaller than 100 ppb.
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Figure 2. Impedance (real and imaginary parts in the upper plots and magnitudes and phases in the
lower plots) of an AT-cut 10-MHz quartz in air (solid lines), in water (dashed lines) and in a solution
of water and 20% glycerol (dotted lines). The circuit parameters used to obtain the plots are derived
from the experimental data.

Figure 3a shows the impedances of the 10-MHz quartz in water and in a 20% glycerol–
water solution, with and without an additional parasitic capacitance of 2 pF in parallel
with C0, whereas Figure 3b illustrates the effects of an added mass of 10 µg. It can be seen
that parasitic capacitances do not affect the series resonance position.
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3. Oscillator Topology and Working Principle

In QCM-based oscillators for in-liquid applications, the design should, usually, satisfy
the following requirements:

• The oscillator should oscillate at a frequency providing an estimation of the series
resonance of the quartz.

• One electrode of the quartz should be grounded in order to minimize the parasitic ef-
fects due to the fluid in contact with the QCM surface and to simplify the development
of the measurement chamber.

• Due to the large reduction of the Q-factor of the quartz, the oscillator circuit must be
characterized by a high stability.

For these reasons, we selected as the oscillator topology the Meacham bridge, shown
in Figure 4, which is characterized by a high stability [26], allows for the use of a grounded
quartz and oscillates at a zero-phase frequency, f0◦ . The oscillation frequency can be used
as an estimation of the series resonance of the quartz, as required, even if, with the Rm
different from 0 Ω, the series resonance frequency is close to but does not coincide with
this frequency.

In this configuration, we have a loop gain:

βAv =
(

βn − βp
)

Av = Av

(
ZQ

ZQ + R f
− R2

R2 + R1

)
(6)

where ZQ is the equivalent impedance of the quartz (impedance of the network shown in
Figure 1); Av is the open loop gain of the differential amplifier and β, βp and βn are the
overall, the positive and the negative feedback networks gains, respectively. The oscillation
conditions are obviously those that grant the existence of a couple of purely imaginary
poles of the closed loop gain, i.e., the Barkhausen conditions, requiring the existence of a
frequency where the loop gain has a unitary module and a phase equal to −180◦.

Ideally, the open loop gain is assumed to be a real number not contributing to the
phase of the loop gain. In this case, the oscillator operates at the frequency, fo, where the
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impedance of the quartz is purely real; therefore, at the oscillation frequency, it can be
written:

βn( fo) =
ZQ( fo)

R f + ZQ( fo)
(7)

where ZQ( fo) ∈ <. Note that, to satisfy the phase Barkhausen condition, it must be granted
that βp( fo) > βn( fo); therefore, in any working condition, the following inequality should
be satisfied:

R1

R2
<

R f

ZQ( fo)
(8)

Therefore, in the Meacham oscillator, at the oscillation frequency, the quartz operates
as a pure resistive component; therefore, fo = f0◦ , and, if Rm is sufficiently small, we have
ZQ( fo) ≈ Rm and fo = f0◦ ≈ fs.
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The inequality in (8) is particularly critical for QCMs operating in-liquid. In fact, these
devices present a largely variable value of Rm due to the contributions of the surrounding
liquids, which can have different viscosities.

Besides the phase condition (Equation (7)), the marginal stability of the system is
granted by selecting the value of Av to also satisfy the Barkhausen module condition,
which is:

Av

(
R2

R2 + R1
−

ZQ( fo)

ZQ( fo) + R f

)
= 1 (9)

Note that, if Equation (9) is satisfied, given the value of Av and those of the resistances
R1, R2 and Rf, it is possible to derive the value of ZQ( fo) ≈ Rm.

Unfortunately, this equality cannot be perfectly met in the reality, and for a QCM, this
problem is particularly critical, because the value of ZQ( fo) varies during operations.

In any case, the loop gain module should be as close to 1 as possible but larger than 1;
otherwise, the oscillator behaves as a stable system, and its output is not persistent.

These considerations clarify how real oscillator circuits never behave as pure marginally
stable systems; on the contrary, they can be modeled in the linear regime with poles with
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the real part larger than zero, and they always also operate in nonlinear regions. As a
consequence, the imaginary part of the unstable poles, which sets the frequency of the
oscillator output, does not coincide with the frequency of the marginally stable poles.

To deepen this discussion, the overall gain of the amplifier with feedback, A f , can be
written in the Laplace domain in the following way:

A f (s) =
Av(s)

1 + β(s)Av(s)
=

N(s)

P(s)
(

s2

ω2
N
− 2ζ

ωN
s + 1

) (10)

where N(s) and P(s)
(

s2

ω2
N
− 2ζ

ωN
s + 1

)
are polynomials in s.

By describing the gain of the amplifier in Equation (10), the denominator factor,
responsible for the oscillating behavior, is written in the Bode form. Therefore, the couple
of unstable poles responsible for the oscillation are:

p1,2 = ζωN ± jωN

√
1− ζ2 (11)

where ζ and ωN are positive real numbers, and α = ζωN is the positive real part of
the poles. Consequently, the response to the initial condition of the system contains a
nonvanishing contribution due to this couple of poles that can be written as:

V0unst(t) = Aeζωt cos
(

ωN

√
1− ζ2t + φ

)
(12)

where A and φ are the parameters related to the initial conditions. Therefore, the oscillator
operates at the frequency fo, defined as follows:

fo =
ωN
2 π

√
1− ζ2 (13)

If Equation (9) is perfectly satisfied, and if Rm is sufficiently small, then the poles are
marginally stable, and ζ is equal to zero; therefore, we can write:

ωN = 2π fS (14)

In this case, the oscillator frequency estimates the series resonance frequency as
desired.

On the other hand, if the loop gain module at the frequency selected by the phase
condition is larger than one, then the frequency of the oscillator is different from the
searched resonance frequency, and we can approximate the difference, e f , between the two
frequencies as follows:

e f = fs − fo ≈ fs

(
1−

√
1− ζ2

)
(15)

It is interesting relating the deviation e f , which is a measurement error, to the magni-
tude of the loop gain module. To this end, we propose a simplified analysis considering Av
as a real number and the value of Rm small. To obtain the relationship between the oscillator
characteristics, i.e., how much the loop gain is larger than 1 and the measurement error, it
is convenient to write the denominator of the amplifier gain, A f , defined in Equation (10),
with the following equation:

P(s)

(
s2

ω2
N
− 2ζ

ωN
s + 1

)
= Dβ(s) + Nβ(s)Av = (1 + Avβ(s))Dβ(s) (16)

where Nβ(s) and Dβ(s) are the numerator and the denominator of β, respectively. At the
frequency satisfying the phase condition, which is approximately fs, β is a real number;
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therefore, Dβ( fo) + Nβ( fo)Av is either a real number and its imaginary part is zero and or
a pure imaginary number with a null real part.

α(s) =
s2

ω2
N
− 2ζ

ωN
s + 1 and Γ = |1 + Avβ( fo)| ∈ <. (17)

Hence, in the first case, Nβ( fo) and Dβ( fo) ∈ <, we have:

|Re(P( fo))Re (α( fo))− Im(P( fo))Im(α( fo))| = |1 + β( fo)Av|
∣∣Dβ( fo)

∣∣ (18)

While, in the second case, Nβ( fo) and Dβ( fo) ∈ =, we have:

|Re(P( fo))Im (α( fo)) + Im(P( fo))Re(α( fo))| = |1 + β( fo)Av|
∣∣Dβ( fo)

∣∣ (19)

At the frequency fs, we have Re(α( fs)) = 0 and Im(α( fs)) = 2ζ.
So, in the first case, we derive:

2ζ ≈ Γ

(
Rm + R f

)
(R2 + R1)

|Im(P( fo))|
=

(
RmR2 + R1Rm + R f R2 + R f R1

)
+ AvRmR1 − AvR f R2

Im(P( fo))
(20)

While, in the second case:

2ζ ≈ Γ

(
Rm + R f

)
(R2 + R1)

Re(P( fo))
(21)

The last equations describe accurately the behavior of the oscillator for a small value of
Rm, whereas, for larger values of Rm, the oscillator frequency deviates from fo in a different
manner.

In any case, Equations (20) and (21) show that the larger the loop gain is with respect
to 1, the larger the coefficient ζ and the deviation between the oscillator output frequency
and the quartz series resonance frequency. Moreover, and more importantly, this error is
not independent from the measurement conditions, and it cannot be compensated, since it
varies with Rm. Concluding the deviation of the oscillator frequency from the measurand
is a function of Av and of the characteristics of the fluid.

This discussion clarifies that the operating frequency of the oscillator deviates from
the desired one (in this case, the series resonance of the quartz) if the loop gain module is
much larger than 1 and that the deviation depends on the working conditions of the QCM.

To mitigate these problems, we propose a Meacham oscillator for AT-cut 10-MHz
quartzes based on a large band differential amplifier with variable gain (VGA) VCA842, by
Texas Instruments (Dallas, TX, USA). With this solution, it is possible to adaptively change
the open loop differential gain, Av, in Equation (9) to maintain the loop gain as close to 1 as
possible, irrespective of the working conditions of the quartz.

3.1. Effect of the Phase of the Amplifier

The oscillator working frequency corresponds exactly to the zero-phase frequency
of the quartz only in the case of an ideal amplifier; in reality, due to the behavior of a
real amplifier, the measured frequency deviates both from the series resonance frequency
and from the zero-phase frequency, and the effect of the amplifier nonidealities grows,
increasing the acoustic losses.

In particular, the assumption of Av having a 0◦ phase around 10 MHz (typical working
frequency for QCM) accepted until now is critical; this means that the amplifier has to
be chosen with extreme care, because the phase lag of the amplifier is compensated by
the phase of the feedback network gain, bringing the quartz to operate far from the series
resonance.
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The selected amplifier phase is smaller than 6◦ at 10 MHz for all the possible gain
values, granting satisfactory operations. In this subsection, the effect of the amplifier phase
lag is evaluated.

In Figure 5, the oscillator is considered to operate at the optimum gain magnitude
so that Equation (9) is satisfied, replacing Av with |Av(f o)|. In this figure, the oscillator
working frequency (cyan line) is compared to the quartz series resonance frequency (black
dashed line) and to the zero-phase frequency (green line) in the case of R2/R1 = 10 and
Rf = 200 Ω and taking into a dominant pole the transfer function for the amplifier gain. The
comparison points out that the deviation is acceptable also when the fluid is characterized
by large losses. In fact, it can be seen that the effect introduced by the amplifier phase lag
(cyan curve in Figure 5) is the one providing an overestimation of f0◦ , but since f0◦ itself
is an underestimation of fs, the small amplifier phase lag partially compensates the error
induced by the large acoustic losses in the liquid and provides a working frequency of
the oscillator closer to the series resonance frequency. Obviously, if the phase lag becomes
large, the error becomes very high, as can be seen in Figure 5, where the magenta line
shows the effect of a large amplifier phase lag.
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Figure 5. (a) β as a function of the frequency at different values of Rm: upper plot β module and lower plot phase of β. (b)
Comparison between the series resonance of an AT-cut 10MHz quartz operating in a Newtonian fluid as a function of the
series resistance, f0◦ (which would be the oscillator frequency in the case of an ideal amplifier) and fo, which is the oscillator
frequency accounting for the real amplifier behavior, considering R2/R1 = 10 and R f = 200 Ω.

Nonetheless, the effect of even a small phase lag becomes very important when
operating with a gain that does not satisfy Equation (9). This can be seen extending through
simulations, the results obtained from the theoretical analysis presented in the previous
subsection concerning the frequency error ef due to the operation with large gains of the
amplifier, taking into account also the frequency behavior of the amplifier. As an example,
Figure 6 shows the frequency error defined in Equation (15) for an AT-cut 10-MHz quartz,
considering the circuit components reported in the legend, as a function the amplifier open
loop gain (direct current (DC)value) normalized with respect to the value Avopt (DC value),
which is the value of the gain needed to satisfy Equation (9). In this case, even a small
phase lag of −5.68◦ introduced by the selected amplifier causes very large errors.
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Figure 6. The error ef defined in Equation (15) evaluated for an AT-cut 10 MHz quartz, considering
R2/R1 = 10 and Rf = 200 Ω, and a phase lag of the amplifier of −5.68◦.

3.2. Evaluation of the Series Resistance

If the open loop amplifier gain Av = Avopt, which is the value that verifies Equation (9),
is known, then the value of Rm can be evaluated by inverting the same equation, under the
assumption of small losses and ideal amplifier behavior, obtaining:

Rm =

R2R f
R1+R2

− 1
Avopt

R f

1 + 1
Avopt

− R2
R2+R1

(22)

where, due to the low loss assumption, we consider ZQ( fo) = Rm. Indeed, as diffusely
discussed in the previous subsections, the assumptions used to derive Equation (22) are not
fully satisfied, and Equation (22) provides only an estimation of Rm with a certain degree
of uncertainty. To evaluate the quality of this estimation, simulations were performed,
taking into account the behavior of the real amplifier in terms of the frequency response
and considering also large values of Rm. The simulation results showed that the accuracy
of the Rm estimation based on Equation (22) is really very high (the error is always smaller
than few Ωs). As an example, Figure 7 shows the error between the “true” value of Rm
used for the simulations of the quartz behavior and the value obtained from Equation (22),
considering also the amplifier nonideality (as in Figure 6), i.e., accounting for the amplifier
phase lag.

Finally, concerning the uncertainty of the estimation related to the uncertainty of the
gain estimation, we can write:

u(Rm) ≈
∂Rm

∂Av
u(Av) =

R f

A2
v

(
1 + 1

Av
− R2

R1+R2

)2 u(Av) (23)

which, considering operating close to the optimum gain, can be expressed as a function of
Rm as follows:

u(Rm) =

(
RmR1 − R f R2

)2

R f (R1 + R2)
2 u(Av) (24)
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Figure 7. Error in the estimation of Rm from Equation (22) for an AT-cut 10 MHz quartz considering
R2/R1 = 10 and R f = 200 Ω.

Showing that there exists an optimum value of Rm, R∗m =
R f R2

R1
, where the estimation

of Rm is robust with respect to the estimation errors of the optimum gain.
As a concluding remark, it is shown that the estimation of the series resistance value

is found to be significantly more robust than the one of the series resonance frequency, and
as such, Rm is a very useful parameter, which should be taken into account for the correct
interpretation of measurements.

4. Measurement System Architecture and Gain Adjustment Procedure

The proposed measurement system is composed by the oscillator, an amplitude meter
able to monitor the oscillator output amplitude and a control block that provides gain
adjustment with a feedback loop exploiting the measured oscillator output amplitude, as
shown in Figure 8.

Gain adjustment is provided by a digital controller (the block named “gain ad-
justment logic” in Figure 8) that executes the iterative dichotomic search of the opti-
mum gain value illustrated in Figure 8b with the objective of minimizing the quantity

γ =

∣∣∣∣Av

(
R2

R2+R1
− Re(ZQ( fo))

Re(ZQ( fo))+R f

)∣∣∣∣− 1 in N steps.

Each step lasts a time Ts, so the search process concluded in N iterations, a mea-
surement sample of the oscillator frequency, fo, and Rm is provided after a time equal to
tmeas = NTs. For the real-time monitoring of adsorption phenomena, tmeas must be less than
about 2 s.

The search algorithm is based on the two following ideas:

• the system works in a predefined range of Rm, with Rm < RmMAX .
• At the start, the gain is set at the maximum value, and this is sufficient for the oscillator

to also work in the case of Rm = RmMAX (minimum Q-factor), with the oscillator
behaving as an unstable (or marginally stable) system with Av ≥ Avopt.

• At each search process step, the amplitude of the oscillator output signal is measured
and used to detect the presence of persisting oscillations.

The search procedure, described in Figure 8b, is based on reducing the gain on a
dichotomic basis, checking for the presence of oscillations with an amplitude larger than a
predefined threshold related to the noise floor and taking as fo the frequency measured at
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the last step. The corresponding gain is the estimated Avopt and can be used to assess the
value of Rm based on Equation (9).
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Figure 8. (a) Schematics of the building blocks operations of the proposed system. (b) Gain adjustment strategy.

Using N search steps, the gain can be adjusted with a resolution given by ∆Av =
Av MAX−Av MIN

2N , and consequently, using the same procedure adopted to derive the uncertainty

as in Equation (24), the resolution of the Rm measurements is ∆Rm = ∂Rm
∂Av

Av MAX−Av MIN
2N .

Notice that, as usual, accurate measurements need longer measurement times; there-
fore, the settings in terms of gain resolution and measurement time must be selected as a
trade-off.

Measurement System Setup

The system, described in principle in Figure 8, was implemented in the laboratory to
test the performance of the proposed oscillator. The implemented measurement set-up is
described in Figure 9. In particular, the AT-Cut 10-MHz quartz (gold electrodes having
a diameter of 0.6 cm) was placed in an ad-hoc-built measurement chamber that allowed
for static measurements in liquid. The measurement chamber, shown in Figure 9b–d,
has a cylindrical shape with a 49-mm outer diameter and 50-mm height. The chamber is
composed of two main blocks (see Figure 9c,d), the bottom one is a polyvinyl chloride
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(PVC) material and hosts a proper designed holder and connector for the quartz. The
quartz is sandwiched between two conductive O-rings. The top block (cap) is stainless steel
and presents a central hole, under which the quartz is placed. The steel cap is grounded by
means of spring-loaded contacts and connected to the upper quartz electrode. The quartz
upper surface acts as the bottom wall of a measurement well with a diameter of 11.5 mm
and a height of 2 mm, guaranteeing the liquid deposition on the quartz surface. All the
tests in liquid are performed using the volume of the liquid such that the thickness of the

liquid layer is much larger than the extinction depth δ′ =
√

2ηL
ωsρL

[27]; therefore, the liquid
can be seen as a semi-infinite layer.
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The quartz is connected to the developed Meacham oscillator; the gain of the VGA is
set through the 16-bit D/A converter of an acquisition board (NI PCI 6052E, D/A) and a
conditioning amplifier.

With reference to Figure 4, the Meacham bridge was realized using R1 = 2.4 kΩ,
R2 = 24 kΩ and Rf = 200 Ω (which are the same values considered for the all the simulations
whose results were presented in the previous sections).

The amplitude and the frequency of the oscillator output are digitally measured by
a LabView VI executed by a PC after having acquired, with the same acquisition board
(16-bit A/D), a frequency downshifted version of the signal. The frequency downshift of
the oscillator output is obtained using an ad-hoc developed circuit hosting a mixer and a
low-pass filter used to mix the oscillator output with a reference signal the with frequency
fre f generated by a signal generator AG33220A (Agilent, Santa Clara, CA, USA). The fre f is
automatically selected by exploiting a coarse measurement of fo, performed during the
set-up phase, with Av = AvMAX, such that fre f = f ∗o − fo f f set. The frequency fo f f set is
selected to guarantee, during the whole measurement, fo > fre f and ∆ f = fo − fre f in the
kHz range.

The mixer output signal is acquired with a suitable sampling frequency for the time
windows of the duration tacq < Ts. The gain adjustment algorithm (Figure 8b) is im-
plemented by the same VI controlling the acquisition and performing the amplitude
measurements.

The same VI assesses also the frequency of the acquired signal at each search process
step, using an accurate single tone estimation algorithm.

The selected acquisition time is 150 ms, and the optimum gain search procedure
consists of a number of steps, N, that can be selected in the range 9–12. The measurement
time, tmeas, was fixed at 2 s; therefore, each two seconds, the system provides and saves
a measurement of fo performed with the optimum gain (obtained at the last step of the
gain adjustment procedure) and, for comparison sake, a measurement of fo obtained at the
starting step of the gain adjustment procedure (with maximum gain).

The TI VCA842 differential amplifier has a gain range 1/10 < Av <10, but, in this
application, we consider Avmin = 1 and a linear analog control of the gain value, obtained
by means of a voltage input VG. The gain is related to the control voltage by the following
equation:

Av = 4.90 V−1(VG + 1V)

The search strategy resolution, which is considered as the largest source of uncertainty
for the estimation of Avopt, is related to the number of steps that are used to adjust the gain.
In the presented case, the number of steps, N, used can be selected in the range 9–12; we
have, therefore:

∆Av =
Av MAX − Avmin

2N <
10
2N N = 9, . . . , 12

Exploiting the results of Equation (24), and using the circuit component values, we
found that the obtainable resolution for the Rm estimation is in the range 2 Ω–4 Ω with
N = 9, whereas, with N = 12, the resolution is improved a factor of 8 and lies in the range
0.25 Ω–0.5 Ω.

The VI front-panel is shown in Figure 10.
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5. Experimental Results

To test the theory discussed in the previous section, fo and Rm were monitored in
different experimental conditions for time windows 25-min-long performing the optimum
gain search (Avopt); simultaneously, the fo value obtained without using the gain adjustment
procedure at the maximum gain AvMAX was also acquired. Table 1 shows the mean
deviation ef between the two frequencies (i.e., e f = fo@Avopt − fo@AvMAX) in the tested
different conditions. The experimental measurements were repeated at least five times for
each of the considered test cases in the same environmental conditions.

Table 1. e f , the estimated Rm, Avmax/Avopt and standard deviation of the measured frequency (10 min) in
different working conditions. Gly20% is a solution of glycerol in pure water with a 20% concentration.

ef = fo@AvOpt
− fo@AvMAX

Estimated
Rm (Ω) Avmax/Avopt

σfo@AvMAX
(10 min)

σfo@AvOpt
(10 min)

Air 3377 Hz 64 6.66 2.3 Hz 1.3 Hz
Pure water 4390 Hz 237 3.71 20 Hz 8 Hz

Gly20% 4300 Hz 265 3.35 31 Hz 27 Hz

In particular, the reported results concern tests performed in the air, pure water
(ηH2O = 8.4 × 10−4 Pa·s, ρH2O = 1000 kg/m3) and a mixture of pure water and 10% of
glycerol (ηgly = 1.5 Pa·s, ρgly = 1260 kg/m3).

Assuming fo as a good estimation of fs in the case of the adjusted gain, we find an error
due to the loop gain module inaccuracy of about 3 kHz in the air (ef = 3377 Hz) and a larger
error in the liquid; these results are in accordance with the simulation analysis reported
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in Figure 6. Moreover, operating at an optimum gain usually increases the stability of the
oscillator, especially when the optimum value is far from the maximum gain value.

The standard deviations reported in the table describe the short-time frequency sta-
bility provided by the oscillator in different test conditions. Nevertheless, the analysis of
repeated measurements showed larger deviations that can be explained by the variations of
the influence quantities (e.g., ambient temperature varied approximately in a 5 ◦C interval
during the measurement campaign). The Allan variance was assessed to gain information
on the variability/stability of the oscillation frequency over time in different conditions: in
air and in water. The standard deviation values of the frequency variations for one hour
and one day are: <3 Hz, ≈20 Hz in the air and <20 Hz, ≈50 Hz in the liquid.

Figure 11 reports the optimum gain predicted by simulations (solid line) in the same
conditions used to derive Figures 5–7 as a function of the series resistance and the optimum
gain provided by the adjustment procedure experimentally (markers), showing a very
good accordance.
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Figure 11. Optimum gain predicted by the simulations (solid line) in the same conditions used
to derive Figures 5–7 as a function of the “true” series resistance. Optimum gain provided the
adjustment procedure experimentally (markers) as a function of the estimated Rm.

Figure 12 reports the results obtained in a 13-h measurement performed in the air with
the quartz placed in the chamber and shows the performance of the system in terms of the
short time stability. It is worth noticing that the constraint exerted by the placement of the
quartz in a chamber for in-liquid applications causes a perturbation of the resonant system
accompanied by a modest reduction of the Q-factor. Therefore, the short-term stability
of the measurements in the air results are somewhat worse than the ones obtainable for
in-gas applications where the QCM fixing is obtained by suspending the quartz with small
springs, which cause a negligible mechanical load.

Figure 13 reports the results obtained in a 10-h measurement performed in a solution
of pure water and 10% of glycerol. The effect of evaporation of the water during the
measurement, accompanied by an increase of the solution viscosity, can be seen both from
the decreasing of the frequency shift with time and from the increasing of the optimum gain.

The results obtained in the different conditions are compared in Figure 14, showing
that the effect of the gain setting is relevant particularly when considering fluids with a
large difference in viscosity.
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)
. (b) Frequency deviation
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Finally, Figure 15 shows a dynamical test, fo, was monitored starting from pure water
(140 µL) and adding, with a micropipette, subsequent doses of 13 µL or 26 µL of a solution
of water with 30% glycerol, obtaining solutions with glycerol concentrations of 0%, 4.7%,
6.5%, 8.1%, 9.5%, 10.7% and 11.8%. The transients induced by the perturbation due to the
drop cast can be seen. The glycerol solution is dropped manually with a micropipette, and
the added solution has a different density and temperature with respect to the one in the
well, so, when the drop falls (even if we tried to perform this operation as smoothly as
possible), a fluid dynamical transient is expected before the solution diffuses and reaches a
steady state. Due to the manual deposition, the transients obtained with the individual
drop depositions are somewhat different.
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, N = 12. (b) Frequency

deviation e f = fo@AvOpt − fo@AvMAX . (c) Estimated Rm.

These measurements show that the gain successfully adapts itself to the different mea-
surement conditions, compensating as needed for the change of Rm during measurements.

The relationship between the glycerol concentration, the measured frequency shifts
and the estimated resistance was evaluated and reported in Figure 16. It can be seen that,
as expected by it being derived from the theory and simulations in the previous section,
the effect of using the maximum gain of the amplifier is not a simple offset of the frequency
shifts, but it causes an error depending on the working conditions, and as such, it can be
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hardly compensated. Using the proposed system allows both for reducing the frequency
shift error and for adding an accurate measurement of the series resistance, which can be
used to assess the viscosity of the interacting liquid.
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6. Conclusions

This paper showed the feasibility of a novel measurement system based on Quartz
Crystal Microbalances, on a Meacham oscillator embedding an amplifier with adjustable
gain and on an automatic strategy for gain tuning. It was shown that maintaining the
oscillator frequency close to the series resonance frequency of the quartz needs ad-hoc
solutions when the quartz operates in-liquid, where the Q-factor is severely reduced.
The system uses the optimum gain value to derive the value of the quartz impedance at
f 0◦ , which is a good estimation of the series resistance of the quartz. The simultaneous
monitoring of the frequency shift and of the series resistance allows for gaining information
on the mechanical load type and distinguishing between the viscous loading and inertial
loading of the QCM. The proposed system was tested and verified using a laboratory
set-up, but it can be realized with low-cost components exploiting a microcontroller for the
implementation of the gain adjustment algorithm and for frequency downshifted signal
acquisition and processing, whereas the reference signal can be easily generated with a
Direct Digital Synthesis integrated circuit (DDS IC).
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