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Abstract: Dynamic scheduling problems have been receiving increasing attention in recent years due
to their practical implications. To realize real-time and the intelligent decision-making of dynamic
scheduling, we studied dynamic permutation flowshop scheduling problem (PFSP) with new job
arrival using deep reinforcement learning (DRL). A system architecture for solving dynamic PFSP
using DRL is proposed, and the mathematical model to minimize total tardiness cost is established.
Additionally, the intelligent scheduling system based on DRL is modeled, with state features, actions,
and reward designed. Moreover, the advantage actor-critic (A2C) algorithm is adapted to train the
scheduling agent. The learning curve indicates that the scheduling agent learned to generate better
solutions efficiently during training. Extensive experiments are carried out to compare the A2C-based
scheduling agent with every single action, other DRL algorithms, and meta-heuristics. The results
show the well performance of the A2C-based scheduling agent considering solution quality, CPU
times, and generalization. Notably, the trained agent generates a scheduling action only in 2.16 ms on
average, which is almost instantaneous and can be used for real-time scheduling. Our work can help
to build a self-learning, real-time optimizing, and intelligent decision-making scheduling system.

Keywords: permutation flowshop scheduling problem; deep reinforcement learning; actor-critic;
dynamic scheduling; real-time scheduling; new job arrival; tardiness cost

1. Introduction

Production scheduling is one of the important issues to consider for a production
workshop. Since flowshop is one of the most widely used workshops, the permutation
flowshop scheduling problem (PFSP) has received numerous studies during the past several
decades. According to a review by Fernandez-Viagas et al. [1], hundreds of heuristic and
metaheuristic methods have been proposed to solve the PFSP over the past 60 years. Studies
of PFSP have a significant impact on the scheduling field. The permutation criteria in PFSP
restricts that the job sequence in the first machine is maintained for all successive machines,
i.e., the job sequence is the same for all machines in the flowshop. The PFSP has been
proved non-deterministic polynomial-time hard (NP-hard) when the number of machines
is more than two [1]. To solve the NP-hard problem, many hybrid meta-heuristics have
been proposed [2,3]. For the PFSP, its objective is to find a good job sequence to minimize
makespan [4–6], flow time [7–10], tardiness [11–14], multiple objective [15–20], etc.

Given the NP-hard of PFSP, many meta-heuristics, such as genetic algorithm (GA) [21–24],
particle swarm optimization (PSO) [25–27], and iterated greedy (IG) algorithm [21–24], have
been proposed to solve the PFSP. Generally, the PFSP is regarded as a statistic scheduling
problem. However, in a real production environment, the workshop is dynamic with
real-time events occurring, such as dynamic order arrival, machine breakdowns, rush
order insertion, etc. Thus, dynamic scheduling has more practical implications for a
real workshop. Several dynamic characteristics have been considered, such as dynamic
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job/order arrival [28–31], stochastic processing time [32–34], machine breakdown [35],
process interruptions [36,37], etc.

Among these dynamic characteristics, new job arrival has been recently receiving
arising attention. In this problem, jobs arrive at the production system randomly rather
than at time zero, as generally assumed for statistic PFSP. A rescheduling is needed when
a new job arrives. This problem is described as a real-time scheduling problem in some
literature [25,38–40].

Several researchers have studied the dynamic PFSP with new job arrival using heuris-
tics and meta-heuristics. Rahman, Sarker and Essam [38] investigated the PFSP with
real-time order arrival and used GA to repeatedly re-optimize the solution as each new
order arrives. Liu et al. [41] proposed a scheduling strategy by integrating match-up and
real-time strategy and provided eleven new heuristics with ten existing and one new
priority rule. Li et al. [42] solved the flow shop scheduling problem with new job arrival
using the constructive heuristic method. The heuristic method successively puts each job
in the current best position and reinserts several jobs based on weight calculations. Liu
et al. [43] studied the dynamic PFSP with new job arrival using an improved IG, which is
equipped with a novel repair method and new enhanced destruction and reconstruction.

With the advance of artificial intelligence (AI), DRL and reinforcement learning (RL)
have also been used to optimize scheduling problems. The DRL method trains a scheduling
agent to choose the best job to process next based on current production status. Since
a scheduling problem can be regarded as a sequential decision problem, it is suitable
to be solved by DRL [44]. Many scheduling problems, such as flowshop scheduling
problem (FSP), job shop scheduling problem (JSP), assembly shop scheduling problem
(ASP), parallel machine scheduling problem, etc., have been solved by DRL or RL. For FSP,
Zhang et al. [45] studied the FSP using an online TD algorithm to minimize makespan. For
JSP, several studies have been carried out both for statistic and dynamic JSP. Lin et al. [46]
studied the JSP under an edge computing framework and used a multiclass deep Q network
(DQN) to generate scheduling decisions for multiple edge devices. Liu et al. [47] solved the
JPS using an actor-critic algorithm. Zhang et al. [48] used the DRL to automatically learn
priority dispatching rule for JSP. They exploited the disjunctive graph representation of JSP
and proposed a Graph-Neural-Network-based scheme to embed sates. Han and Yang [49]
studied the adaptive JSP using dueling double DQN. Luo [44] studied the dynamic JSP
with new job insertions to minimize total tardiness using DRL. A DQN is used to select
appropriate dispatching rules at each rescheduling point, and seven generic state features
are extracted to represent production status. For other types of workshops, Wang et al. [50]
investigated the adaptive scheduling for assembly job shop with uncertain assembly times
using dual Q-learning algorithm, which contains top and bottom level Q-learning methods.
Shiue, Lee and Su [39] studied a RL-based real-time scheduling problem using multiple
dispatching rules strategy to respond to changes in a manufacturing system. Shiue et al. [51]
studied the dynamic scheduling of a flexible manufacturing system and semiconductor
wafer fabrication using RL. Zhang et al. [52] studied the scheduling of unreliable parallel
machines to minimize mean weighted tardiness using RL.

In addition to the DRL, other AI approaches, such as machine learning, deep learning,
and a combination of machine learning and meta-heuristics, are also used to solve schedul-
ing problems in recent years. Jun and Lee [53] addressed the dynamic single-machine
scheduling problem to minimize total weighted tardiness by learning dispatching rules
from schedules. They proposed a decision-tree-based machine learning method to extract
dispatching rules from existing schedules. Wu et al. [54] used deep learning to solve
unreliable machines’ dynamic dispatching in re-entrant production systems. They combine
a deep neural network (DNN) and Markov decision processes (MDP) to assign different
priorities to job groups to minimize cycle time or maximize throughput. Li et al. [55] stud-
ied the flexible job-shop scheduling problem (FJSP) with sequence-dependent setup times
and limited dual resources using machine learning and meta-heuristics. A hybrid meta-
heuristic is proposed to solve the FJSP, and the machine learning classification model is
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trained to identify rescheduling patterns. Chen et al. [56] used RL to control key parameters
of GA during evolution in FJSP.

From the above literature review, we can know that the dynamic PFSP with new
job arrival has become an active topic in recent years and has been studied using several
meta-heuristics. Recently, DRL and other AI techniques serve as a new approach to solve
scheduling problems. However, the dynamic PFSP with new job arrival and total tardiness
cost criteria has not been solved by DRL. Since the modeling of dynamic flowshop is
different from those of other workshops, it is necessary to propose a DRL-based modeling
method for dynamic PFSP. In addition, the DRL-based approaches are not compared with
traditional meta-heuristics in most literature. It is unclear whether the DRL algorithms
outperform traditional meta-heuristics considering solution quality and CPU times.

This paper studies the dynamic PFSP with new job arrival to minimize total tardiness
cost using DRL. Our study aims to realize real-time optimization and intelligent decision-
making of scheduling for dynamic flowshop using DRL. The procedure of solving dynamic
PFSP using DRL is illustrated, and the mathematical model is formulated. The scheduling
agent is then modeled by designing state features, actions, and reward for the DRL agent.
The A2C algorithm is adapted to train the scheduling agent to choose appropriate actions
in different production status. The results show the well performance of the A2C-based
scheduling agent compared with other DRL algorithms and meta-heuristics.

In particular, the contributions of this paper are as follows.

(1) To the best of our knowledge, this is the first attempt to solve the dynamic PFSP with
new job arrival to minimize total tardiness cost using DRL. Our work can fill the
research gap in solving dynamic PFSP by DRL.

(2) An intelligent decision-making scheduling system based on DRL is designed and
modeled. The system architecture of intelligent scheduling is proposed. States
features, actions and reward for the scheduling agent and system are designed.

(3) Our work shows the DRL-based scheduling method outperforms traditional meta-
heuristics (IG and GA) in solution quantity and CPU times by a large margin for
dynamic FPSP.

2. Problem Description and Mathematical Model
2.1. Problem Description

In this section, the system architecture of solving dynamic PFSP using DRL is pro-
posed. As shown in Figure 1, a new job arrives at the system randomly. If the job cannot
be processed immediately, the job will be stored in a buffer BF. The flowshop needs to
determine which job to process next using scheduling agent SCD when a job is finished in
M1. The current state features, including job information and production status, are input
to SCD to generate a scheduling action. Since for PFSP, the job sequence is maintained
for all machines. Only M1 needs to determine which job will be processed next. Thus, for
step 7 in Figure 1, the system time is only pushed to time ts’ (when M1 finishes job j) to
determine which job will be processed next in M1 using SCD. At each decision point ts’,
the jobs finished in all machines are moved to the finished jobs area, denoted as FNS.
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Figure 1. The system architecture of solving dynamic PFSP using DRL.

2.2. Mathematical Model

The mathematical model is established to minimize the total tardiness cost of all jobs
arriving at the system. Some notations are listed as follows.

Notations:

j: index of jobs, j = 1, 2, . . . , n
i: index of machines, i = 1, 2, . . . , m
tij: processing time of job j on machine i, i = 1, 2, . . . , m, j = 1, 2, . . . , n
Cij: completion time of job j on machine i, i = 1, 2, . . . , m, j = 1, 2, . . . , n
Cj: completion time of job j, j = 1, 2, . . . , n
dj: due date of job j, j = 1, 2, . . . , n
CP: an indicator of completion time of all jobs
TF: tardiness factor
RDD: the relative range of due dates
αj: unit (per second) tardiness cost of job j
ATj: arrival time of job j

Based on the notations above and some related formulation works [57–59], the objec-
tive function is formulated as Equation (1).

Minimize
n

∑
j=1

αj ×max{0, Cj − dj} (1)

Subject to:

dj = [CP(1− TF− RDD
2

), CP(1− TF +
RDD

2
)], j = 1, 2, . . . , n (2)

CP =
1
m
×

n

∑
j=1

m

∑
i=1

tij (3)

Cj = Cij, i = m, ∀j (4)

Cij ≥ max
{

C(i−1)j, Ci(j−1)

}
+ tij, ∀i, j (5)

C1j − t1j ≥ ATj, ∀j (6)



Sensors 2021, 21, 1019 5 of 20

C0j = 0, ∀j (7)

Ci0 = 0, ∀i (8)

According to [58,60,61], the dj is set by constraint (2). The dj follows a uniform
distribution and is controlled by CP, TF, and RDD. TF and RDD are constant and are set to
0.5 and 0.5 [58,60]. CP, is calculated by Equation (3). Equation (4) defines the completion
time of a job in the system. Equation (5) gives the completion time of a job on a machine.
Equation (6) ensures that a job can be processed by the first machine only after the job
arrives at the system. Equations (7) and (8) provide some initial values of completion time
Cij.

3. Modelling of the Intelligent Scheduling System

This section models the intelligent scheduling system by designing state features,
actions, and reward for the scheduling agent and workshop environment. Whenever M1
finishes a job, the scheduling agent SCD generates a scheduling action based on current
state features, and a job is selected based on the scheduling action and processed on M1.
The workshop environment returns a reward for this scheduling action to update SCD
parameters. The reward, state features, and actions are designed as follows.

3.1. Reward

Since most literature on using DRL to solve the scheduling problems are aimed to
minimize makespan. These reward functions cannot be used to minimize the total tardiness
cost. We designed a new reward function for the total tardiness cost criteria in this section.

Recall that the aim of solving PFSP is to find out a job sequence with minimized total
tardiness cost. The scheduling agent SCD should learn to choose an appropriate job at
every decision point so that the total tardiness cost is minimized after all jobs are finished.
Each action the SCD taken should make the total tardiness cost increases as little as possible.
Given that DRL is designed to maximize the cumulated reward obtained at each step, the
reward in this problem is defined as the inverse of unit newly added total tardiness cost of
unfinished jobs in the system during this time step. The newly added tardiness cost comes
from work-in-progress (WIP) and jobs in the buffer (BF). Therefore, the reward of time step
[ts, ts ′ ] is calculated by Equation (9).

r = − 1
ts′ − ts

(tpBF + tpWIP) (9)

where tpWIP, tpBF denote newly added tardiness penalty cost from WIP and jobs in BF,
respectively, during the current time step [ts, ts ′ ]. tpBF, tpWIP are calculated as follows.

tpBF =
nBF

∑
j=1

zjs′αj[ts′ −max(ts, dj)], j ∈ BF (10)

tpWIP =

nWIP

∑
j=1

zjs′αj[tjs′ −max(ts, dj)], j ∈WIP (11)

where nBF denotes the number of jobs in BF, nWIP denotes the number of WIP. zjs ′ , defined
by Equation (12), indicates whether job j is overdue at ts ′ , the end time of this step. Only the
overdue jobs generate tardiness cost. tjs ′ , calculated by Equation (13), denotes the actual
end time for job j compared with ts ′ . If job j is completed, i.e., finished by all machines,
before ts ′ , the time step for calculating tardiness cost is [ts, Cj] rather than [ts, ts ′ ].

zjs′ =

{
1, dj < ts′

0, else
(12)
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tjs′ =

{
Cj, if job j has been completed at ts′

ts′ , else
(13)

3.2. State Features

The scheduling agent SCD determines a scheduling action based on current state
features. State features should fully and efficiently reflect current job information and
production status. Specifically, state features should provide sufficient information for
selecting an action at each rescheduling point. The state features in most existing literature
are designed to solve the JSP to minimize the makespan. These features are not applicable
for our studied problem. Thus, we designed five state features for the PFSP under the total
tardiness cost criteria, considering both jobs in BF and current production status. Unlike
the existing literature, we calculated four statistic characteristics, maximum, minimum,
average, and standard deviation, for several state features rather than only providing the
average value to reflect each feature’s characteristics better.

The five state features, ft1, ft2, . . . , ft5, are defined as follows.

(1) f t1 =
{

ψj
}

, j ∈ BF. Current unit tardiness cost of each job in BF. where ψj is the unit
tardiness cost generated by job j at present and is calculated as follows.

ψj =

{
αj, if job j overdues at current time
0, else

(14)

(2) f t2 = {STj}, j ∈ BF. Safe time of each job in BF. where STj is determined by Equation
(15). STj reflects how much time will be left before the due date dj when job j is
finished, if job j begins to be processed at present time tc.

STj = dj −
m

∑
i=1

tij − tc (15)

(3) f t3 = {
m
∑

i=1
tij}, j ∈ BF. Total processing times in all machines for each job in BF.

(4) f t4 =
{

uj
′}, j ∈ BF. The estimated utilization rate of each job in BF. uj

′ is the
estimated utilization rate of job j and is calculated by Equation (16). Each job in BF is
assumed to be processed under the present production status. The uj

′ is calculated
based on the waiting times WTij

′ of all machines when job j is processed.

uj
′ = 1− (

m

∑
i=2

WTij
′
/

m

∑
i=1

tij) , j ∈ BF (16)

WTij
′ = max(0, Ci(j−1) − C(i−1)j), i = 2, 3, . . . , m, j ∈ BF (17)

where WTij
′ is the waiting time of job j on machine i. WTij

′ generates when job j is
finished on machine i − 1, but cannot be processed immediately on machine i because
machine i has not finished its current job j − 1. Note that the first machine M1 does
not have a waiting time because M1 is always idle at a decision point.

(5) f t5 = nBF. The number of jobs in BF at present.

For the first four state features, which are array, four statistic characteristics, maximum,
minimum, average, and standard deviation, are calculated. Thus, the total dimensions for
state features are 4 × 4 + 1 = 17. In addition, all features are normalized to facilitate the
learning process.

3.3. Actions

Each action corresponds to a single dispatching rule (SDR) for selecting a candidate
job to be processed in M1 from BF. The action space should provide sufficient and effective
dispatching strategies under different production status. To lower the learning difficulty, the
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action space should not be too large. We designed five actions (a1–a5) for SCD, considering
different production status and well-known dispatching rules.

(1) Select the job j, which has the minimum current unit tardiness cost ψj
Where ψj is calculated by Equation (14).

a1 = argmaxj(ψj), j ∈ BF

a1 is apparent because the overdue jobs with the maximum unit tardiness cost should
be processed first to reduce the increase of tardiness cost in the system. Otherwise, the job
will generate tardiness cost every second, and the tardiness cost is the largest compared
with the tardiness cost generated by other jobs in BF.

(2) Select the job j, which has the minimum safe time STj. Where STj is calculated by
Equation (15).

a2 = argminj(STj), j ∈ BF

a2 may be appropriate when no jobs in BF overdue or other actions do not have too
many advantages.

(3) Select a job that has the shortest processing time (SPT).

a3 = argminj(
m

∑
i=1

tij), j ∈ BF

(4) Select a job that has the longest processing time (LPT).
SPT and LPT are well-known dispatching rules and have been used as scheduling

actions in [44,46,48].

a4 = argmaxj(
m

∑
i=1

tij), j ∈ BF

(5) Select a job that obtains the maximum utilization rate uj
′.

a5 = argmaxj(uj
′), j ∈ BF

a5 selects the most suitable job for current machine status, considering the utilization
of machines. a5 may has larger priority when no jobs overdue or the ψj has small standard
deviation, etc.

The five scheduling actions above can provide efficient dispatching strategies under
different production status. If more than one job in BF fulfills an action, a job is selected
randomly among those candidate jobs.

4. A2C

In this section, we adapt A2C to solve the dynamic PFSP with new job arrival. A2C is
a DRL algorithm that equips with an actor-network πθ and critic-network Vφ [62]. A2C
selects an action with the probability πθ(st) generated by actor-network πθ , at state st.
The critic-network is used to estimate the state value of a state st in the learning process.
Recently, Liu, Chang and Tseng [47] used A2C to solve JSP to minimize makespan and
achieved a good balance between makespan and execution time. However, A2C has not
been used to solve the PFSP in currently published literature. We adapted the A2C to
solve the dynamic PFSP, and the A2C-based training method are shown in Algorithm 1. In
Algorithm 1, the new job arrival operation adds the newly arrived jobs during this step to
BF. The operation is executed in the beginning and when a job is finished in M1. When a
job is finished in M1, the WIP is updated by removing jobs that have already been finished
in all machines.

The critic and actor networks are updated every T steps using gradients shown in
lines 15 and 16 [62] in Algorithm 1. The drt denotes the discounted reward of step t and is
used as the target state value of step t. The estimated state value of step t is Vφ(st). Thus,
the gradient for critic-network is calculated by ∇φ(drt −Vφ(st))

2. For the actor-network,
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the difference between target and estimation state values is used to update the probability
for selecting actions at state st. Also, an entropy H(πθ), calculated by Equation(18), is
considered to expand explorations.

H(πθ) = − ∑
at∈A

πθ(at|st) log πθ(at|st) (18)

where A is the action space of the agent.
Algorithm 1 shows that an instance with n jobs is used to train the DRL agent for

EP epochs, and the agent’s parameters are updated every T steps. Thus, the computation
complexity of the training process for a single instance is O(EP × n × T). However, after
training, the computation complexity for solving an instance is reduced to O(n).

Algorithm 1. The A2C-based training method.

1: Initialize actor and critic network πθ , Vφ

2: for epoch = 1: EP do
3: Perform new job arrival at time zero (current system time)
4: Get current state st
5: while step = 1: n do \\ n is the number of jobs for the selected instance
6: Determine an action at based on probability πθ(st) at state st
7: Select a job j from BF using action at, process job j in all machines, obtain the finished time of job j in each machine
8: Push forward the system time only to the time when job j is finished in M1
9: Perform new job arrival and update WIP at current system time
10: Get current state st+1 and reward rt
11: Store transition {st, at, rt, st+1} of this step
12: st ← st+1
13: if step % T == 0 then
14: Calculate discounted reward drt of the T steps in reverse order using data in transitions,

drt =

{
rt + γVφ(st+1), for the Tth step

rt + γdrt+1, for the first T−1 steps
15: Update critic-network Vφ using gradient ∇φ(drt −Vφ(st))

2

16: Update actor-network πθ using gradient ∇θ log πθ(at
∣∣st)[drt −Vφ(st)] + β∇θ H(πθ(st; θ))

17: end if
18: end while
19: end for

5. Numerical Experiments

In this section, a large range of instances is generated to train the A2C-based schedul-
ing agent SCD. After training, the trained model of SCD is saved and used to provide
intelligent decision-making of scheduling for dynamic PFSP. To evaluate the performance
of A2C, we compared it with SDR, two other DRL algorithms, DQN and double DQN
(DDQN), and two traditional meta-heuristics, IG and GA. We also tested the trained agent
on a new set of extended instances with larger production configurations to verify the
generalization of A2C.

A total number of 84 instances are generated for dynamic PFSP with new job arrival
using different parameter settings of n and m, following [43,44]. The specific parameters
for instances are listed in Table 1. As mentioned above, the due dates dj are determined
by Equation (2). We noticed that when |r| < 10, the agent can be trained more efficiently.
Based on this consideration, the αj is set.

The configuration of n and m in Table 1 is repeated three times. Hence, the total
number of instances is 7 × 4 × 3 = 84. For each instance, three jobs are set as initial jobs,
which arrive at time zero. Other jobs arrive following a poison distribution, which means
the interval time of two successive arriving jobs follows an exponential distribution. The
mean value of the exponential distribution is set as 30. To better evaluate the performance
of the trained model, we divide the 84 instances as 59 (occupies 70% of all instances)
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training instances and 25 (occupies 30%) test instances randomly. In the training process,
3000 epochs are set. For each training epoch, all the 59 training instances are used to
generate 59 episodes to train the scheduling agent. Thus, a total number of 59 × 3000
= 177,000 instances are used to train the agent. All instances, training and test results,
and the video of solving dynamic PFSP using the trained agent and SDR are uploaded as
Supplementary Materials.

Table 1. Parameters for instances.

Parameter Value

Number of jobs (n) {20, 50, 80, 100, 120, 150, 200}
Number of machines (m) {5, 10, 15, 20}

Number of initial jobs for every instance 3
Interval time of job arriving E(1/30)

Processing time on a machine (tij) U[1, 100]
Unit tardiness cost of a job (αj) U[0, 5]

All algorithms and workshop environments are coded with Python 3.8. The train-
ing and test experiments are performed on a PC with Intel(R) Core(TM) i7-6700 CPU @
3.40 GHz CPU and 12 GB RAM.

5.1. Training Process of A2C

The A2C-based scheduling agent SCD is trained using the aforementioned training
instances. Parameter settings for A2C are shown in Table 2. Note that the coefficient β is
linearly decreased from 0.005 to 0.0005 during the first 70% epochs and remains at 0.0005
after the 2100th epoch.

Table 2. Parameter settings for the training process and DRL algorithms.

Parameter Value

Number of hidden layers 3
Number of neurons in each hidden layer 100

Number training epochs (EP) 3000
Discount factor (γ) 0.98

Update step iteration (T) 5
Learning rate of actor and critic 2× 10−6, 5× 10−6

Range of entropy coefficient (β) 0.005~0.0005

For each epoch, the SCD is first trained on all of the 59 training instances and then
tested on all of the 25 test instances. An instance is used to generate an episode under
certain production configurations. Thus, each epoch contains 59 training episodes used to
train the agent and 25 test episodes used to evaluate the agent’s performance after training
at this epoch. The average total tardiness cost and episode reward on all test instances are
recorded for each epoch. Note that the total tardiness cost in all experiments is rescaled by
dividing 1000.

The average total tardiness cost on all test instances at each training epoch is shown
in Figure 2. Figure 2 shows that the average total tardiness cost decreases dramatically
with the increase of training epochs, meaning the SCD effectively learned to choose a good
scheduling strategy and had a good generality for the unseen test instances. In particular,
for the first 1400 epochs, the average total tardiness cost decreased from 163.55 to 91.88,
which is a 43.82% improvement. The learning curve remains relatively stable after the
2000th epoch, even with some fluctuations. This indicates the SCD can provide reasonable
scheduling solutions at a relatively stable level after training. Note that the solution seems
not to keep at the global optimal found in the approximate 1300th epoch. This might be
due to the exploration of A2C. The fluctuations and the problem of escaping from global
optimal can be reduced by increasing training epochs.
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The average episode reward obtained by SCD during the training epochs is shown
in Figure 3, which can reflect the learning effect more directly. Figure 3 shows that the
episode reward increases significantly with the increase of training epochs. Recall that a
DRL agent learns to maximize the accumulated reward obtained during an episode. Thus,
Figure 3 confirms the SCD indeed learned to perform better during the training process.
The curve tendency of average episode reward is similar to that of average total tardiness
cost, indicating the reward of SCD has a high correlation with the objective function of the
studied scheduling problem, verifying the correctness of our reward design for SCD.
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5.2. Comparison with SDR

Recall that the scheduling agent learns to choose the best scheduling action, i.e., SDR,
at every rescheduling point. To evaluate whether the scheduling agent has learned to
choose the best scheduling actions, we compared the A2C with SDR and random action
strategys, as shown in Figure 4.

Figure 4 shows that the a1 obtains the best results. This may be because for the
tardiness penalty criteria, always selecting the jobs with maximum current unit tardiness
cost may be the best strategy, typically when the due date is too tight, and many jobs have



Sensors 2021, 21, 1019 11 of 20

waited in the buffer. It indicates that simple dispatching rules exist to generate high-quality
solutions for the dynamic PFSP with total tardiness cost criteria. This kind of simple SDR
is useful and efficient in practical production scheduling.
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The results also indicate that the A2C fails to find the best actions at all rescheduling
points. Between all actions, the a1 is the best one. However, in theory, there are situations
when other actions are more appropriate than a1. Always selecting the a1 may not be the
best strategy. Since the A2C is worse than a1, the DRL agent did not learn to choose the
best actions at every rescheduling points. The trained DRL agent may not outperform its
best pure action significantly when the performance of actions differs greatly. For example,
the results in Lin, Deng, Chih and Chiu [46] show that the trained DRL agent MDQN only
outperforms its best pure action MOPRN by 14.33%.

The random actions are also compared with the SDR strategy. Figure 4 shows that
random action results are not the worst, but approximately the average of those of other
actions. This may be because the random action is expected to generate a solution that
equals the mean value of other actions’ solutions. To verify this conjecture, we tested the
rand_-a1, the random action exclude a1. The results of rand_-a1 get worse when the best
efficient action a1 is removed. Also, the rand_-a1 obtains the results close to the average
results of other all actions exclude a1.

Compared between all actions, the a1 is the best one, followed by a5, i.e., select jobs
with the maximum utilization rate uj

′, and the worst one is a2, i.e., select the jobs with the
minimum safe time STj. Surprisingly, the a2 is worse than a3 (SPT) and a4 (LPT). This may
be because the SPT and LPT are more related to the utilization, which is more important
than the due date information influencing the safe time. The best action a1 outperforms the
worst one a2 by 73.55%, which is a large scale. To improve the performance of DRL, more
efficient actions should be designed, and less efficient actions are replaced. In addition,
more efficient DRL algorithms should be proposed since the A2C fails to choose the best
actions in every situation.

5.3. Comparison with DRL and Meta-Heuristics

To evaluate the performance of A2C, we compared it with two other widely used DRL
algorithms, DQN and DDQN, and two traditional mate-heuristics, IG and GA.
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5.3.1. Training Process of DQN and DDQN

As mentioned above, the DQN has widely used to solve scheduling problems [44,46,49].
We adapt the DQN [63] and its variant DDQN [64] to solve the dynamic PFSP. The training
procedure and instance settings are the same as those of A2C. After tuning, the hyper-
parameters of DQN and DDQN are set. The learning rate for DQN and DDQN are 1× 10−5

and 1× 10−6, respectively. The memory size and batch size are 1000 and 32, respectively.
The training curves of DQN and DDQN are shown in Figures 5 and 6. Figure 5 shows

that the average total tardiness cost decreases during the training epochs, indicating the
two DRL agents have learned to choose better actions at rescheduling points. Figure 6
shows that the average episode reward shows an increasing trend, verifying the agents
indeed learned to generate better solutions. However, the learning curves of DQN and
DDQN show a large fluctuation compared with those of A2C, indicating the A2C is easier
to train. For the two DQN algorithms, the training curve of DDQN is smoother than those
of DQN.
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5.3.2. IG and GA

To test the performance of A2C in solving dynamic PFSP, we also compared it with
traditional meta-heuristics, which are extensively used in solving scheduling problems.
From the review of [1], the IG-based algorithms show a very efficient performance com-
pared with other meta-heuristics on the PFSP. In addition, GA is one of the most commonly
used meta-heuristics in solving PFSP [1]. Thus, IG and GA are selected as traditional
meta-heuristics to compare with our A2C-based scheduling approach.

For the dynamic PFSP, jobs arrive randomly. When a new job arrives, a rescheduling
procedure is required to schedule the newly arrived jobs with jobs in the system. Follow-
ing [16], we also set rescheduling times as 5 for an instance. When a rescheduling point
is not reached, the newly arrived jobs are appended to the current job sequence to obtain
a new job sequence. At each rescheduling point, the new job sequence is searched by
meta-heuristics, i.e., IG and GA.

IG starts from an initial solution, executes destruction, reconstruction, local search,
and acceptance criteria on the solution sequence for several iterations, and returns the
optimized solution [21]. At the beginning of an instance, the initial solution πT is generated
by putting all jobs arrived at time zero into a job sequence randomly. Jobs in πT are
processed successively. When a rescheduling point is reached, the current job sequence
πT is optimized through destruction, reconstruction, local search, and acceptance criteria
for several iterations. In the destruction, |πT| × pdesJ jobs are selected randomly from
the current job sequence πT and removed from πT to the insertion job sequence πR.
|πT|denotes the number of jobs in πT. After the destruction, the insertion job sequence
πR is obtained, and the left job sequence in πT is denoted as πD. In the reconstruction, jobs
in πR are selected randomly, inserted to all possible positions in πD, and finally placed
in the position with minimum total tardiness cost to obtain a new job sequence. In the
local search, the jobs in the current job sequence are randomly selected without replication.
The selected jobs are then tested in all possible positions of the current job sequence and
placed in the position with minimum total tardiness cost. When more than one position
obtains the minimum total tardiness cost, one of those best positions is selected randomly.
For the acceptance criteria, the aggravated solutions are generally accepted with a certain
probability to expand searching scopes and escape from local optimal [58,65]. In this paper,
worse solutions are accepted at a certain probability τ. The parameters of IG are tuned
using the design of experiments (DOE) and analysis of variance (ANOVA) as performed
in [58]. After tuning, the parameter settings of IG are pdesJ = 0.2, τ = 0.05.

GA starts with an initial population, performs crossover, mutation, and selection
between the population or individual for several iterations, and returns the optimized
solution. Similar to IG, the initial solution is generated randomly using jobs arrived at
time zero. At each rescheduling point, the current job sequence πT is permuted randomly
to generate a population with N individuals. N = min(N′,|πT| × (|πT| − 1)), where
N′ is the given population size. The population is evolved through crossover, mutation,
and selection operations. In the crossover, the N individuals are paired randomly. Two
individuals in a pair perform crossover with a probability pc. For the pairs that performs
crossover, a crossover point is selected randomly. The sequences before the crossover
point are switched between the two individuals in the same pair, and two new child job
sequences are obtained. The repetition jobs in two child job sequences are replaced with
jobs shown in the parent job sequence but not in the child’s sequence. In the mutation,
every individual l in the population mutates with probability pm. If an individual mutates,
two jobs in this individual’s job sequence are selected randomly and switched with each
other. In the selection, N new individuals are selected from the current population with
replication. Every individual will be selected at a probability pl, which is calculated by
Equation (19).

pl =
fl

N
∑

l=1
fl

, l = 1, 2, 3, . . . N (19)



Sensors 2021, 21, 1019 14 of 20

where fl is the fitness (total tardiness cost) of individual l. The parameters of GA are tuned
using the aforementioned DOE and ANOVA. The parameter settings of GA are N′ = 50,
pc = 0.80, pm = 0.10.

5.3.3. Comparison with DQN, DDQN, IG, and GA

In this section, the A2C is compared with two other DRL algorithms, DQN and DDQN,
and two meta-heuristics, IG and GA. After training, the trained models of all DRL agents
are saved and used to generate scheduling actions during production.

Figure 7 presents the average total tardiness cost of all compared algorithms on all
test instances. As can be seen in Figure 7, A2C obtains the best results compared with
all other algorithms. Typically, A2C outperforms two traditional meta-heuristics, IG and
GA, by a large margin. We can also see that the three DRL algorithms outperform two
meta-heuristics. This may result from the efficient scheduling action a1. One surprising
result is that the DDQN is worse than DQN. This may be because the two algorithms
are not fully convergence at the given epochs, and their results may change when more
training epochs are given. For the two meta-heuristics, IG and GA are tested at two search
iteration levels, 50 iterations and 300 iterations. When the iteration increased from 50 to
300, IG shows a significant statistical improvement, while GA does not. Overall, the two
meta-heuristics with two search iteration levels do not differ significantly in the solution
quality.
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The specific average total tardiness cost and CPU times of the compared algorithms
are provided in Tables 3 and 4. Table 3 shows that the A2C and DQN generate the best
results considering different production configurations. For the A2C, it outperforms IG
and GA in solution quality and CPU times under all production configurations considered.
Specifically, A2C, on average, outperforms IG and GA by 31.36% and 31.31% in solution
quality, using only 0.04% and 1.35% CPU times that IG and GA spent when 50 searching
iterations are provided for IG and GA. When IG and GA’s iterations increased to 300, A2C
outperforms IG and GA by 30.34% and 30.98%, using merely 0.01% and 0.23% CPU times
spent by IG and GA. For the two meta-heuristics, when iterations increased from 50 to
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300, the CPU times increase by 279.71% and 493.01%, but IG and GA’s solution quality
only improves slowly. IG obtains slightly better solution quality than GA, using more CPU
times.

Table 3. Average total tardiness cost grouped by the number of jobs n and machines m for compared
DRL and meta-heuristics. IG and GA are tested under two search iteration levels, i.e., 50 iterations
and 300 iterations. The best results are highlighted in bold.

DRL
Meta-Heuristics

50 Iterations 300 Iterations

DQN DDQN A2C IG GA IG GA

n 20 13.88 21.52 16.06 19.34 17.68 19.16 19.67
50 50.09 65.61 48.98 75.43 75.83 73.38 77.13
80 94.76 83.05 60.79 114.45 112.9 115.62 112.69

100 101.31 143.59 108.57 161.13 159.64 161.99 165.87
120 152.35 208.83 144.45 205.15 204.78 201.4 207.9
150 175.06 190.7 163.28 222.84 213.67 220.35 211.7
200 150.53 172.42 197.99 255.62 256.19 282.16 246.4

m 5 43.76 63.19 46.76 50.94 50.04 50.41 49.21
10 73.73 78.09 74.81 101.02 100.75 106.84 101.21
15 113.44 191.28 106.21 195.85 193.4 192.31 195.48
20 265.5 249.54 232.93 323.72 316.15 317.65 321.87

Ave 105.55 128.52 99.79 145.39 145.28 143.25 144.58

Table 4. Average CPU times (s) grouped by the number of jobs n and machines m for DRL and
meta-heuristics. IG and GA are tested under two search iteration levels, i.e., 50 iterations and 300
iterations. The CPU time for an instance is the total CPU time required for solving that instance.

DRL
Meta-Heuristics

50 Iterations 300 Iterations

DQN DDQN A2C IG GA IG GA

n 20 0.03 0.03 0.02 12.8 56.62 4.35 32.45
50 0.09 0.09 0.07 63.94 230.29 10.31 54.08
80 0.19 0.18 0.15 63.2 278.19 6.39 37.85

100 0.27 0.26 0.21 337.07 1301.06 15.84 94.28
120 0.33 0.34 0.27 751.39 2791.67 25.53 121.65
150 0.49 0.49 0.38 1020.36 3909.1 21.25 165.13
200 0.68 0.69 0.49 3441.1 13023.42 34.01 200.35

m 5 0.17 0.16 0.14 246.99 914.52 10.82 70.21
10 0.24 0.23 0.18 594.53 2258.63 13.82 81.65
15 0.31 0.31 0.24 514.63 1665.1 17.72 89.91
20 0.41 0.42 0.33 900.46 3891.24 24.32 156.79

Ave 0.26 0.26 0.21 526.99 15.59 2001 92.45

Tables 3 and 4 further show that, as the production configuration n and m increases, the
disparity in total tardiness cost between A2C and meta-heuristics increases. For example,
A2C outperforms IG and GA with 50 iterations by 8.21% and 7.24%, when m is 5. However,
when m is 20, A2C outperforms by 28.05% and 26.67%. This indicates that the A2C-based
method has more advantages in solving large instances.

Note that the average CPU times of A2C for calculating a test instance is 0.21 s.
Considering the number of jobs in test instances, the average decision time for taking a
scheduling action is 2.16 ms. This is almost instantaneous and can be used in real-time
scheduling.

The DRL method models the scheduling problems as an MDP where a DRL agent
successively determines the job to be processed next [44]. The optimization of scheduling
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is realized by the successive decisions of DRL agents rather than by searching the job
sequence directly as some meta-heuristics do. The generality of NN enables the DRL
agents to behave well for unseen instances. In addition, the DRL agent can generate a
scheduling decision instantly after trained. Thus, the DRL can be served as an alternative
approach for dynamic scheduling problems.

5.4. Generalization to Larger Instances

To further verify the generalization ability of DRL, we tested the trained A2C agent on
a novel set of extended instances with larger production configurations. This experiment
aims to find out whether the performance deteriorates greatly when production settings
different from the original training and test instances.

In the extended instances, the number of jobs n is increased from the original setting
n = {20, 50, . . . , 200} to n = {300, 500, 800}. The number of machines m is set to 10. Other
production settings are the same as the original instances. Each configuration of n and m
are repeated three times. Thus, a total of 9 extended large instances are generated.

The SDR is used as a baseline to evaluate whether the performance of A2C deteriorates
when the production configuration becomes larger. The results of A2C and SDR on the
extended instances are shown in Figure 8. Figure 8 shows that the A2C is worse than a1
and a5. The a5 becomes the best action, which may be because when too many jobs exist in
the system, the utilization becomes more critical.
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To show the change of performance of A2C for larger production configurations, we
provide the percentages that A2C outperforms SDR on the original and extended instances
in Figure 9. As shown in Figure 9, the percentages on extended instances are larger than
those on original instances for most SDR strategies except for the a5. This indicates that, on
the whole, the DRL has a better generalization ability on larger production configurations
compared with SDR.
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Figure 9. The percentages that A2C outperforms SDR considering average total tardiness cost on the
original and extended instances.

6. Conclusions

This paper solved the dynamic PFSP with new job arrival to minimize total tardiness
cost using DRL. This study aims to establish an intelligent decision-making scheduling
system to provide real-time optimization for dynamic scheduling problems. The whole
procedure of solving dynamic PFSP using DRL is illustrated, and the mathematical model
is established. The DRL-based scheduling system is proposed with state features, actions,
and reward designed for the scheduling agent and workshop environment. Five scheduling
actions are designed to perform well at different production states. The state features with
17 dimensions are designed to provide directly related information for choosing scheduling
actions. The A2C algorithm is adapted to train the scheduling agent SCD to learn an appro-
priate scheduling action at different states. A total of 84 instances are generated to train
the A2C-based scheduling agent, and extensive comparisons are carried out. The trained
scheduling agent is compared with SDR, two other DRL algorithms, DQN and DDQN,
two traditional meta-heuristics, IG and GA. The training curve shows that the average
total tardiness cost decreases significantly with training epochs increases, indicating the
scheduling agent has learned to choose appropriate scheduling actions. The comparison
experiments show our A2C-based scheduling agent performs best among all compared
DRL and meta-heuristics. Typically, the A2C-based scheduling agent outperforms IG and
GA by a large margin, both in solution quality and CPU times. Our A2C-based scheduling
agent can generate a scheduling action in 2.16 ms on average. This can be used for real-time
scheduling and online decision-making in a real production workshop. In addition, the
A2C-based scheduling agent shows well generalization on unseen instances with larger
production configurations. The scheduling agent can still be trained during production.
Our study contributes to establishing a self-organizing and self-learning scheduling system.

Future research can consider more realistic characteristics, such as machine break-
down, transportation time, etc., and solve real-time scheduling of more complex workshops,
such as reconfiguration workshop, hybrid flowshop, and distributed workshop. In addi-
tion, more studies can be applied to design more effective state features, action spaces, and
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reward for the scheduling system. Moreover, more DRL algorithms could be studied to
improve the scheduling agent’s learning effect and solution performance.

Supplementary Materials: All instances, training and test results, and the video of solving dynamic
PFSP using the trained agent and SDR are available at https://osf.io/tynrd/?view_only=bbea6a7
8dff042e3a5952c3283031676.
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